Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access October 6, 2009

Carbon paste electrodes in the new millennium

  • Ivan Švancara EMAIL logo , Alain Walcarius , Kurt Kalcher and Karel Vytřas
From the journal Open Chemistry

Abstract

In this review (with 500 refs), both electrochemistry and electroanalysis with carbon paste-based electrodes, sensors, and detectors are of interest, when attention is focused on the research activities in the years of new millennium. Concerned are all important aspects of the field, from fundamental investigations with carbon paste as the electrode material, via laboratory examination of the first electrode prototypes, basic and advanced studies of various electrode processes and other phenomena, up to practical applications to the determination of inorganic ions, complexes, and molecules. The latter is presented in a series of extensive tables, offering a nearly complete survey of methods published within the period of 2001–2008. Finally, the latest trends and outstanding achievements are also outlined and future prospects given.

[1] P. Zuman, Electrolysis with a dropping mercury electrode: J. Heyrovský’s contribution to electrochemistry. Critical Reviews in Analytical Chemistry, 31 (2001): 281–289. http://dx.doi.org/10.1080/2001409107676710.1080/20014091076767Search in Google Scholar

[2] I. Švancara, K. Vytřas, K. Kalcher, A. Walcarius, and J. Wang, Carbon paste electrodes in facts, numbers, and notes: A review on the occasion of the 50-years jubilee of carbon paste in electrochemistry and electroanalysis. Electroanalysis, 21 (2009): 7–28. http://dx.doi.org/10.1002/elan.20080434010.1002/elan.200804340Search in Google Scholar

[3] R. N. Adams, Carbon paste electrodes. Analytical Chemistry, 30 (1958): 1576–1576. http://dx.doi.org/10.1021/ac60141a60010.1021/ac60141a600Search in Google Scholar

[4] R. N. Adams, Electrochemistry at Solid Electrodes (New York: M. Dekker, 1969). Search in Google Scholar

[5] R. N. Adams, Carbon paste electrodes: A Review. Review of Polarography (Kyoto, Japan), 11 (1963): 71–78. 10.5189/revpolarography.11.71Search in Google Scholar

[6] M. Březina, Estimation of electrochemical activity of carbon using a paste electrode. Nature, 212 (1966): 283–283. http://dx.doi.org/10.1038/212283a010.1038/212283a0Search in Google Scholar

[7] J. Heyrovský, “Elektrolysa se rtut’ovou kapkovou kathodou” (in English: Electrolysis with the mercury drop cathode). Chemické Listy XVI (1922): 258–264. Search in Google Scholar

[8] C. Olson and R. N. Adams, Carbon paste electrodes. Application to anodic voltam-metry. Analytica Chimica Acta, 22 (1960): 582–589, plus C. Olson and R. N. Adams, Carbon paste electrodes application to cathodic reductions and anodic stripping voltammetry. Analytica Chimica Acta, 29 (1963): 358–363. http://dx.doi.org/10.1016/S0003-2670(00)88341-510.1016/S0003-2670(00)88341-5Search in Google Scholar

[9] T. Kuwana and W. G. French, Carbon paste electrodes containing some electroactive compounds. Analytical Chemistry, 36 (1964): 241–242. http://dx.doi.org/10.1021/ac60207a00610.1021/ac60207a006Search in Google Scholar

[10] L. S. Marcoux, K. G. Prater, B. G. Prater, and R. N. Adams, Nonaqueous carbon paste electrode. Analytical Chemistry, 37 (1965): 1446–1447. http://dx.doi.org/10.1021/ac60230a04710.1021/ac60230a047Search in Google Scholar

[11] D.G. Davis and M.E. Everhart, Chronopotentiometry of the bromide-bromine couple at platinum and carbon paste electrodes. Analytical Chemistry, 36 (1965): 38–40. http://dx.doi.org/10.1021/ac60207a01610.1021/ac60207a016Search in Google Scholar

[12] A. L. Beilby and B.R. Mather, Resistance effects of two types of carbon paste electrodes. Analytical Chemistry, 37 (1965): 766–768. http://dx.doi.org/10.1021/ac60225a03910.1021/ac60225a039Search in Google Scholar

[13] C. A. H. Chambers and J. K. Lee, Studies of the extraction of organic molecules into the carbon-paste electrode. Journal of Electroanalytical Chemistry, 15 (1967): 309–314. http://dx.doi.org/10.1016/0022-0728(67)80007-X10.1016/0022-0728(67)80007-XSearch in Google Scholar

[14] Gy. Farsang, Voltammetric properties and analytical uses of carbon paste electrodes prepared with silicone oil. Acta Chimica Academiae Scientiarum Hungaricae, 45 (1965): 163–176. Search in Google Scholar

[15] H. Monien, H. Specker, and K. Zinke, Application of various carbon electrodes for inverse voltammetric determination of silver. Fresenius Zeitschrift fuer Analytische Chemie, 225 (1967): 342–351. http://dx.doi.org/10.1007/BF0098367910.1007/BF00983679Search in Google Scholar

[16] Š. Mesarić and E. M. F. Dahmen, Ion-selective carbon-paste electrodes for halides and silver(I) ions. Analytica Chimica Acta, 64 (1973): 431–438. http://dx.doi.org/10.1016/S0003-2670(01)82475-210.1016/S0003-2670(01)82475-2Search in Google Scholar

[17] D. Bauer and M. P. Gaillochet, Etude du comportement de la pate de carbone a compose electroactif incorpore. Electrochimica Acta, 19 (1974): 597–606. http://dx.doi.org/10.1016/0013-4686(74)85016-410.1016/0013-4686(74)85016-4Search in Google Scholar

[18] J. Lindquist, A Study of seven different carbon paste electrodes. Journal of Electroanalytical Chemistry, 52 (1974): 37–46. http://dx.doi.org/10.1016/S0022-0728(74)80099-910.1016/S0022-0728(74)80099-9Search in Google Scholar

[19] P. Söderhjelm, A Comparison of the analytical utility of three different potential ramp techniques in voltammetry, using a carbon-paste electrode. Journal of Electroanalytical Chemistry, 71 (1976): 109–115. http://dx.doi.org/10.1016/S0022-0728(76)80294-X10.1016/S0022-0728(76)80294-XSearch in Google Scholar

[20] R. N. Adams, Probing brain chemistry with electroanalytical techniques. Analytical Chemistry, 48 (1976): 1126A–1138A. http://dx.doi.org/10.1021/ac50008a00110.1021/ac50008a001Search in Google Scholar

[21] T. Yao and S. Musha, Electrochemical enzymic determinations of ethanol and L-lactic acid with a carbon paste electrode modified chemically with nicotinamide adenine dinucleotide. Analytica Chimica Acta, 110 (1979): 203–209. http://dx.doi.org/10.1016/S0003-2670(01)93110-110.1016/S0003-2670(01)93110-1Search in Google Scholar

[22] K. Ravichandran and R. P. Baldwin, Chemically modified carbon paste electrodes. Journal of Electroanalytical Chemistry & Interfacial Electrochemistry, 126 (1981): 293–300. http://dx.doi.org/10.1016/S0022-0728(81)80438-X10.1016/S0022-0728(81)80438-XSearch in Google Scholar

[23] M. E. Rice Z. Galus, and R. N. Adams, Graphite paste electrodes: Effects of paste composition and surface states on electron-transfer rates. Journal of Electroanalytical Chemistry, 143 (1983): 89–102. http://dx.doi.org/10.1016/S0022-0728(83)80256-310.1016/S0022-0728(83)80256-3Search in Google Scholar

[24] F. N. Albahadily and H. A. Mottola, Improved response of carbon-paste electrodes for electrochemical detection in flow systems by pretreatment with surfactants. Analytical Chemistry, 59 (1987): 958–962. http://dx.doi.org/10.1021/ac00134a00710.1021/ac00134a007Search in Google Scholar

[25] W. Matuszewski and M. Trojanovicz, Graphite paste-based enzymatic glucose electrode for flow-injection analysis. Analyst (UK), 113 (1988): 735–738. http://dx.doi.org/10.1039/an988130073510.1039/an9881300735Search in Google Scholar

[26] K. Kalcher, Chemically modified carbon paste electrodes in voltammetric analysis. Electroanalysis, 2 (1990): 419–433. http://dx.doi.org/10.1002/elan.114002060310.1002/elan.1140020603Search in Google Scholar

[27] I. Švancara, K. Vytřas, F. Renger, and M.R. Smyth, Application of carbon paste electrodes in electroanalysis. A Review. Sborník Vědeckých Prací, Vysoká Škola Chemicko-technologická; Pardubice, 56 (1992/93): 21–57. Search in Google Scholar

[28] N. A. Ulakhovich, E. P Medyantseva, and G.K. Budnikov, Carbon-paste electrodes as chemical sensors in voltammetry. Journal of Analytical Chemistry, 48 (1993): 980–998. Search in Google Scholar

[29] K. Kalcher, J. M. Kauffmann, J. Wang, I. Švancara, K. Vytřas, C. Neuhold, and Z. Yang, Sensors based on carbon paste in electrochemical analysis: A Review with particular emphasis on the period of 1990—1993. Electroanalysis, 7 (1995): 5–22. http://dx.doi.org/10.1002/elan.114007010310.1002/elan.1140070103Search in Google Scholar

[30] L. Gorton, Carbon paste electrodes modified with enzymes, tissues, and cells (A Review). Electroanalysis, 7 (1995): 23–45. http://dx.doi.org/10.1002/elan.114007010410.1002/elan.1140070104Search in Google Scholar

[31] K. Kalcher, X. H. Cai, G. Koelbl, I. Švancara, and K. Vytřas, New trends in voltam-metric analysis: modified carbon paste electrodes. Sborník Vědeckých Prací, Vysoká Škola Chemickotechnologická; Pardubice, 57 (1994): 5–27. Search in Google Scholar

[32] K. Kalcher, K. Schachl, I. Švancara, K. Vytřas, and H. Alemu, Recent progress in the development of electrochemical carbon paste sensors. Scientific Papers of the University of Pardubice, Series A; 3 (1997): 57–85. Search in Google Scholar

[33] Z.-Q. Zhang, H. Liu, and Z.-F. Li, New developments of carbon paste electrode (Review). Fenxi Kexue Xuebao (Journal of Analytical Science), 14 (1998): 80–86; Chemical Abstracts, 125 (1998): 175403x. Search in Google Scholar

[34] R. D. O’Neill, Sensor-tissue interactions in neurochemical analysis with carbon paste electrodes in vivo. Analyst (UK), 118 (1993): 433–438. http://dx.doi.org/10.1039/an993180043310.1039/AN9931800433Search in Google Scholar

[35] C. D. Blaha, Evaluation of stearate-graphite paste electrodes for chronic measurement of extracellular dopamine concentrations in mammalian brain. Pharmacology, Biochemistry and Behavior, 55 (1996): 351–364. http://dx.doi.org/10.1016/S0091-3057(96)00104-910.1016/S0091-3057(96)00104-9Search in Google Scholar

[36] I. Švancara, J. Zima, and K. Schachl, The testing of carbon paste electrodes: an example on the characterization of a carbon paste electrode prepared from newly used graphite powder. Scientific Papers of the University of Pardubice, Series A; 4 (1998): 49–63. Search in Google Scholar

[37] I. Švancara and K. Schachl, Testing of unmodified carbon paste electrodes. Chemické Listy, 93(199): 490–499. Search in Google Scholar

[38] I. Švancara and K. Vytřas, Physico-chemical processes in analytical electrochemistry with carbon paste electrodes. An overview. Chemija (Vilnius), 11 (2000): 18–27. Search in Google Scholar

[39] I. Švancara, K. Vytřas, J. Barek, and J. Zima, Carbon paste electrodes in modern electroanalysis. Critical Reviews in Analytical Chemistry, 31 (2001): 311–345. http://dx.doi.org/10.1080/2001409107678510.1080/20014091076785Search in Google Scholar

[40] K. Kalcher, I. Švancara, R. Metelka, K. Vytřas, and A. Walcarius, Heterogeneous Electrochemical Carbon Sensors, in The Encyclopedia of Sensors, Vol. 4; eds. C. A. Grimes, E. C. Dickey, and M. V. Pishko (Stevenson Ranch: American Scientific Publishers, 2006), ch. 4, pp. 283–429. Search in Google Scholar

[41] J. Zima, I. Švancara, J. Barek, and K. Vytřas, Recent Advances in Electroanalysis of Organic and Biological Compounds at Carbon Paste Electrodes. Critical Reviews in Analytical Chemistry, 39 (2009): 204–227. http://dx.doi.org/10.1080/1040834090301185310.1080/10408340903011853Search in Google Scholar

[42] G. U. Flechsig, M. Kienbaum, and P. Gruendler, Ex situ atomic force microscopy of bismuth film deposition at carbon paste electrodes. Electrochemistry Communations, 7 (2005) 1091–1097. http://dx.doi.org/10.1016/j.elecom.2005.08.00310.1016/j.elecom.2005.08.003Search in Google Scholar

[43] F. D. Munteanu, M. Mosbach, A. Schulte, W. Schuhmann, and L. Gorton, Fast-scan cyclic voltammetry and scanning electrochemical microscopy studies of the pH-dependent dissolution of 2-electron mediators immobilized on zirconium phosphate containing carbon pastes. Electroanalysis, 14 (2002): 1479–1487. http://dx.doi.org/10.1002/1521-4109(200211)14:21<1479::AID-ELAN1479>3.0.CO;2-T10.1002/1521-4109(200211)14:21<1479::AID-ELAN1479>3.0.CO;2-TSearch in Google Scholar

[44] T. Mikysek, A. Ion, I. Švancara, K. Vytřas, and F. G. Banica, Carbonaceous Materials for Single-Use Metal Ion Sensors. Quality Assesment by Electrochemical Impedance Spectrometry; in Sensing in Electroanalysis, eds. K. Vytřas and K. Kalcher (Pardubice: University of Pardubice, 2005), pp. 19–27. Search in Google Scholar

[45] J.-M. Zen, A. S. Kumar and H.-W. Chen, Electrochemical behavior of stable cinder/prussian blue analogue and its mediated nitrite oxidation. Electroanalysis, 13 (2001): 1171–1178. http://dx.doi.org/10.1002/1521-4109(200110)13:14<1171::AID-ELAN1171>3.0.CO;2-Q10.1002/1521-4109(200110)13:14<1171::AID-ELAN1171>3.0.CO;2-QSearch in Google Scholar

[46] T. Mikysek, I. Švancara, M. Bartoš, K. Kalcher, K. Vytřas, J. Ludvík: “New Approaches to the Characterization of Carbon Paste Electrodes Based on Ohmic Resistance and Qualitative Carbon Paste Indexes”. Analytical Chemistry, 81 (2009): 6327–6333. http://dx.doi.org/10.1021/ac900493710.1021/ac9004937Search in Google Scholar

[47] J. Wang, Real-Time Electrochemical Monitoring: Toward Green Analytical Chemistry. Accounts of Chemical Research, 35 (2002): 811–816. http://dx.doi.org/10.1021/ar010066e10.1021/ar010066eSearch in Google Scholar

[48] J. Wang, Ü. A. Kirgöz, J.-W. Mo, J. Lu, A.N. Kawde, and A. Muck, Glassy carbon paste electrodes. Electrochem. Commun., 3 (2001): 203–208. http://dx.doi.org/10.1016/S1388-2481(01)00142-410.1016/S1388-2481(01)00142-4Search in Google Scholar

[49] S. Varma, C. K. Mitra, Low frequency impedance studies on covalently modified glassy carbon paste. Electroanalysis, 14 (2002): 1587–1596. http://dx.doi.org/10.1002/1521-4109(200211)14:22<1587::AID-ELAN1587>3.0.CO;2-W10.1002/1521-4109(200211)14:22<1587::AID-ELAN1587>3.0.CO;2-WSearch in Google Scholar

[50] J. Zima, J. Barek, and A. Muck, Monitoring of environmentally and biologically important substances at carbon paste electrodes. Revista de Chimie (Bucharest), 55 (2005): 657–662. Search in Google Scholar

[51] G. Li, Z.-M. Ji, and K.-B. Wu, Square wave anodic stripping voltammetric determination of Pb2+ using acetylene black paste electrode based on the inducing adsorption ability of I(-). Analytica Chimica Acta, 577 (2006): 178–182. http://dx.doi.org/10.1016/j.aca.2006.06.06110.1016/j.aca.2006.06.061Search in Google Scholar

[52] G. Li, C.-D. Wan, Z.-M. Ji, and K.-B. Wu, An electrochemical sensor for Cd2+ based on the inducing adsorption ability of I(-). Sensors & Actuators B, Chemical; 124 (2007): 1–5. http://dx.doi.org/10.1016/j.snb.2006.11.03310.1016/j.snb.2006.11.033Search in Google Scholar

[53] A. J. G. Zarbin, (Nano)materials chemistry. Quimica Nova, 30 (2007): 1469–1479. 10.1590/S0100-40422007000600016Search in Google Scholar

[54] R. I. Stefan and S. G. Bairu, Monocrystalline diamond paste-based electrodes and their applications for the determination of Fe(II) in vitamins. Analytical Chemistry., 75 (2003): 5394–5398. http://dx.doi.org/10.1021/ac026300b10.1021/ac026300bSearch in Google Scholar

[55] R. I. Stefan, S. G. Bairu, and J. F. van Staden, Diamond Paste Based Electrodes for determination of iodide in vitamins and table salt. Analytical Letters, 36 (2003): 1493–1500. http://dx.doi.org/10.1081/AL-12002153110.1081/AL-120021531Search in Google Scholar

[56] R. I. Stefan, S. G. Bairu, and J. F. van Staden, Diamond paste-based electrodes for determination of Cr(III) in pharmaceutical compounds. Analytical and Bioanalytical Chemistry, 376 (2003): 844–847. http://dx.doi.org/10.1007/s00216-003-1974-210.1007/s00216-003-1974-2Search in Google Scholar PubMed

[57] R. I. Stefan and R. G. Bokretsion, Determination of creatine and creatinine using a diamond paste based electrode. Instrumentation Science Technology, 31 (2003): 183–188. http://dx.doi.org/10.1081/CI-12002023010.1081/CI-120020230Search in Google Scholar

[58] R. I. Stefan and S. G. Bairu, Diamond paste based electrodes for the determination of chromium(VI) at trace levels. Instrumentation Science Technology, 31 (2003): 261–267. http://dx.doi.org/10.1081/CI-12002265310.1081/CI-120022653Search in Google Scholar

[59] R. I. Stefan and R. G. Bokretsion, Diamond paste based immunosensor for the determination of azidothymidine. Journal of Immunoassay and Immunochemistry, 24 (2003): 319–324. http://dx.doi.org/10.1081/IAS-12002294110.1081/IAS-120022941Search in Google Scholar PubMed

[60] R. I. Stefan and S. G. Bairu, Diamond paste based electrodes for the determination of Pb(II) at trace concentration levels. Talanta, 63 (2004): 605–608. http://dx.doi.org/10.1016/j.talanta.2003.12.02310.1016/j.talanta.2003.12.023Search in Google Scholar PubMed

[61] R. I. Stefan, R. M. Nejem, J. F. van Staden, and H. Y. Aboul Enein, New ampero-metric biosensors based on diamond paste for the assay of L- and D-pipecolic acids in serum samples. Preparative Biochemistry and Biotechnology, 34 (2004): 135–143. http://dx.doi.org/10.1081/PB-12003087210.1081/PB-120030872Search in Google Scholar PubMed

[62] A. Miranda Hernández, M. E. Rincón, and I. González, Characterization of carbon-fullerene-silicone oil composite paste electrodes. Carbon, 43 (2005): 1961–1967. http://dx.doi.org/10.1016/j.carbon.2005.03.00410.1016/j.carbon.2005.03.004Search in Google Scholar

[63] S.V. Lokesh, B. S. Sherigara, A.T. Jayadev, H.M. Mahesh, and R.J. Mascarenhas, Electrochemical reactivity of C(60) modified carbon paste electrode by physical vapor deposition method. International Journal of Electrochemical Science, 3 (2008):578–587. Search in Google Scholar

[64] S. B. Hočevar and B. Ogorevc, Preparation and characterization of carbon paste micro-electrode based on carbon nano-particles. Talanta, 74 (2007): 405–411. http://dx.doi.org/10.1016/j.talanta.2007.10.00710.1016/j.talanta.2007.10.007Search in Google Scholar PubMed

[65] G. Shul, M. A. Murphy, G. D. Wilcox, F. Marken, M. Opallo, Effects of carbon nanofiber composites on electrode processes involving liquid vertical bar liquid ion transfer. Journal of Solid State Electrochemistry, 9 (2005): 874–881. http://dx.doi.org/10.1007/s10008-005-0037-310.1007/s10008-005-0037-3Search in Google Scholar

[66] G. A. Rivas, M. D. Rubianes, M. L. Pedano, N. F. Ferreyra, G. L. Luque, M. C. Rodriguez, and S. A. Miscoria, Carbon nanotubes paste electrodes: A New alternative for the development of electrochemical sensors. Electroanalysis, 19 (2007): 823–831. http://dx.doi.org/10.1002/elan.20060377810.1002/elan.200603778Search in Google Scholar

[67] F. Ricci, A. Amine, D. Moscone, and G. Palleschi, Prussian blue modified carbon nanotube paste electrodes: A Comparative study and a biochemical application. Analytical Letters, 36 (2003): 1921–1938. http://dx.doi.org/10.1081/AL-12002362210.1081/AL-120023622Search in Google Scholar

[68] R. Antiochia, I. Lavagnini, F. Magno, F. Valentini, and G. Palleschi, Single-wall carbon nanotube paste electrodes: A comparison with carbon paste, platinum and glassy carbon electrodes via cyclic voltammetric data. Electroanalysis, 16 (2004): 1451–1458. http://dx.doi.org/10.1002/elan.20030297110.1002/elan.200302971Search in Google Scholar

[69] N. S. Lawrence, R. P. Deo, and J. Wang, Detection of homocysteine at carbon nanotube paste electrodes. Talanta, 63 (2004): 443–449. http://dx.doi.org/10.1016/j.talanta.2003.11.02410.1016/j.talanta.2003.11.024Search in Google Scholar PubMed

[70] M. D. Rubianes and G. A. Rivas, Enzymatic biosensors based on carbon nanotubes paste electrodes. Electroanalysis, 17 (2005): 73–78. http://dx.doi.org/10.1002/elan.20040312110.1002/elan.200403121Search in Google Scholar

[71] M. Chicharro, E. Bermejo, M. Moreno, A. Sanchez, A. Zapardiel, and G. A. Rivas, Adsorptive stripping voltammetric determination of amitrole at a multi-wall carbon nanotubes paste electrode. Electroanalysis, 17 (2005): 476–482. http://dx.doi.org/10.1002/elan.20040317210.1002/elan.200403172Search in Google Scholar

[72] S.-Y. Ly, S.-K. Kim, T.-H. Kim, Y.-S. Jung, and S.-M. Lee, Measuring mercury ion concentration with a carbon nano tube paste electrode using the cyclic voltam-metry method. Journal of Applied Electrochemistry, 35 (2005): 567–571. http://dx.doi.org/10.1007/s10800-005-2058-010.1007/s10800-005-2058-0Search in Google Scholar

[73] R. Antiochia, I. Lavagnini, and F. Magno, Electrocatalytic oxidation of NADH at single-wall carbon-nanotube-paste electrodes: kinetic considerations for use of redox mediator in solution and dissolved in the paste. Anal. Bioanal. Chem., 381 (2005): 1355–1361. http://dx.doi.org/10.1007/s00216-005-3079-610.1007/s00216-005-3079-6Search in Google Scholar PubMed

[74] J.-B. He, X.-Q. Lin, and J. Pan, Multi-wall carbon nanotube paste electrode for adsorptive stripping determination of quercetin: A comparison with graphite paste electrode via voltammetry and chronopotentiometry. Electroanalysis, 17 (2005): 1681–1686. http://dx.doi.org/10.1002/elan.20050327410.1002/elan.200503274Search in Google Scholar

[75] M. Chicharro, A. Sanchez, E. Bermejo, A. Zapardiel, M. D. Rubianes, and G. A. Rivas, Carbon nanotubes paste electrodes as new detectors for capillary electrophoresis. Analytica Chimica Acta, 543 (2005): 84–91. http://dx.doi.org/10.1016/j.aca.2005.04.03110.1016/j.aca.2005.04.031Search in Google Scholar

[76] F. Kurusu, S. Koide, I. Karube, and M. Gotoh, Electrocatalytic activity of bamboo-structured carbon nanotubes paste electrode toward hydrogen peroxide. Analytical Letters, 39 (2006): 903–911. http://dx.doi.org/10.1080/0003271060060965110.1080/00032710600609651Search in Google Scholar

[77] R. Antiochia and I. Lavagnini, Alcohol biosensor based on the immobilization of meldola mlue and alcohol dehydrogenase into a carbon nanotube paste electrode. Analytical Letters, 39 (2006): 1643–1655. http://dx.doi.org/10.1080/0003271060071353710.1080/00032710600713537Search in Google Scholar

[78] X.-J. Tian, J.-F. Song, X.-J. Luan, Y.-Y. Wang, and Q. Z. Shi, Selective detection of dopamine in the presence of ascorbic acid by use of glassycarbon electrodes modified with both polyaniline film and multi-walled carbon nanotubes with incorporated β-cyclodextrin. Analytical and Bioanalytical Chemistry, 386 (2006): 2081–2094. http://dx.doi.org/10.1007/s00216-006-0869-410.1007/s00216-006-0869-4Search in Google Scholar PubMed

[79] X.-Q. Lin, J.-B. He, and Z. G. Zha, Simultaneous determination of quercetin and rutin at a multi-wall carbon-nanotube paste electrodes by reversing differential pulse voltammetry. Sensors & Actuators B, Chemical; 119 (2006): 608–614. http://dx.doi.org/10.1016/j.snb.2006.01.01610.1016/j.snb.2006.01.016Search in Google Scholar

[80] G. L. Luque, N. F. Ferreyra, and G. A. Rivas, Glucose biosensor based on the use of a carbon nanotube paste electrode modified with metallic particles. Microchimica Acta, 152 (2006): 277–283. http://dx.doi.org/10.1007/s00604-005-0447-z10.1007/s00604-005-0447-zSearch in Google Scholar

[81] S.-Y. Ly, Detection of dopamine in the pharmacy with a carbon nanotube paste electrode using voltammetry. Bioelectrochemistry, 68 (2006): 227–231. http://dx.doi.org/10.1016/j.bioelechem.2005.09.00210.1016/j.bioelechem.2005.09.002Search in Google Scholar PubMed

[82] R. T. Kachoosangi, G. G. Wildgoose, and R. G. Compton, Room temperature ionic liquid carbon nanotube paste electrodes: Overcoming large capacitive currents using rotating disk electrodes. Electroanalysis, 19(2007): 1483–1489. 10.1002/elan.200703883Search in Google Scholar

[83] L. Zheng and J. F. Song, Voltammetric behavior of urapidil and its determination at multi-wall carbon nanotube paste electrode. Talanta, 73 (2007): 943–947. http://dx.doi.org/10.1016/j.talanta.2007.05.01510.1016/j.talanta.2007.05.015Search in Google Scholar PubMed

[84] J.-Y. Qu, X.-Q. Zou, B.-F. Liu, and S.-J. Dong, Assembly of polyoxometalates on carbon nanotubes paste electrode and its catalytic behaviors. Analytical Chimica Acta, 599 (2007): 51–57. http://dx.doi.org/10.1016/j.aca.2007.07.07210.1016/j.aca.2007.07.072Search in Google Scholar PubMed

[85] S.-Y. Ly, Y.-S. Jung, S.-K. Kim, and H.-K. Lee, Trace analysis of lead and copper ions in fish tissue using paste electrodes. Analytical Letters, 40 (2007): 2683–2692. http://dx.doi.org/10.1080/0003271070158818410.1080/00032710701588184Search in Google Scholar

[86] S. Shahrokhian and M. Amiri, Multi-walled carbon nanotube paste electrode for selective voltammetric detection of isoniazid. Microchimica Acta, 157 (2007): 149–158. http://dx.doi.org/10.1007/s00604-006-0665-z10.1007/s00604-006-0665-zSearch in Google Scholar

[87] R. Antiochia and L. Gorton, Development of a carbon nanotube paste electrode osmium polymer-mediated biosensor for determination of glucose in alcoholic beverages. Biosensors & Bioelectronics, 22 (2007): 2611–2617. http://dx.doi.org/10.1016/j.bios.2006.10.02310.1016/j.bios.2006.10.023Search in Google Scholar PubMed

[88] J.-H. Chen, Z.-Y. Lin, and G.-N. Chen, An electrochemiluminescent sensor for glucose employing a modified carbon nanotube paste electrode. Analytical and Bioanalytical Chemistry, 388 (2007): 399–407. http://dx.doi.org/10.1007/s00216-007-1202-610.1007/s00216-007-1202-6Search in Google Scholar PubMed

[89] A. Abbaspour and R. Mirzajani, Electrochemical monitoring of piroxicam in different pharmaceutical forms with multi-walled carbon nanotubes paste electrode. Journal of Pharmaceutical and Biomedical Analysis, 44 (2007): 41–48. http://dx.doi.org/10.1016/j.jpba.2007.01.02710.1016/j.jpba.2007.01.027Search in Google Scholar PubMed

[90] L.-B. Nie, H.-S. Gu, Q.-G. He, J.-R. Chen, and Y.-Q. Miao, Enhanced electrochemical detection of DNA hybridization with carbon nanotube modified paste electrode. Journal of Nanoscience and Nanotechnology, 7 (2007): 560–564. http://dx.doi.org/10.1166/jnn.2007.12610.1166/jnn.2007.126Search in Google Scholar PubMed

[91] Y.-T. Chen, Z.-N. Lin, J.-H. Chen, J.-J. Sun, L. Zhang, and G.-N. Chen, New capillary electrophoresis-electrochemiluminescence detection system equipped with an electrically heated Ru(bpy)3(2+)/multi-wall-carbonnanotube paste electrode. Journal of Chromatography A, 1172 (2007): 84–91. http://dx.doi.org/10.1016/j.chroma.2007.09.04910.1016/j.chroma.2007.09.049Search in Google Scholar PubMed

[92] R. T. Kachoosangi, L. Xiao, G. G. Wildgoose, F. Marken, P. C. B. Page, and R. G. Compton, A new method of studying ion transfer at liquid liquid phase boundaries using a carbon nanotube paste electrode with a redox active binder. Journal of Physical Chemistry C, 111 (2007): 18353–18360. http://dx.doi.org/10.1021/jp076327510.1021/jp0763275Search in Google Scholar

[93] S.-Y. Ly, C.-H. Lee, and Y.-S. Jung, Measuring oxytetracycline using a simple prepared DNA immobilized on a carbon nanotube paste electrode in fish tissue Journal of the Korean Chemical Society, 51 (2007): 412–417. 10.5012/jkcs.2007.51.5.412Search in Google Scholar

[94] S.-Y. Ly, Diagnosis of copper ions in vascular tracts using a fluorine-doped carbon nanotube sensor. Talanta, 74 (2008): 1635–1641. http://dx.doi.org/10.1016/j.talanta.2007.10.01710.1016/j.talanta.2007.10.017Search in Google Scholar PubMed

[95] S. Shahrokhian, Z. Kamalzadeh, A. Bezaatpour, and D. M. Boghaei, Differential pulse voltammetric determination of N-acetylcysteine by the electrocatalytic oxidation at the surface of carbon nanotube-paste electrode modified with cobalt salophen complexes. Sensors & Actuators B, Chemical; 133 (2008): 599–606. http://dx.doi.org/10.1016/j.snb.2008.03.03410.1016/j.snb.2008.03.034Search in Google Scholar

[96] J.-N. Xie, S.-Y. Wang, L. Aryasomayajula, and V.-K. Varadan, Effect of nano-materials in platinum-decorated carbon nanotube pastebased electrodes for amperometric glucose detection. Journal of Material Research, 23 (2008): 1457–1465. http://dx.doi.org/10.1557/jmr.2008.017710.1557/JMR.2008.0177Search in Google Scholar

[97] H. Ibrahim, Carbon paste electrode modified with silver thimerosal for the potentiometric flow injection analysis of silver(I) ion. Analytica Chimica Acta, 545 (2005): 158–165. http://dx.doi.org/10.1016/j.aca.2005.04.08310.1016/j.aca.2005.04.083Search in Google Scholar

[98] R. Metelka, S. Slavíková, K. Vytřas, Determination of arsenate and organic arsenic via potentiometric titration of its heteropolyanions. Talanta, 58 (2002): 147–151. http://dx.doi.org/10.1016/S0039-9140(02)00263-110.1016/S0039-9140(02)00263-1Search in Google Scholar

[99] J. Konvalina, K. Vytřas, Reductive Determination of gold at carbon paste electrode using constantcurrent stripping analysis. Chemické Listy, 95 (2001): 505–508. Search in Google Scholar

[100] I. Švancara, K. Vytřas, Determination of iodide in potassium iodide dosage tablets using cathodic stripping voltammetry with a carbon paste electrode. Scientific Papers of the University of Pardubice, Series A; 7 (2001): 5–15. Search in Google Scholar

[101] I. Švancara, B. Ogorevc, M. Novič, and K. Vytřas, Simple and rapid determination of iodide in table salts containing anticaking agents using stripping potentio-metry with selective sensing at a carbon paste electrode. Analytical and Bioanalytical Chemistry, 372 (2002): 795–800. http://dx.doi.org/10.1007/s00216-002-1263-510.1007/s00216-002-1263-5Search in Google Scholar PubMed

[102] I. Švancara, K. Vytřas, and K. Kalcher, Half-decade of carbon paste electrodes in fact and interesting glosses. Atypical reminiscence of an electrochemical and electroanalytical jubilee (in Czech); in Modern Electrochemical Methods — XXVIII, Book of Abstracts. eds. J. Barek and T. Navrátil. (Prague: Czech Chemical Society, 2008), pp. 114–115. Search in Google Scholar

[103] R. J. Mascarenhas, A. K. Satpati, S. Yellappa, B. S. Sherigara, and A. K. Bopiah, Wax-impregnated carbon paste electrode modified with mercuric oxalate for the simultaneous determination of heavy metal ions in medicinal plants and ayurvedic tablets. Analytical Sciences (Japan), 22 (2006): 871–875. http://dx.doi.org/10.2116/analsci.22.87110.2116/analsci.22.871Search in Google Scholar PubMed

[104] R. M. Takeuchi, A. L. Santos, P. M. Padilha, and N. R. Stradiotto, Copper determination in ethanol fuel by differential pulse anodic stripping voltammetry at a solid paraffin-based carbon paste electrode modified with 2-aminothiazole organo-functionalized silica. Talanta, 71 (2007): 771–777. http://dx.doi.org/10.1016/j.talanta.2006.05.03510.1016/j.talanta.2006.05.035Search in Google Scholar PubMed

[105] R. M. Takeuchi, A. L. Santos, P. M. Padilha, and N. R. Stradiotto, A solid paraffin-based carbon paste electrode modified with 2-aminothiazole organofunctionalized silica for differential pulse adsorptive stripping analysis of nickel(II) in ethanol fuel. Analytica Chimica Acta, 584 (2007): 295–301. http://dx.doi.org/10.1016/j.aca.2006.11.06910.1016/j.aca.2006.11.069Search in Google Scholar PubMed

[106] W. Yantasee, Y.-H. Lin, G. E. Fryxell, and Z.-M. Wang, Carbon paste electrode modified with carbamoylphosphonic acid functionalized mesoporous silica: A new mercury-free sensor for uranium detection. Electroanalysis, 16 (2004) 870–873. http://dx.doi.org/10.1002/elan.20030286810.1002/elan.200302868Search in Google Scholar

[107] H.-L. Liu, Chemically modified carbon paste sensor for aluminium(III) and its application. Fenxi Huaxue (Chinese Journal of Analytical Chemistry), 31 (2003): 1511–1513. Search in Google Scholar

[108] B. Blankert, O. Domínguez, W. El Ayyas, J. Arcos, and J.-M. Kauffmann, Horseradish peroxidase electrode for the analysis of clozapine. Analytical Letters, 37 (2004): 903–913. http://dx.doi.org/10.1081/AL-12003028610.1081/AL-120030286Search in Google Scholar

[109] T. K. Malongo, S. Patris, P. Macours, F. Cotton, J. Nsangu, and J.-M. Kauffmann, Highly sensitive determination of iodide by ion chromatography with ampero-metric detection at a silver-based carbon paste electrode. Talanta, 76 (2008): 540–547. http://dx.doi.org/10.1016/j.talanta.2008.03.05310.1016/j.talanta.2008.03.053Search in Google Scholar PubMed

[110] K. Grennan, A. J. Killard, and M. R. Smyth, Physical characterizations of a screen-printed electrode for use in an amperometric biosensor system. Electroanalysis, 13 (2001): 745–750. http://dx.doi.org/10.1002/1521-4109(200105)13:8/9<745::AID-ELAN745>3.0.CO;2-B10.1002/1521-4109(200105)13:8/9<745::AID-ELAN745>3.0.CO;2-BSearch in Google Scholar

[111] G. Cui, J.-H. Yoo, B.-W. Woo, S.-S. Kim, G.-S. Cha, and H. Nam, Disposable amperometric glucose sensor electrode with enzyme-immobilized nitrocellulose strip. Talanta, 54 (2001): 1105–1111. http://dx.doi.org/10.1016/S0039-9140(01)00377-010.1016/S0039-9140(01)00377-0Search in Google Scholar

[112] P. Fanjul Bolado, D. Hernández Santos, P. J. Lamas Ardisana, A. Martin Pernia, A. Costa García, Electro-chemical characterization of screen-printed and conventional carbon paste electrodes. Electrochimica Acta, 53 (2008): 3635–3642. http://dx.doi.org/10.1016/j.electacta.2007.12.04410.1016/j.electacta.2007.12.044Search in Google Scholar

[113] I. Švancara, R. Metelka, M. Stibůrková, J. Seidlová, G. Jansová, K. Vytřas, and B. Pihlar, Carbon paste electrodes and screen-printed sensors plated with mercury- and bismuth films in stripping voltammetry of heavy metals. Scientific Papers of the University of Pardubice, Series A; 8 (2002) 19–33. Search in Google Scholar

[114] D. Wei and A. Ivaska, Applications of ionic liquids in electrochemical sensors. A Review. Analytica Chimica Acta, 607 (2008): 126–135. http://dx.doi.org/10.1016/j.aca.2007.12.01110.1016/j.aca.2007.12.011Search in Google Scholar

[115] H.-T. Liu, P. He, Z.-Y. Li, C.-N. Sun, L.-H. Shi, Y. Liu, G.-Y. Zhu, and J.-H. Li, An ionic liquid-type carbon paste electrode and its polyoxometalate-modified properties. Electrochemistry Communations, 7 (2005): 1357–1363. http://dx.doi.org/10.1016/j.elecom.2005.09.01810.1016/j.elecom.2005.09.018Search in Google Scholar

[116] G. Shul, J. Sirieix Plenet, L. Gaillon, and M. Opallo, Ion transfer at carbon paste electrode based on ionic liquid. Electrochemistry Communications, 8 (2006): 1111–1114. http://dx.doi.org/10.1016/j.elecom.2006.05.00210.1016/j.elecom.2006.05.002Search in Google Scholar

[117] N. Maleki, A. Safavi, and F. Tajabadi, High-performance carbon composite electrode based on an ionic liquid as a binder. Analytical Chemistry, 78 (2006): 3820–3826. http://dx.doi.org/10.1021/ac060070+10.1021/ac060070+Search in Google Scholar

[118] A. Safavi, N. Maleki, O. Moradlou, and F. Tajabadi, Simultaneous determination of dopamine, ascorbic acid, and uric acid using carbon ionic liquid electrode. Analytical Biochemistry, 359 (2006): 224–229. http://dx.doi.org/10.1016/j.ab.2006.09.00810.1016/j.ab.2006.09.008Search in Google Scholar

[119] A. Safavi, N. Maleki, F. Honarasa, F. Tajabadi, and F. Sedaghatpour, Ionic liquids modify the performance of carbon based potentiometric sensors. Electroanalysis, 19 (2007): 582–586. http://dx.doi.org/10.1002/elan.20060376710.1002/elan.200603767Search in Google Scholar

[120] W. Sun, M.-X. Yang, R.-F. Gao, and K. Jiao, Electrochemical determination of ascorbic acid in room temperature ionic liquid BPPF6 modified carbon paste electrode. Electroanalysis, 19 (2007): 1597–1602. http://dx.doi.org/10.1002/elan.20070388910.1002/elan.200703889Search in Google Scholar

[121] N. Maleki, A. Safavi, and F. Tajabadi, Investigation of the role of ionic liquids in imparting electrocatalytic behavior to carbon paste electrode. Electroanalysis, 19 (2007): 2247–2250. http://dx.doi.org/10.1002/elan.20070395210.1002/elan.200703952Search in Google Scholar

[122] J.-B. Zheng, Y. Zhang, and P.-P. Yang, An ionic liquid-type carbon paste electrode for electrochemical investi-gation and determination of calcium dobesilate. Talanta, 73 (2007): 920–925. http://dx.doi.org/10.1016/j.talanta.2007.05.01610.1016/j.talanta.2007.05.016Search in Google Scholar PubMed

[123] A. Safavi, N. Maleki, and F. Tajabadi, Highly stable electrochemical oxidation of phenols at carbon ionic liquid electrode. Analyst (UK), 132 (2007): 54–58. http://dx.doi.org/10.1039/b612672c10.1039/B612672CSearch in Google Scholar PubMed

[124] J. Li, M.-H. Huang, X.-Q. Liu, H. Wei, Y.-H. Xu, G.-B. Xu, and E.-K. Wang, Enhanced electrochemiluminescence sensor from tris(2,2′-bipyridyl)Ru(II) incorporated into MCM-41 and ionic liquid-based carbon paste electrode. Analyst (UK), 132 (2007): 687–691. http://dx.doi.org/10.1039/b701842h10.1039/B701842HSearch in Google Scholar

[125] S.-F. Wang, H.-Y. Xiong, and Q.-X. Zeng, Design of carbon paste biosensors based on the mixture of ionic liquid and paraffin oil as a binder for high performance and stabilization. Electrochemistry Communications, 9 (2007): 807–812. http://dx.doi.org/10.1016/j.elecom.2006.11.01010.1016/j.elecom.2006.11.010Search in Google Scholar

[126] W. Sun, D.-D. Wang, R.-F. Gao, and K. Jiao, Direct electrochemistry and electro-catalysis of hemoglobin in sodium alginate film on a BMIMPF6 modified carbon paste electrode. Electrochemistry Communications, 9 (2007): 1159–1164. http://dx.doi.org/10.1016/j.elecom.2007.01.00310.1016/j.elecom.2007.01.003Search in Google Scholar

[127] Y. Zhang, J.-B. Zheng, Comparative investigation on electrochemical behavior of hydroquinone at carbon ionic liquid electrode, ionic-liquid modified-, and the bare carbon paste electrode. Electrochimica Acta, 52 (2007): 7210–7216. http://dx.doi.org/10.1016/j.electacta.2007.05.03910.1016/j.electacta.2007.05.039Search in Google Scholar

[128] W. Sun, R.-F. Gao, and K. Jiao, Electrochemistry and electrocatalysis of hemoglobin in nafion/nano-CaCO3 film on a new ionic liquid BPPF6 Modified Carbon Paste Electrode. Journal of Physical Chemistry B, 111 (2007): 4560–4567. http://dx.doi.org/10.1021/jp067933n10.1021/jp067933nSearch in Google Scholar PubMed

[129] W. Sun, M.-X. Yang, and K. Jiao, Electrocatalytic oxidation of dopamine at an ionic liquid modified carbon paste electrode and its analytical application. Analytical and Bioanalytical Chemistry, 389 (2007): 1283–1291. http://dx.doi.org/10.1007/s00216-007-1518-210.1007/s00216-007-1518-2Search in Google Scholar PubMed

[130] Y. Zhang and J.-B. Zheng, An ionic liquid bulk-modified carbon paste electrode and its electrocatalytic activity toward p-aminophenol. Chinese Journal of Chemistry (Shanghai), 25 (2007): 1652–1657. 10.1002/cjoc.200790305Search in Google Scholar

[131] W. Sun, R.-F. Gao, D.-D. Wang, and K. Jiao, Direct electrochemistry of hemoglobin at room temperature ionic liquid [BMIM]PF6 modified carbon paste electrode. Wuli Huaxue Xuebao (Chinese Acta Physica Chimica), 23 (2007): 1247–1251. Search in Google Scholar

[132] X.-Z. Zhang, K. Jiao, and X.-L. Wang, Paste electrode based on short single-walled carbon nanotubes and room temperature ionic liquid: preparation, characterization and application in DNA detection. Electroanalysis, 20 (2008): 1361–1366. http://dx.doi.org/10.1002/elan.20070419010.1002/elan.200704190Search in Google Scholar

[133] M. Musameh and J. Wang, Sensitive and stable amperometric measurements at ionic liquidcarbon paste microelectrodes. Anal. Chim. Acta, 606 (2008): 45–49. http://dx.doi.org/10.1016/j.aca.2007.11.01210.1016/j.aca.2007.11.012Search in Google Scholar

[134] M. M. Musameh, R. T. Kachoosangi, and R. G. Compton, Enhanced stability and sensitivity of ionic liquid-carbon paste electrodes at elevated temperatures. Analyst (UK), 133 (2008): 133–138. http://dx.doi.org/10.1039/b713071f10.1039/B713071FSearch in Google Scholar

[135] W. Sun, Y.-Z. Li, M.-X. Yang, S.-F. Liu, and K. Jiao, Direct electrochemistry of single-stranded DNA on an ionic liquid modified carbon paste electrode. Electrochemistry Communications, 10 (2008): 298–301. http://dx.doi.org/10.1016/j.elecom.2007.12.01210.1016/j.elecom.2007.12.012Search in Google Scholar

[136] G. Shang, D. Xiao, H.-F. Zhang, and J.-B. Zheng, Electrochemical behavior and differential pulse voltammetric determination of Paracetamol at a carbon ionic liquid electrode. Analytical and Bioanalytical Chemistry, 391 (2008): 1049–1055. http://dx.doi.org/10.1007/s00216-008-2096-710.1007/s00216-008-2096-7Search in Google Scholar

[137] S.-S. Fan, F. Xiao, L. Liu, F.-Q. Zhao, and B.-Z. Zeng, Sensitive voltammetric response of methylparathion on single-walled carbon nanotube paste coated electrodes using ionic liquid as binder. Sensors & Actuators B, Chemical; 132 (2008): 34–39. http://dx.doi.org/10.1016/j.snb.2008.01.01010.1016/j.snb.2008.01.010Search in Google Scholar

[138] M. M. Musameh, R. T. Kachoosangi, L. Xiao, A. Russell, and R. G. Compton, Ionic liquidcarbon composite glucose biosensor. Biosensors & Bioelectronics, 24 (2008): 87–92. http://dx.doi.org/10.1016/j.bios.2008.03.01510.1016/j.bios.2008.03.015Search in Google Scholar

[139] W. Sun, Q. Jiang, M.-X. Yang, and K. Jiao, Electrochemical behaviors of hydro-quinone on a carbon paste electrode with ionic liquid as binder. Bulletin of the Korean Chemical Society, 29 (2008): 915–920. 10.5012/bkcs.2008.29.5.915Search in Google Scholar

[140] H. Zhang, G.-P. Cao, Y.-S. Yang, and Z.-N. Gu, The capacitive performance of an ultralong (aligned) carbon nanotube electrode in an ionic liquid at 60oC. Carbon, 46 (2008): 30–34. http://dx.doi.org/10.1016/j.carbon.2007.10.02310.1016/j.carbon.2007.10.023Search in Google Scholar

[141] I. Švancara, R. Metelka, and K. Vytřas, K., Piston-driven carbon paste electrode holders for electrochemical measurements; in Sensing in Electroanalysis. eds. K. Vytřas and K. Kalcher. (Pardubice: University of Pardubice, 2005), pp. 7–18. Search in Google Scholar

[142] J. Oni, P. Westbroek, and T. Nyokong, Construction and characterization of carbon paste ultramicro-electrodes. Electrochemistry Communications, 3 (2001): 524–528. http://dx.doi.org/10.1016/S1388-2481(01)00212-010.1016/S1388-2481(01)00212-0Search in Google Scholar

[143] L. Baldrianová, I. Švancara, and S. Sotiropoulos, Anodic stripping voltammetry at a new type of disposable bismuth-plated carbon paste minielectrodes. Analytica Chimica Acta, 599 (2007): 249–255. http://dx.doi.org/10.1016/j.aca.2007.07.06710.1016/j.aca.2007.07.067Search in Google Scholar

[144] J. Zima, H. Dejmková, and J. Barek, HPLC determination of naphthalene amino derivatives using electrochemical detection at carbon paste electrodes. Electroanalysis, 19 (2007): 185–190. http://dx.doi.org/10.1002/elan.20060369010.1002/elan.200603690Search in Google Scholar

[145] I. Švancara, P. Kotzian, M. Bartoš, and K. Vytřas, Groove electrodes: A new alternative of using carbon paste in electroanalysis. Electrochemistry Communications, 7 (2005): 657–662. http://dx.doi.org/10.1016/j.elecom.2005.04.01710.1016/j.elecom.2005.04.017Search in Google Scholar

[146] I. Švancara, P. Kotzian, R. Metelka, M. Bartoš, P. Foret, and K. Vytřas, Plastic bars with carbon paste: A new type of the working electrode in electroanalysis (in Czech); in Monitoring of Environmental Pollutants — IV, eds. K. Vytřas, J. Kellner, and J. Fischer. (Pardubice: University of Pardubice, 2002), pp. 145–158. Search in Google Scholar

[147] R. Metelka, M. Žeravík, and K. Vytřas, Groove electrodes filled with carbon paste in flow injection analysis (in Czech); in Monitoring of Environmental Pollutants — X, eds. K. Vytřas, J. Kellner, and J. Fischer. (Pardubice: University Pardubice, 2008), pp. 153–158. Search in Google Scholar

[148] G. U. Flechsig, O. Korbout, S. B. Hočevar, S. Thongngamdee, B. Ogorevc, P. Gründler, and J. Wang, Electrically heated bismuth-film electrode for voltammetric stripping measurements of trace metals. Electroanalysis, 14 (2002): 192–196. http://dx.doi.org/10.1002/1521-4109(200202)14:3<192::AID-ELAN192>3.0.CO;2-610.1002/1521-4109(200202)14:3<192::AID-ELAN192>3.0.CO;2-6Search in Google Scholar

[149] D.C. Dunwoody, M. Unlu, A. K. H.. Wolf, W. L. Gellett, and J. Leddy, Magnet incorporated carbon electrodes: Methods for construction and demonstration of increased electrochemical flux. Electroanalysis, 17 (2005): 1487–1494. http://dx.doi.org/10.1002/elan.20050329710.1002/elan.200503297Search in Google Scholar

[150] B.-Y. Yang, J.-Y. Mo, and R. Lai, Determination of environmental nitrophenols by dual-electrode and dual-channel electrochemical detection in capillary electrophoresis with a carbon paste electrode. Gaodeng Xuexiao Huaxue Xuebao (Chemical Journal of Chinese Universities), 26 (2005): 227–230. Search in Google Scholar

[151] Gy. Svehla: Vogel’s Qualitative Inorganic Analysis, 7th Ed., revised and extended. (Singapore: Longman Publi-shing, 1996). Search in Google Scholar

[152] Y.-N. Zeng, N. Zheng, P. G. Osborne, Y.-Z. Li, W.-B. W.-B. Chang, and Z.-M. Wang, Preparation and cyclic voltammetry characterization of Cu(I)-dipyridyl imprinted polymer. Chinese Chemistry Letters, 13 (2002): 317–320. Search in Google Scholar

[153] M. H. Mashhadizadeh, A. Mostafavi, H. Allah Abadi, and I. Sheikh-shoai, New Schiff base modified carbon paste and coated wire PVC membrane for silver ion. Sensors & Actuators B, Chemical; 113 (2006): 930–936. http://dx.doi.org/10.1016/j.snb.2005.04.01710.1016/j.snb.2005.04.017Search in Google Scholar

[154] L.-D. Li, W.-J. Li, C.-Q. Sun, and L.-S. Li, Fabrication of carbon paste electrode containing 1:12 phospho-molybdic anions encapsulated in modified mesoporous molecular sieve MCM-41 and its electrochemistry. Electroanalysis, 14 (2002): 368–375. http://dx.doi.org/10.1002/1521-4109(200203)14:5<368::AID-ELAN368>3.0.CO;2-I10.1002/1521-4109(200203)14:5<368::AID-ELAN368>3.0.CO;2-ISearch in Google Scholar

[155] S.-X. Liu, C.-M. Wang, D.-H. Li, Z.-M. Su, E.-B. Wang, N.-H. Hu, and H.-Q. Jia, Synthesis, structure and properties of a novel supramolecular compound. Acta Chimica Sinica (Shanghai), 62 (2004): 1305–1310. Search in Google Scholar

[156] Z.-G. Han, Y.-L. Zhao, J. Peng, Q. Liu, and E.-B. Wang, Inorganic-organic hybrid polyoxometalate containing supramolecular helical chains: Preparation, characterization and application in chemically bulk-modified electrode. Electrochimica Acta, 51 (2005): 218–224. http://dx.doi.org/10.1016/j.electacta.2005.04.01610.1016/j.electacta.2005.04.016Search in Google Scholar

[157] L.-Y. Duan, F.-C. Liu, X.-L. Wang, E.-B. Wang, C. Qin, Y.-G. Li, X.-L. Wang, and C.-W. Hu, A new 3-D cadmium molybdenum phosphate with intersecting tunnels: hydro-thermal synthesis, structure and electrochemical properties of the [C3H12N2]4[CdMo12O24 (HPO4)6(PO4)2(OH)6][(Cd(H2O)2]x3H2O compound. Journal of Molecular Structure, 705 (2004):15–20. http://dx.doi.org/10.1016/j.molstruc.2004.03.03010.1016/j.molstruc.2004.03.030Search in Google Scholar

[158] B. Keita, P. de Oliveira, L. Nadjo, and U. Kortz, The ball-shaped heteropolytungstates [{Sn(CH3) (2)(H2O)} (24){Sn(CH3)(2)}(12)-(A-XW9O34) (12)](36-) (X = P, As): Stability, redox and catalytic properties in aqueous media. Chemistry — A European Journal (Wiley), 13 (2007): 5480–5491. http://dx.doi.org/10.1002/chem.20060187010.1002/chem.200601870Search in Google Scholar

[159] B.-X. Dong, J. Peng, A.-X. Tian, J.-Q. Sha, L. Li, and H.-S. Liu, Two new inorganic-organic hybrid single pendant hexadecavanadate derivatives with bifunctional electrocatalytic activities. Electrochimica Acta, 52 (2007): 3804–3812. http://dx.doi.org/10.1016/j.electacta.2006.10.06510.1016/j.electacta.2006.10.065Search in Google Scholar

[160] X.-Y. Zhao, D.-D. Liang, S.-X. Liu, C.-Y. Sun, R.-G. Cao, C.-Y. Gao, Y.-H. Ren, and Z.-M. Su, Two Dawson-templated 3-D metalorganic frameworks based on oxalate-bridged binuclear Co(II)/Ni(II) SBUs and bpy-linkers. Inorganic Chemistry, 47 (2008): 133–138. 10.1021/ic800131rSearch in Google Scholar

[161] E. S. Ribeiro, Y. Gushikem, J. C. Biazzotto, and O. A. Serra, Electrochemical properties and dissolved oxygen reduction study on FeIII-tetra(oureaphenyl) porphyrinosilica matrix surface, Journal of Porphyrins & Phthalocyanines, 6 (2002): 527–532. http://dx.doi.org/10.1142/S108842460200065810.1142/S1088424602000658Search in Google Scholar

[162] C. A. Pessoa, Y. Gushikem, and S. Nakagaki, Cobalt porphyrin immobilized on a niobium(V) oxide grafted-silica gel surface: Study of the catalytic oxidation of hydrazine. Electroanalysis, 14 (2002): 1072–1076. http://dx.doi.org/10.1002/1521-4109(200208)14:15/16<1072::AID-ELAN1072>3.0.CO;2-X10.1002/1521-4109(200208)14:15/16<1072::AID-ELAN1072>3.0.CO;2-XSearch in Google Scholar

[163] C.-Y. Li, Y. Chen, C.-F. Wang, H.-B. Li, and Y.-Y. Chen, Electrocatalytic oxidation of H2O2 at a carbon paste electrode modified with a Ni(II)-calix[4]arene complex and its application. Wuhan University, Journal of Natural Sciences; 8 (2003): 857–860. http://dx.doi.org/10.1007/BF0290369310.1007/BF02903693Search in Google Scholar

[164] D. Munteanu, D. Dicu, I. C. Popescu, and L. Gorton, NADH oxidation using carbo-naceous electrodes modified with dibenzo-dithia-diazapentacene. Electroanalysis, 15 (2003): 383–391. http://dx.doi.org/10.1002/elan.20039004410.1002/elan.200390044Search in Google Scholar

[165] E. S. Gil and L. T. Kubota, Electrochemical properties of Doyle catalyst immobilized on carbon paste in the presence of DNA. Bioelectrochemistry, 51 (2001): 145–149. http://dx.doi.org/10.1016/S0302-4598(00)00067-210.1016/S0302-4598(00)00067-2Search in Google Scholar

[166] V. Parra, T. del Cano, M. L. Rodríguez Mendez, J. A. de Saja, and R. F. Aroca, Electrochemical characterization of two perylenetetracarboxylic diimides: Langmuir-Blodgett films and carbon paste electrodes. Chemistry of Materials, 16 (2004): 358–364. http://dx.doi.org/10.1021/cm034778610.1021/cm0347786Search in Google Scholar

[167] C.-X. Lei, S.-Q. Hu, G.-L. Shen, and R.-Q. Yu, Immobilization of horseradish peroxidase to a nano-Au monolayer / chitosan- modified carbon paste electrode for the detection of hydrogen peroxide. Talanta, 59 (2003): 981–988. http://dx.doi.org/10.1016/S0039-9140(02)00641-010.1016/S0039-9140(02)00641-0Search in Google Scholar

[168] J. Li, L.-T. Xiao, X.-M. Liu, G.-M. Zeng, G.-H. Huang, G.-.L. Shen, and R.-Q. Yu, Amperometric biosensor with HRP immobilized on a sandwiched nano-Au polymerized film and ferrocene mediator. Analytical and Bioanalytical Chemistry, 376 (2003): 902–907. http://dx.doi.org/10.1007/s00216-003-1989-810.1007/s00216-003-1989-8Search in Google Scholar

[169] H. Remita, P. F. Siril, I. M. Mbomekalle, B. Keita, and L. Nadjo, Activity evaluation of carbon paste electrodes loaded with Pt-nanoparticles prepared in different radiolytic conditions. Journal of Solid State Electrochemistry, 10 (2006): 506–511. http://dx.doi.org/10.1007/s10008-005-0005-y10.1007/s10008-005-0005-ySearch in Google Scholar

[170] J.-Z. Xu, J.-J. Zhu, H. Wang, and H.-Y. Chen, Nano-sized copper oxide modified carbon paste electrodes as an amperometric sensor for amikacin. Analytical Letters, 36 (2003): 2723–2733. http://dx.doi.org/10.1081/AL-12002525110.1081/AL-120025251Search in Google Scholar

[171] D. R. do Carmo, L. L. Paim, N. L. Dias, and N. R. Stradiotto, Preparation, characte-rization and application of a nanostructured composite: Octakis-(cyanopropyldimethyl-siloxy)octa-silsesquioxane. Applied Surface Science, 253 (2007): 3683–3689. http://dx.doi.org/10.1016/j.apsusc.2006.07.08010.1016/j.apsusc.2006.07.080Search in Google Scholar

[172] D.-P. Tang, R. Yuan, and Y.-Q. Chai, Magnetic core-shell Fe3O4@Ag nanoparticles coated carbon paste interface for studies of carcinoembryonic antigen in clinical immunoassay. Journal of Physical Chemistry B, 110 (2006): 11640–11646. http://dx.doi.org/10.1021/jp060950s10.1021/jp060950sSearch in Google Scholar

[173] W. Sun, D.-D. Wang, J.-H. Zhong, and K. Jiao, Electrocatalytic activity of hemoglobin in sodium alginate / SiO2 nanoparticle / ionic liquid BMIM-PF6 composite film. Journal of Solid State Electrochemistry, 12 (2008): 655–661. http://dx.doi.org/10.1007/s10008-007-0395-010.1007/s10008-007-0395-0Search in Google Scholar

[174] X.-L, Wang., Z.-H. Kang, E.-B. Wang, C.-W. Hu, Preparation of chemically bulk-modified electrode based on hybrid silicomolybdate nanoparticles for the detection of nitrite. Material Letters, 56 (2002): 393–396. 10.1016/S0167-577X(02)00497-4Search in Google Scholar

[175] X.-L. Wang., Z.-H. Kang, E.-B. Wang, C.-W. Hu, Inorganic-organic hybrid 18-molybdodiphosphate nanoparticles bulk-modified carbon paste electrode and its electro-catalytic properties. Chinese Journal of Chemistry (Shanghai), 20 (2002): 777–783. 10.1002/cjoc.20020200813Search in Google Scholar

[176] X.-L. Wang., Z.-H. Kang, Y. Lan, and E.-B. Wang, Molybdo-vanado-phosphate tetraethyl-ammonium nanoparticles bulk-modified carbon paste electrode and its electrocatalysis toward the reduction of hydrogen peroxide. Fenxi Huaxue (Chinese Journal of Analytical Chemistry, 31 (2003): 941–944. Search in Google Scholar

[177] L. Wang, M. Jiang, E.-B. Wang, S.-Y. Lian, L. Xu, and Z. Li, Synthesis and characte-rization of nanoporous ultrathin multilayer films based on molybdenum polyoxometalate (Mo-36)n. Material Letters, 58 (2004): 683–687. http://dx.doi.org/10.1016/j.matlet.2003.06.00510.1016/j.matlet.2003.06.005Search in Google Scholar

[178] X.-L. Wang, H.-Y. Zhao, and Y.-F. Wang, Preparation, electrochemical property and application in bulk-modified electrode of Dawson-type phosphomolybdate-doped polypyrrole composite nanoparticles. Gaodeng Xuexiao Huaxue Xuebao (Chemical Research in Chinese Universities), 22 (2006): 556–559. http://dx.doi.org/10.1016/S1005-9040(06)60161-X10.1016/S1005-9040(06)60161-XSearch in Google Scholar

[179] Z.-G. Han, Y.-L. Zhao, J. Peng, Q. Liu, and E.-B. Wang, Inorganic-organic hybrid polyoxo-metalate containing supramolecular helical chains: Preparation, characterization and application in chemically bulk-modified electrode. Electrochimica Acta, 51 (2005): 218–224. http://dx.doi.org/10.1016/j.electacta.2005.04.01610.1016/j.electacta.2005.04.016Search in Google Scholar

[180] A. Curulli, F. Valentini, S. Orlanducci, M. L. Terranova, C. Paoletti, G. Palleschi, Electrosynthesis of non conventional-polymer nanotubules: A new nanostructured material for analytical applications. Sensors & Actuators B, Chemical; 100 (2004) 65–71. http://dx.doi.org/10.1016/j.snb.2003.12.02110.1016/j.snb.2003.12.021Search in Google Scholar

[181] S.-Y. Zhu, L.-S. Fan, X.-Q. Liu, L-H. Shi, H.-J. Li, S. Han, and G.-B. Xu, Determination of concentrated hydrogen peroxide at single-walled carbon nanohorn paste electrode. Electrochemistry Communications, 10 (2008): 695–698. http://dx.doi.org/10.1016/j.elecom.2008.02.02010.1016/j.elecom.2008.02.020Search in Google Scholar

[182] M. B. González García, and A. Costa García, Adsorptive stripping voltammetric behavior of colloidal gold and immunogold on a carbon paste electrode. Bioelectrochemistry & Bioenergetics, 38 (1995): 389–395. http://dx.doi.org/10.1016/0302-4598(95)01813-T10.1016/0302-4598(95)01813-TSearch in Google Scholar

[183] D. Hernández Santos, M. B. González García, and A. Costa Garcia, Metalnano-particles based electroanalysis. A Review. Electroanalysis, 14 (2002): 1225–1235. http://dx.doi.org/10.1002/1521-4109(200210)14:18<1225::AID-ELAN1225>3.0.CO;2-Z10.1002/1521-4109(200210)14:18<1225::AID-ELAN1225>3.0.CO;2-ZSearch in Google Scholar

[184] S.-Q. Liu and H.-X. Ju, Reagentless glucose biosensor based on colloidal gold modified carbon paste electrode. Biosensors & Bioelectronics, 19 (2003): 177–183. http://dx.doi.org/10.1016/S0956-5663(03)00172-610.1016/S0956-5663(03)00172-6Search in Google Scholar

[185] S.-Q. Liu and H.-X. Ju, Electrocatalysis via direct electrochemistry of myoglobin immobilized on colloidal gold nanoparticles. Electroanalysis, 15 (2003): 1488–1493. http://dx.doi.org/10.1002/elan.20030272210.1002/elan.200302722Search in Google Scholar

[186] T. Grygar, F. Marken, U. Schröder, and F. Scholz, Electrochemical analysis of solids. A Review. Collection of Czechoslovak Chemical Communications, 67 (2002): 163–208. http://dx.doi.org/10.1135/cccc2002016310.1135/cccc20020163Search in Google Scholar

[187] V. Vivier, A. Regis, G. Sagon, J. Y. Nedelec, L. T. Yu, and C. Cachet Vivier, Cyclic voltammetry study of bismuth oxide powder by means of a cavity microelectrode coupled with Raman microspectrometry. Electrochimica Acta, 46 (2001): 907–914. http://dx.doi.org/10.1016/S0013-4686(00)00677-010.1016/S0013-4686(00)00677-0Search in Google Scholar

[188] V. B. Fetisov, G. A. Kozhina, A. N. Ermakov, A. V. Fetisov, and E. G. Miroshnikova, Electrochemical dissolution of Mn3O4 in acid solutions. Journal of Solid State Electrochemistry, 11 (2007): 1205–1210. http://dx.doi.org/10.1007/s10008-007-0269-510.1007/s10008-007-0269-5Search in Google Scholar

[189] G. Cepria, J. J. Cepria, J. Ramajo, Fast and simple electroanalytical identification of iron oxides in geological samples. Microchimica Acta, 144 (2004): 139–145. http://dx.doi.org/10.1007/s00604-003-0096-z10.1007/s00604-003-0096-zSearch in Google Scholar

[190] K. E. Jaya, S. Berckman, V. Yegnaraman, and P. N. Mohandes, Electrochemical investigation of the rusting reaction of ilmenite using CVstudies. Hydrometallurgy, 65 (2002): 217–225. http://dx.doi.org/10.1016/S0304-386X(02)00088-910.1016/S0304-386X(02)00088-9Search in Google Scholar

[191] E. Barrado, F. Prieto, F. J. Garay, J. Medina, and M. Vega, Characterization of nickel-bearing ferrites obtained as by-products of hydrochemical wastewater purification processes. Electrochemica Acta 47 (2002) 1959–1965. http://dx.doi.org/10.1016/S0013-4686(02)00046-410.1016/S0013-4686(02)00046-4Search in Google Scholar

[192] E. Barrado, F. Prieto, J. Medina, and R. Pardo, Purification of cadmium waste water: Characterization and electrochemical behaviour of ferrites bearing cadmium(II). Quimica Analytica, 20 (2001): 47–53. Search in Google Scholar

[193] J. L. Nava, M. T. Oropeza, and I. González, Oxidation of mineral species as a function of the anodic potential of zinc sulphide concentrate in sulfuric acid. Journal of Electro-analytical Chemistry Society, Section B; 151 (2004): B387–B393. 10.1149/1.1753583Search in Google Scholar

[194] S.-Y. Shi, Z.-H. Fang, and J.-R. Ni, Comparative study on the bioleaching of zinc sulphides. Process Biochemistry, 41 (2006): 438–446. http://dx.doi.org/10.1016/j.procbio.2005.07.00810.1016/j.procbio.2005.07.008Search in Google Scholar

[195] S.-Y. Shi, Z.-H. Fang, and J.-R. Ni, Electrochemistry of marmatite-containing carbon paste electrode in the presence of bacterial strains. Bioelectrochemistry, 68 (2006): 113–118. http://dx.doi.org/10.1016/j.bioelechem.2005.05.00610.1016/j.bioelechem.2005.05.006Search in Google Scholar

[196] J. L. Nava, M. T. Oropeza, and I. González, Electrochemical characterisation of sulfur species formed during anodic dissolution of galena concentrate in perchlorate medium. Electrochimica Acta, 47 (2002): 1513–1525. http://dx.doi.org/10.1016/S0013-4686(01)00881-710.1016/S0013-4686(01)00881-7Search in Google Scholar

[197] J. L. Nava and I. González, The role of the carbon paste electrodes in the electro-chemical study of metallic minerals. Quimica Nova, 28 (2005): 901–909. 10.1590/S0100-40422005000500031Search in Google Scholar

[198] D. Nava and I. González, Electrochemical characterization of chemical species formed during the electrochemical treatment of chalcopyrite in sulfuric acid. Electrochimica Acta, 51 (2005): 5295–5303. http://dx.doi.org/10.1016/j.electacta.2006.02.00510.1016/j.electacta.2006.02.005Search in Google Scholar

[199] E. A. Holley, A. J. McQuillan, D. Craw, J. P. Kim, and S. G. Sander, Mercury mobilization by oxidative dissolution of alpha cinnabar and beta-cinnabar. Chemical Geology, 240 (2007): 313–325. http://dx.doi.org/10.1016/j.chemgeo.2007.03.00110.1016/j.chemgeo.2007.03.001Search in Google Scholar

[200] C. M. V. B. Almeida and B. F. Giannetti, Electrochemical study of arsenopyrite weathering. Physical Chemistry / Chemical Physics, 5 (2003): 604–610. http://dx.doi.org/10.1039/b210631k10.1039/b210631kSearch in Google Scholar

[201] G. Cepria, N. Alexa, E. Cordos, and J. R. Castillo, Electrochemical screening procedure for arsenic contaminated soils. Talanta, 66 (2005): 875–881. http://dx.doi.org/10.1016/j.talanta.2004.12.05410.1016/j.talanta.2004.12.054Search in Google Scholar

[202] I. Galfi, J. Aromaa, and O. Forsen, Laboratory tool for electrochemical study of sulphide minerals. Physicochemical Problems in Mineral Processing, 41 (2007): 301–312. Search in Google Scholar

[203] C. M. V. B. Almeida and B. F. Giannetti, A new and practical carbon paste electrode for insoluble and ground samples. Electrochemistry Communications, 4 (2002): 985–988. http://dx.doi.org/10.1016/S1388-2481(02)00511-810.1016/S1388-2481(02)00511-8Search in Google Scholar

[204] G. Cepria, L. Irigoyen, and J. R. Castillo, A microscale procedure to test the metal sorption properties of biomass sorbents: A time and reagents saving alternative to conventional methods. Microchimica Acta, 154 (2006): 287–295. http://dx.doi.org/10.1007/s00604-006-0576-z10.1007/s00604-006-0576-zSearch in Google Scholar

[205] D. R. do Carmo, R. M. da Silva, and Stradiotto N. R., Electrochemical study of Fe[Fe(CN)5NO] in a graphite paste electrode. Ecletica Quimica (Brazil), 27 (2002): 197–210. 10.1590/S0100-46702002000200017Search in Google Scholar

[206] M. Shamsipur, A. Salimi, S. M. Golabi, H. Sharghi, and M. F. Mousayi, Electro-chemical properties of modified carbon paste electrodes containing some amino derivatives of 9,10-anthraquinone. Journal of Solid State Electrochemistry, 5 (2001): 68–72. http://dx.doi.org/10.1007/s10008990009710.1007/s100089900097Search in Google Scholar

[207] A. Vlasa, S. Varvara, and L. M. Muresan, Electrochemical investigation of the influence of two thiadiazole deriva-tives on the patina of an archaeological bronze artefact using a carbon paste electrode. Studies of University Babes-Bolyai, Series Chemical (Cluj-Napoca); 52 (2007): 63–71. Search in Google Scholar

[208] G.-Y. Shi, K. Yamamoto, T.-.S. Zhou, F. Xu, T. Kato, J.-Y. Jin, and L.-T. Jin, On-line biosensors for simultaneous determination of glucose, choline, and glutamate integrated with a microseparation system. Electrophoresis, 24 (2003): 3266–3272. http://dx.doi.org/10.1002/elps.20030553310.1002/elps.200305533Search in Google Scholar

[209] S.-Y. Ly, Real-time voltammetric assay of cadmium ions in plant tissue and fish brain core. Bulletin of the Korean Chemistry Society, 27 (2006): 1613–1617. 10.5012/bkcs.2006.27.10.1613Search in Google Scholar

[210] S. Y. Ly, Diagnosis of Cu(II) ions in vascular tracts by a F-doped carbon nanotube sensor. Talanta, 74 (2008): 1635–1641. http://dx.doi.org/10.1016/j.talanta.2007.10.01710.1016/j.talanta.2007.10.017Search in Google Scholar

[211] S.-Y. Ly, Y.-S. Jung, C.-H. Lee, and B.-W. Lee, Administering pesticide assays with the aid of invivo implanted biosensors. Australian Journal of Chemistry, 61 (2008): 826–832. http://dx.doi.org/10.1071/CH0802810.1071/CH08028Search in Google Scholar

[212] L. Lvova, S.-S. Kim, A. Legin, Y. Vlasov, J.-S. Yang, G.-S. Cha, and H. Nam, Solid-state electronic tongue and its application for beverage analysis. Analytica Chimica Acta, 468 (2002): 303–314. http://dx.doi.org/10.1016/S0003-2670(02)00690-610.1016/S0003-2670(02)00690-6Search in Google Scholar

[213] A. Arrieta, M. L. Rodríguez Mendéz, and J. A. de Saja, Langmuir-Blodgett film and carbon paste electrode based on phthalocyanines as sensing units for taste. Sensors & Actuators B, Chemical; 95 (2003): 357–365. http://dx.doi.org/10.1016/S0925-4005(03)00438-610.1016/S0925-4005(03)00438-6Search in Google Scholar

[214] V. Parra, A. A. Arrieta, J. A. Fernández Escudero, M. Iníguez, J. A. de Saja, and M. M. L. Rodríguez, Monitoring of the ageing of red wines in oak barrels by an hybrid electronic tongue. Analytica Chimica Acta, 563 (2006): 229–237. http://dx.doi.org/10.1016/j.aca.2005.09.04410.1016/j.aca.2005.09.044Search in Google Scholar

[215] M. L. Rodríguez Mendez, V. Parra, C. Apetrei, S. Villanuevam, M. Gay, N. Prieto, J. Martínez, and J. A. de Saja, Electronic tongue based on voltammetric electrodes modified with materials showing complementary electroactive properties. Characterization and Applications. Microchimica Acta, 163 (2008): 23–31. http://dx.doi.org/10.1007/s00604-007-0907-810.1007/s00604-007-0907-8Search in Google Scholar

[216] C. Apetrei, F. Gutieréz, M. L. Rodríguez Mendéz, and J. A. de Saja, Novel method based on carbon paste electrodes for the evaluation of bitterness in extra virgin olive oils. Sensors & Actuators B, Chemical, 121 (2007): 567–575. http://dx.doi.org/10.1016/j.snb.2006.04.09110.1016/j.snb.2006.04.091Search in Google Scholar

[217] Y. Kureishi, H. Shiraishi, and H. Tamiaki, Self-aggregates of synthetic zinc chlorins as the photo-sensitizer on carbon paste electrodes for a novel solar cell. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 496 (2001): 13–20. http://dx.doi.org/10.1016/S0022-0728(00)00262-X10.1016/S0022-0728(00)00262-XSearch in Google Scholar

[218] M. Torimura, A. Miki, A. Wadano, K. Kano, and T. Ikeda, Electrochemical investigation of photoreduction catalyzed by cyanobacteria Synechococcus sp. PCC-7942) in exogenous quinones and photoelectrochemical oxidation of water. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 496 (2001): 21–28. http://dx.doi.org/10.1016/S0022-0728(00)00253-910.1016/S0022-0728(00)00253-9Search in Google Scholar

[219] T.-S. Oh, J.-H. Lee, S.-E. Lee, K.-W. Min, S.-K. Kang, J.-B. Yoo, C.-Y. Park, and J.-M. Kim, A field-emission display with an asymmetric electrostatic-quadrupole lens structure. Japanese Journal of Applied Physics, 44 (2005): 8692–8697. http://dx.doi.org/10.1143/JJAP.44.869210.1143/JJAP.44.8692Search in Google Scholar

[220] S. Křížková, P. Ryant, O. Kryštofová, V. Adam, V. Galiová, M. Beklová, P. Babula, J. Kaiser, K. Novotný, J. Novotný, M. Liška, R. Malina, J. Zehnálek, J. Hubálek, L. Havel, R. Kizek, Multi-instrumental analysis of tissues of sunflower plants treated with silver(I) ions: Plants as bioindicators of environmental pollution. Sensors, 8 (2008): 445–463. http://dx.doi.org/10.3390/s801044510.3390/s8010445Search in Google Scholar

[221] A. Economou and P. R. Fielden, Mercury film electrodes: developments, trends and potentialities for electroanalysis (Review). Analyst (UK), 128 (2003): 205–212. 10.1039/b201130cSearch in Google Scholar

[222] A. Walcarius, Zeolite-modified electrodes in electroanalytical chemistry. Analytica Chimica Acta, 384 (1999): 1–16. http://dx.doi.org/10.1016/S0003-2670(98)00849-610.1016/S0003-2670(98)00849-6Search in Google Scholar

[223] A. Walcarius, Electroanalysis with pure, chemically modified, and sol-gel-derived silica-based materials. Electroanalysis, 13 (2001): 701–718. http://dx.doi.org/10.1002/1521-4109(200105)13:8/9<701::AID-ELAN701>3.0.CO;2-610.1002/1521-4109(200105)13:8/9<701::AID-ELAN701>3.0.CO;2-6Search in Google Scholar

[224] A. Walcarius, Electrochemical applications of silica-based organic-inorganic hybrid materials. Chem. Mater., 13 (2001): 3351–3372. http://dx.doi.org/10.1021/cm011016710.1021/cm0110167Search in Google Scholar

[225] A. Walcarius, Electroanalytical applications of microporous zeolites and mesoporous (organo) silicas: Recent trends. Electroanalysis, 20 (2008): 711–738. http://dx.doi.org/10.1002/elan.20070414410.1002/elan.200704144Search in Google Scholar

[226] A. Walcarius, P. Mariaulle, and L. Lamberts, Zeolite-modified solid carbon paste electrodes. Journal of Solid State Electrochemistry, 7 (2003): 671–677. http://dx.doi.org/10.1007/s10008-003-0369-910.1007/s10008-003-0369-9Search in Google Scholar

[227] A. Walcarius, Zeolite-modified paraffin-impregnated graphite electrode. Journal of Solid State Electrochemistry, (2006): 469–478. 10.1007/s10008-005-0020-zSearch in Google Scholar

[228] S. Sayen, M. Etienne, J. Bessière, and A. Walcarius, Tuning the sensitivity of electrodes modified with an organic-inorganic hybrid by tailoring the structure of the nano-composite material. Electroanalysis, 14 (2002): 1521–1525. http://dx.doi.org/10.1002/1521-4109(200211)14:21<1521::AID-ELAN1521>3.0.CO;2-710.1002/1521-4109(200211)14:21<1521::AID-ELAN1521>3.0.CO;2-7Search in Google Scholar

[229] A. Walcarius, M. Etienne, S. Sayen, and B. Lebeau, Grafted silicas in electroanalysis: A Study on amorphous versus ordered mesoporous materials. Electroanalysis, 15 (2003): 414–421. http://dx.doi.org/10.1002/elan.20039004810.1002/elan.200390048Search in Google Scholar

[230] M. Etienne, J. Bessière, and A. Walcarius, Voltammetric detection of copper(II) at a carbon paste electrode containing an organically modified silica. Sensors & Actuators B, Chemical; 76 (2001): 531–538. http://dx.doi.org/10.1016/S0925-4005(01)00614-110.1016/S0925-4005(01)00614-1Search in Google Scholar

[231] S. Sayen, C. Gérardin, L. Rodehuser, and A. Walcarius, Electrochemical detection of copper(II) at an electrode modified by a carnosine-silica hybrid material. Electro-analysis, 15 (2003): 422–430. 10.1002/elan.200390049Search in Google Scholar

[232] V. Ganesan and A. Walcarius, Surfactant templated sulfonic acid-functionalized silica microspheres as new efficient ion-exchangers and electrode modifiers. Langmuir, 20 (2004): 3632–3640. http://dx.doi.org/10.1021/la036408210.1021/la0364082Search in Google Scholar

[233] S. Goubert-Renaudin, M. Etienne, Y. Rousselin, F. Denat, B. Lebeau, and A. Walcarius, Cyclamfunctionalized silica-modified electrodes for selective determination of Cu(II). Electroanalysis, in press. Search in Google Scholar

[234] M. Etienne, C. Delacôte, and A. Walcarius, Interest of mesoporous organic-inorganic hybrids in electroanalysis: Illustration for mercury binding to thiol-functionalized silica-based materials; in Progress in Electrochemistry Research, ed. M. Nuñéz. (Hauppauge (NY): Nova Science Publishers, 2005), pp.145–184. Search in Google Scholar

[235] W. Yantasee, C. Timchalk, G. E. Fryxell, B. P. Dockendorff, and Y. Lin, Automated portable analyzer for lead(II) based on sequential flow injection and nano-structured electrochemical sensors. Talanta, 68 (2005): 256–261. http://dx.doi.org/10.1016/j.talanta.2005.07.01310.1016/j.talanta.2005.07.013Search in Google Scholar

[236] L.-D. Li, W.-J. Li, C.-Q Sun, and L.-S. Li, Fabrication of carbon paste electrode containing 1:12 phosphomolybdic anions encapsulated in modified mesoporous molecular sieve MCM-41 and its electrochemistry. Electroanalysis, 14 (2002): 368–375. http://dx.doi.org/10.1002/1521-4109(200203)14:5<368::AID-ELAN368>3.0.CO;2-I10.1002/1521-4109(200203)14:5<368::AID-ELAN368>3.0.CO;2-ISearch in Google Scholar

[237] C. Delacôte, J.-P. Bouillon, and A. Walcarius, Voltammetric responses of ferrocene-grafted mesoporous silica. Electrochimica Acta, 51 (2006): 6373–6383. http://dx.doi.org/10.1016/j.electacta.2006.04.04210.1016/j.electacta.2006.04.042Search in Google Scholar

[238] M. Zendehdel, A. Babaei, and S. Alami, Intercalation of xylenol orange, morin, and calmagite into NaY-zeolite and their application in a dye / zeolite modified electrode. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 59 (2007): 345–349. http://dx.doi.org/10.1007/s10847-007-9334-z10.1007/s10847-007-9334-zSearch in Google Scholar

[239] D. Gligor, L. M. Muresan, A. Dumitrum, and I. C. Popescu, Electrochemical behavior of carbon paste electrodes modified with methylene green immobilized on two different X-type zeolites. Journal of Applied Electrochemistry, 37 (2007): 261–267. http://dx.doi.org/10.1007/s10800-006-9251-710.1007/s10800-006-9251-7Search in Google Scholar

[240] J. Li, M.-H. Huang, X.-Q. Liu, H. Wei, Y.-H. Xu, G.-B. Xu, and E.-K. Wang, Enhanced electrochemiluminescence sensor from tris(2,2′-bipy)RuII incorporated into MCM-41 and ionic liquid-based carbon paste electrode. Analyst (UK), 132 (2007): 687–691. http://dx.doi.org/10.1039/b701842h10.1039/B701842HSearch in Google Scholar

[241] I. Švancara, K. Kalcher, and K. Vytřas, Solid Electrodes Plated with Metallic Films. Scientific Papers of the University of Pardubice, Series A; 3 (1997): 207–225. Search in Google Scholar

[242] I. Švancara, R. Pazdera, R. Metelka, E. Norkus, and K. Vytřas, Some aspects of using stripping potentiometry for measurements with carbon paste electrodes plated with mercury- and gold films; in Monitoring of Environmental Pollutants — III (in Czech), eds. K. Vytřas, J. Kellner, and J. Fischer (University of Pardubice, 2001), pp. 123–134. Search in Google Scholar

[243] I. Švancara, M. Fairouz, Kh. Ismail, R. Metelka, and K. Vytřas, A contribution to the characterisation of mercury- and bismuth film carbon paste electrodes in stripping voltammetry. Scientific Papers of the University of Pardubice, Series A; 9 (2003): 31–48. Search in Google Scholar

[244] I. Švancara, M. Fairouz, Kh. Ismail, J. Šrámková, R. Metelka, and K. Vytřas: Applicability of electrochemical stripping analysis at mercury- and bismuth-film carbon paste electrodes to crude oil digests. Scientific Papers of the University of Pardubice, Series A; 10 (2004): 5–20. Search in Google Scholar

[245] E. Tesařová, A. Królicka, A. Bobrowski, I. Švancara, and K. Vytřas, A study on simultaneous determination of indium and cadmium at mercury-based and bismuth filmplated electrodes, Scientific Papers of the University of Pardubice, Series A; 10 (2004): 21–32. Search in Google Scholar

[246] I. Švancara, E. Tesařová, and R. Metelka, Stripping voltammetry at mercury-film plated carbon paste electrodes: Ten years of advanced laboratory exercises for students at the University of Pardubice. Scientific Papers of the University of Pardubice, Series A; 11 (2005): 343–361. Search in Google Scholar

[247] I. Švancara, K. Vytřas, A. Bobrowski, and K. Kalcher, Determination of arsenic at a goldplated carbon paste electrode using constant current stripping analysis. Talanta, 56 (2002): 45–55. http://dx.doi.org/10.1016/S0039-9140(02)00255-210.1016/S0039-9140(02)00255-2Search in Google Scholar

[248] A. Królicka, R. Pauliukaitė, I. Švancara, R. Metelka, E. Norkus, A. Bobrowski, K. Kalcher, and K. Vytřas, Bismuth film-plated carbon paste electrodes, Electrochemistry Communications, 4 (2002): 193–196. http://dx.doi.org/10.1016/S1388-2481(01)00301-010.1016/S1388-2481(01)00301-0Search in Google Scholar

[249] K. Vytřas, I. Švancara, and R. Metelka, A novelty in potentiometric stripping analysis: Total replacement of mercury by bismuth. Electroanalysis, 14 (2002): 1359–1364. http://dx.doi.org/10.1002/1521-4109(200211)14:19/20<1359::AID-ELAN1359>3.0.CO;2-P10.1002/1521-4109(200211)14:19/20<1359::AID-ELAN1359>3.0.CO;2-PSearch in Google Scholar

[250] S. A. A. Elsuccary, I. Švancara, R. Metelka, L. Baldrianová, M. E. M. Hassouna, and K. Vytřas, Applicability of bismuth film carbon paste electrodes in highly alkaline media. Scientific Papers of the University of Pardubice, Series A; 9 (2003): 5–17. Search in Google Scholar

[251] I. Švancara, L. Baldrianová, E. Tesařová, S. A. A. Elsuccary, A. Economou, S. Sotiropoulos, A. Bobrowski, and K. Vytřas, Stripping voltammetry of metal-ion mixtures at bismuth film-plated electrodes; in Monitoring of Environmental Pollutants — VI (in Czech), eds. K. Vytřas, J. Kellner, and J. Fischer (University of Pardubice, 2004), pp. 229–246. Search in Google Scholar

[252] I. Švancara, L. Baldrianová, M. Vlček, R. Metelka, and K. Vytřas, A role of the plating regime in the deposition of bismuth films onto a carbon paste electrode: Microscopic study. Electroanalysis, 17 (2005): 120–126. http://dx.doi.org/10.1002/elan.20040306110.1002/elan.200403061Search in Google Scholar

[253] E. Tesařová, L. Baldrianová, A. Królicka, I. Švancara, A. Bobrowski, and K. Vytřas, Role of supporting electrolyte in anodic stripping voltammetry of In(III) in the presence of Cd(II) and Pb(II) using bismuth film electrodes; in Sensing in Electroanalysis, eds. K. Vytřas and K. Kalcher. (Pardubice: University of Pardubice, 2005), pp. 75–87. Search in Google Scholar

[254] K. Vytřas, L. Baldrianová, E. Tesařová, A. Bobrowski, and I. Švancara, Comments to Stripping voltammetric determination of copper(II) at bismuth-modified carbon substrate electrodes; in Sensing in Electroanalysis, eds. K. Vytřas, K. Kalcher. (Pardubice: University of Pardubice, 2005), pp. 49–58. Search in Google Scholar

[255] I. Švancara, L. Baldrianová, E. Tesařová, T. Mikysek, and K. Vytřas, Determination of tin(II) at bismuth-modified carbon paste electrodes: An initial study; in: Monitoring of Environmental Pollutants — VII (in Czech), eds.: K. Vytřas, J. Kellner, and J. Fischer. (Pardubice: University of Pardubice, 2005), pp. 139–148. Search in Google Scholar

[256] I. Švancara, L. Baldrianová, E. Tesařová, S. B. Hočevar, S. A. A. Elsuccary, A. Economou, S. Sotiropoulos, B. Ogorevc, and K. Vytřas, Recent advances in anodic stripping voltammetry with Bi-modified carbon paste electrodes. Electroanalysis, 18 (2006): 177–185. http://dx.doi.org/10.1002/elan.20050339110.1002/elan.200503391Search in Google Scholar

[257] L. Baldrianová, I. Švancara, M. Vlček, A. Economou, and S. Sotiropoulos, Effect of Bi(III) concentration on the stripping voltammetric response of in-situ bismuth-coated carbon paste and gold electrodes. Electrochimica Acta, 52 (2006): 481–490. http://dx.doi.org/10.1016/j.electacta.2006.05.02910.1016/j.electacta.2006.05.029Search in Google Scholar

[258] I. Švancara, L. Baldrianová, E. Tesařová, T. Mikysek, and K. Vytřas, Anodic stripping voltammetry at bismuth-modified electrodes in ammonia-buffered media. Scientific Papers of University of Pardubice, Series A; 12 (2006): 5–19. Search in Google Scholar

[259] L.-Y. Cao, J.-B. Jia, and Z.-H. Wang, Sensitive determination of Cd(II) and Pb(II) by differential pulse stripping voltammetry with in-situ bismuth-coated zeolite doped carbon paste electrodes. Electrochimica Acta, 53 (2007): 2177–2182. http://dx.doi.org/10.1016/j.electacta.2007.09.02410.1016/j.electacta.2007.09.024Search in Google Scholar

[260] I. Adraoui, M. E. Rhazi, and A. Amine, Fibrinogen-coated bismuth film electrodes for voltammetric analysis of lead and cadmium using the batch injection analysis, Analytical Letters, 40 (2007): 349–367. http://dx.doi.org/10.1080/0003271060096467610.1080/00032710600964676Search in Google Scholar

[261] I. Švancara, L. Baldrianová, E. Tesařová, M. Vlček, K. Vytřas, and S. Sotiropoulos, Microscopic studies with bismuth-modified carbon paste electrode substrates: Morphological transformations of bismuth microstructures and related observations; in Sensing in Electroanalysis — 2, eds. K. Vytřas and K. Kalcher. (University of Pardubice, 2007), pp. 35–58. Search in Google Scholar

[262] L. Baldrianová, I. Švancara, K. Vytřas, and S. Sotiropoulos, Variation of the metal analyte-to-bismuth peak ratio with deposition time in anodic stripping voltammetry at in-situ bismuthcoated carbon paste electrodes, in Sensing in Electroanalysis — 2, eds. K. Vytřas and K. Kalcher. (Pardubice: University of Pardubice, 2007), pp. 59–74. Search in Google Scholar

[263] R. Pauliukaitė, R. Metelka, I. Švancara, A. Królicka, A. Bobrowski, K. Vytřas, E. Norkus, and K. Kalcher, Carbon paste electrodes modified with Bi2O3 as sensors for the determination of cadmium and lead. Analytical and Bioanalytical Chemistry, 374 (2002): 1155–1158. http://dx.doi.org/10.1007/s00216-002-1569-310.1007/s00216-002-1569-3Search in Google Scholar PubMed

[264] S. B. Hočevar, I. Švancara, B. Ogorevc, and K. Vytřas, Novel electrode for electro-chemical stripping analysis based on carbon paste modified with bismuth powder. Electro-chimica Acta, 51 (2005): 706–710. http://dx.doi.org/10.1016/j.electacta.2005.05.02310.1016/j.electacta.2005.05.023Search in Google Scholar

[265] L. Baldrianová, P. Agrafiotou, I. Švancara, K. Vytřas, and S. Sotiropoulos, The determination of cysteine at bismuth-powder carbon paste electrodes by cathodic stripping voltammetry. Electrochemistry Communications, 10 (2008): 918–921. http://dx.doi.org/10.1016/j.elecom.2008.04.01710.1016/j.elecom.2008.04.017Search in Google Scholar

[266] K. Vytřas, I. Švancara, and R. Metelka, Bismuthbased electrodes in electrochemical stripping analysis: A review; in Monitoring of Environmental Pollutants — IV (in Czech), eds. K. Vytřas, J. Kellner, and J. Fischer. (University of Pardubice, 2002). pp. 159–170. Search in Google Scholar

[267] A. Economou, Bismuth-film electrodes: recent developments and potentialities for electroanalysis (A review). Trends in Analytical Chemistry, 24 (2005): 334–340. http://dx.doi.org/10.1016/j.trac.2004.11.00610.1016/j.trac.2004.11.006Search in Google Scholar

[268] J. Wang, Stripping analysis at bismuth electrodes: A Review. Electroanalysis, 17 (2005): 1341–1346. http://dx.doi.org/10.1002/elan.20040327010.1002/elan.200403270Search in Google Scholar

[269] I. Švancara and K. Vytřas, Electroanalysis with bismuth electrodes: State of the art and future prospects (in Czech). Chemické Listy, 100 (2006): 90–113. Search in Google Scholar

[270] C. Kokkinos and A Economou, Stripping analysis at bismuth-based electrodes. Current Analytical Chemistry, 4 (2008): 183–190. http://dx.doi.org/10.2174/15734110878491135210.2174/157341108784911352Search in Google Scholar

[271] C. Gouveia Caridade, R. Pauliukaitė, and C. M. A. Brett, Influence of Nafion coatings and surfactant on the stripping voltammetry of heavy metals at bismuth-modified carbon film electrodes. Electroanalysis, 18 (2006): 854–861. http://dx.doi.org/10.1002/elan.20060348210.1002/elan.200603482Search in Google Scholar

[272] R. Kalvoda, Is polarography still attractive? (A Review). Chemia Analyticzna (Warsaw), 52 (2007): 869–873. Search in Google Scholar

[273] I. Švancara, S. B. Hočevar, L. Baldrianová, E. Tesařová, and K. Vytřas, Antimony-modified carbon paste electrodes: Initial studies and prospects. Scientific Papers of the University of Pardubice, Series A; 13 (2007): 5–19. Search in Google Scholar

[274] R. Pauliukaitė and K. Kalcher, On using of CPE and SPCE modified by Bi2O3 and Sb2O3 for trace analysis of some heavy metals; in YISAC’ 01: 8th Young Investigators’ Seminar on Analytical Chemistry, Book of Abstracts (University of Pardubice, 2001), pp. 10–11. Search in Google Scholar

[275] A. Bobrowski, A. Królicka, and E. Łyczkowska, Carbon paste electrode plated with lead film: Electrochemical characteristics and application in adsorptive stripping voltammetry. Electroanalysis, 20 (2008): 61–67. http://dx.doi.org/10.1002/elan.20070408910.1002/elan.200704089Search in Google Scholar

[276] A. Economou and A. Voulgaropoulos, A study of the square-wave modulation for the determination of trace metals by anodic and adsorptive stripping voltammetry with bismuth film electrodes. Scientific Papers of the University of Pardubice, Series A; 10 (2004): 33–46. Search in Google Scholar

[277] R. Pauliukaite and K. Kalcher, Determination of Traces of Cd(II) and Pb(II) Using a Bi-Modified Carbon Paste and Screen-Printed Carbon Electrodes; in US-CZ Workshop on Electrochemical Sensors — Prague’ 01, Book of Abstracts; eds. J. Barek and J. Drašar J. (Prague: Czech Chemical Society, 2001), pp. 30–31. Search in Google Scholar

[278] R. Pauliukaitė, R. Metelka, I. Švancara, A. Królicka, A. Bobrowski, E. Norkus, K. Kalcher, K. Vytřas, Screen-printed carbon electrodes bulk-modified with Bi2O3 or Sb2O3 for trace determination of heavy metals. Scientific Papers of the University of Pardubice, Series A; 10 (2004): 47–58. Search in Google Scholar

[279] R. Metelka, M. Stočes, J. Krejčí, M. Bartoš, I. Švancara, P. Kotzian, and K. Vytřas, Development and characterization of new types of screen-printed bismuth-based sensors; in: Sensing in Electroanalysis — 2, eds. K. Vytřas and K. Kalcher. (Pardubice: University of Pardubice, 2007), pp. 169–179. Search in Google Scholar

[280] K. Kalcher, I. Švancara, M. Buzuk, K. Vytřas, and A. Walcarius, Electrochemical sensors and biosensors based on heterogeneous carbon materials. Monatshefte fur Chemie — Chemical Monthly, 140 (2009): 861–889. http://dx.doi.org/10.1007/s00706-009-0131-910.1007/s00706-009-0131-9Search in Google Scholar

[281] J. Růžička, C. G. Lamm, and J. C. Tjell, Selectrode™ — the universal ion-selective electrode: Concept, construction and materials. Analytica Chimica Acta, 62 (1972): 15–28. http://dx.doi.org/10.1016/S0003-2670(01)80978-810.1016/S0003-2670(01)80978-8Search in Google Scholar

[282] K. Vytřas and I. Švancara, Carbon pastebased ion-selective electrodes, in Sensing in Electroanalysis — 2, eds. K. Vytřas and K. Kalcher. (University of Pardubice, 2007), pp. 7–22. Search in Google Scholar

[283] R. P. Buck, Electrochemical Methods: Ion-Selective Electrodes, in Water Analysis, Vol. II, eds. R. A. Minear and L. H. Keith. (Orlando: Academic Press, 1984), pp. 249–321. Search in Google Scholar

[284] K. Vytřas, J. Kalous, V. Dlabka, and J. Ježková, Studies on potentiometric titrations using simple liquid membrane-based electrodes: Coated-wires versus carbon pastes. Scientific Papers of the University of Pardubice, Series A; 3 (1997): 307–321. Search in Google Scholar

[285] K. Vytřas, J. Kalous, and J. Ježková: Automated potentiometry as an ecologic alternative to two-phase titrations of surfactants. Egyptian Journal of Analytical Chemistry, 6 (1997): 107–123. Search in Google Scholar

[286] L. Tymecki, M. Jakubowska, S. Achmatowicz, R. Koncki, and S. Glab, Potentiometric thick-film graphite electrodes with improved response to copper ions. Analytical Letters, 34 (2001): 71–78. http://dx.doi.org/10.1081/AL-10000270510.1081/AL-100002705Search in Google Scholar

[287] A. Abbaspour and S. S. M. Moosavi, Chemically modified carbon paste electrode for determination of copper(II) by potentiometric method. Talanta, 56 (2002): 91–96. http://dx.doi.org/10.1016/S0039-9140(01)00549-510.1016/S0039-9140(01)00549-5Search in Google Scholar

[288] M. Javanbakht, A. Badiei, M. R. Ganjali, P. Norouzi, A. Hasheminasab, and M. Abdouss, Use of organo-functionalized nanoporous silica gel to improve the lifetime of carbon paste electrode for determination of Cu(II). Analytica Chimica Acta, 601 (2007): 172–182. http://dx.doi.org/10.1016/j.aca.2007.08.03810.1016/j.aca.2007.08.038Search in Google Scholar PubMed

[289] H. M. Abu-Shawish and S. M. Saadeh, A new chemically modified carbon paste electrode for determination of copper based on N,N′-disalicylidenehexametylene-diaminate copper(II) complex. Sensor Letters, 5 (2007): 565–571. http://dx.doi.org/10.1166/sl.2007.23310.1166/sl.2007.233Search in Google Scholar

[290] M. J. Gismera, M. T. Sevilla, and J. R. Procopio, Flow and batch systems for copper(II) potentiometric sensing. Talanta, 14 (2008): 190–197. 10.1016/j.talanta.2007.05.052Search in Google Scholar PubMed

[291] R. Chaisuksant, L. Pattanarat, and K. Grudpan, Naphthazarin modified carbon paste electrode for determination of copper(II). Microchimica Acta, 162 (2008): 181–188. http://dx.doi.org/10.1007/s00604-007-0879-810.1007/s00604-007-0879-8Search in Google Scholar

[292] M. H. Mashhadizadeh, K. Eskandari, A. Foroumadi, and A. Shafiee, Copper(II) modified carbon paste electrodes based on self-assembled mercapto compounds-gold-nanoparticle. Talanta, 76 (2008): 497–502. http://dx.doi.org/10.1016/j.talanta.2008.02.01910.1016/j.talanta.2008.02.019Search in Google Scholar

[293] M. Javanbakht, M. R. Ganjali, P. Norouzi, A. Badiei, A. Hasheminasab, and M. Abdouss, Carbon paste electrode modified with functionalized nanoporous silica gel as a new sensor for determination of silver ion. Electroanalysis, 19 (2007): 1307–1314. http://dx.doi.org/10.1002/elan.20060385410.1002/elan.200603854Search in Google Scholar

[294] M. N. Abbas and G. A. E. Mostafa, New triiodomercurate-modified carbon paste electrode for the potentiometric determination of mercury(II). Analytica Chimica Acta, 478 (2003): 329–335. http://dx.doi.org/10.1016/S0003-2670(02)01520-910.1016/S0003-2670(02)01520-9Search in Google Scholar

[295] M. H. Mashhadizadeh, M. P. Talakesh, Mahnaz, and H. M. M. Hamidian, A novel modified carbon paste electrode for potentiometric determination of mercury(II) ion. Electroanalysis, 18 (2006): 2174–2179. http://dx.doi.org/10.1002/elan.20060364310.1002/elan.200603643Search in Google Scholar

[296] M. J. Gismera, J. R. Procopio, and M. T. Sevilla, Characterization of mercury-humic acids interaction by potentiometric titration with a modified carbon paste mercury sensor. Electroanalysis, 19 (2007): 1055–1061. http://dx.doi.org/10.1002/elan.20060382110.1002/elan.200603821Search in Google Scholar

[297] M. J. Gismera, M. T. Sevilla, and J. R. Procopio, Potentiometric carbon paste sensors for lead(II) based on dithiodibenzoic and mercaptobenzoic acids. Analytical Sciences (Japan), 22 (2006): 405–410. http://dx.doi.org/10.2116/analsci.22.40510.2116/analsci.22.405Search in Google Scholar PubMed

[298] M. M. Ardakani, M. A. Karimi, M. H. Mashhadizadeh, M. Pesteh, M. S. Azimi, and H. Kazemian, Potentiometric determination of monohydrogen arsenate by zeolite-modified carbon-paste electrode. International Journal of Environmental Analytical Chemistry, 87 (2007): 285–294. http://dx.doi.org/10.1080/0306731060106882510.1080/03067310601068825Search in Google Scholar

[299] G. A. E. Mostafa, Development and characterization of ion selective electrode for the assay of antimony. Talanta, 71 (2007): 1449–1454. http://dx.doi.org/10.1016/j.talanta.2006.05.09510.1016/j.talanta.2006.05.095Search in Google Scholar PubMed

[300] G. A. E. Mostafa and A. M. Homoda, Potentiometric carbon paste electrodes for the determination of bismuth in some pharmaceutical preparations. Bulletin of the Chemical Society of Japan, 81 (2008): 257–261. http://dx.doi.org/10.1246/bcsj.81.25710.1246/bcsj.81.257Search in Google Scholar

[301] H. R. Pouretedal and M. H Keshavarz, Cyclam modified carbon paste electrode as a potentiometric sensor for determination of cobalt(II) ions. Gaodeng Xuexiao Huaxue Xuebao (Chemical Research in Chinese Universities), 21 (2005): 28–31. Search in Google Scholar

[302] M. Galík, M. Cholota, I. Švancara, A. Bobrowski, and K. Vytřas, A Study on stripping voltammetric determination of osmium(IV) at a carbon paste electrode modified in situ with cationic surfactants. Electroanalysis, 18 (2006): 2218–2224. http://dx.doi.org/10.1002/elan.20060365010.1002/elan.200603650Search in Google Scholar

[303] M. F. S. Teixeira, E. T. G. Cavalheiro, M. F. Bergamini, F. C. Moraes, and N. Bocchi, Use of a carbon paste electrode modified with spinel-type manganese oxide as a potentiometric sensor for lithium ions in flow injection analysis. Electroanalysis, 16 (2004): 633–639. http://dx.doi.org/10.1002/elan.20030285010.1002/elan.200302850Search in Google Scholar

[304] C. F. B. Coutinho, A. A. Muxel, C. G. Rocha, D. A. de Jesus, R. V. S. Alfaya, F. A. S. Almeida, Y. Gushikem, and A. A. S. Alfaya, Ammonium ion sensor based on SiO2 / ZrO2 / phosphate-NH4+ composite for quantification of ammonium ions in natural waters. Journal of Brazilian Chemical Society, 18 (2007): 189–194. 10.1590/S0103-50532007000100022Search in Google Scholar

[305] M. N. Abbas, Chemically modified carbon paste electrode for iodide on the basis of cetyltrimethylammonium iodide ion-pair. Analytical Sciences (Japan), 19 (2003): 229–233. http://dx.doi.org/10.2116/analsci.19.22910.2116/analsci.19.229Search in Google Scholar PubMed

[306] J. Tan, J. H. Bergantini, A. Merkoci, S. Alegret, and F. Sevilla, Oil dispersion of AgI/Ag2S salts as a new electroactive material for potentiometric sensing of iodide and cyanide. Sensors & Actuators B, Chemical; 101 (2004): 57–62. http://dx.doi.org/10.1016/j.snb.2004.02.03810.1016/j.snb.2004.02.038Search in Google Scholar

[307] A. Abbaspour, M. Asadi, A. Ghaffarinejad, and E. Safaei, A selective modified carbon paste electrode for determination of cyanide using tetra-3,4-pyridinoporphyrazinato-cobalt(II). Talanta, 93 (2005): 931–936. http://dx.doi.org/10.1016/j.talanta.2004.12.06210.1016/j.talanta.2004.12.062Search in Google Scholar PubMed

[308] M. Shamsipur, S. Ershad, N. Samadi, A. Moghimi, and H. Aghabozorg, A novel chemically modified carbon paste electrode based on a new mercury(II) complex for selective potentiometric determination of bromide ion. Journal of Solid State Electro-chemistry, 9 (2005): 788–793. http://dx.doi.org/10.1007/s10008-005-0692-410.1007/s10008-005-0692-4Search in Google Scholar

[309] A. Soleymanpour, E. H. Asl, and M. A. Nasseri, Chemically modified carbon paste electrode for determination of sulfate ion, SO42-, by potentiometric method. Electroanalysis, 18 (2006): 1598–1604. http://dx.doi.org/10.1002/elan.20050356210.1002/elan.200503562Search in Google Scholar

[310] K. Vytřas, Potentiometric titrations based on ionpair formation. Ion-Selective Electrode Reviews, 7 (1985): 77–164. 10.1016/B978-0-08-034150-7.50007-3Search in Google Scholar

[311] H. Ibrahim, Y. M. Issa, and H. M. Abu Shawish, Chemically modified CPE for the potentiometric determination of Dicylomine hydrochloride under batch and in FIA conditions. Analytical Sciences (Japan), 20 (2004): 911–916. http://dx.doi.org/10.2116/analsci.20.91110.2116/analsci.20.911Search in Google Scholar PubMed

[312] S. I. M. Zayed, New plastic membrane and carbon paste ion selective electrodes for potentiometric determination of Triprolidine. Analytical Sciences, 20 (2004): 1043–1048. http://dx.doi.org/10.2116/analsci.20.104310.2116/analsci.20.1043Search in Google Scholar PubMed

[313] H. Ibrahim, Chemically modified carbon paste electrode for the potentiometric FIA of Piribedil in pharmaceutical preparation and urine. Journal of Pharmaceutical and Biomedical Analysis, 38 (2005): 524–632. http://dx.doi.org/10.1016/j.jpba.2005.02.00610.1016/j.jpba.2005.02.006Search in Google Scholar

[314] Y. M. Issa, H. Ibrahim, and H. M. Abu Shawish, Carbon paste electrode for the potentiometric flow injection analysis of Drotaverine in serum and urine. Microchimica Acta, 150 (2005): 47–54. http://dx.doi.org/10.1007/s00604-005-0323-x10.1007/s00604-005-0323-xSearch in Google Scholar

[315] M. N. Abbas and G. A. E. Mostafa, Gallaminetetraphenylborate-modified carbon paste electrode for potentio-metric determination of gallamine triethiodide (Flaxedil). Journal of Pharmaceitical and Biomedical Analysis, 31 (2003): 819–826. http://dx.doi.org/10.1016/S0731-7085(02)00663-510.1016/S0731-7085(02)00663-5Search in Google Scholar

[316] K. I. Ozomena, R. I. Stefan, J. F. van Staden, and H. Y. Aboul Enein, Enantioanalysis of S-Perindopril using different cyclodextrin-based potentiometric sensors. Sensors & Actuators B, Chermical; 105 (2005): 425–429. http://dx.doi.org/10.1016/j.snb.2004.06.03210.1016/j.snb.2004.06.032Search in Google Scholar

[317] R. I. Stefan van Staden, R. G. Bokretsion, K. I. Ozomena, J. F. van Staden, and H. Y. Aboul Enein, Enantioselective, potentiometric membrane electrodes based on different cyclodextrins as chiral selectors for the assay of S-Flurbiprofen. Electroanalysis, 18 (2006): 1718–1721. http://dx.doi.org/10.1002/elan.20060357410.1002/elan.200603574Search in Google Scholar

[318] R. I. Stefan van Staden, R. G. Bokretsion, and K. I. Ozomena, Utilization of maltodextrin-based enantioselective, potentiometric membrane electrodes for the enantio-selective assay of S-Flurbiprofen. Analytical Letters, 39 (2006): 1065–1073. http://dx.doi.org/10.1080/0003271060062040110.1080/00032710600620401Search in Google Scholar

[319] V. V. Cosofret and R. P. Buck, Drug-Type Substances analysis with membrane electrodes, Ion-Selective Electrode Reviews, 6 (1984): 59–121. 10.1016/B978-0-08-033201-7.50007-4Search in Google Scholar

[320] K. Vytřas, The use of ion-selective electrodes in the determination of drug substances. Journal of Pharmaceutical and Biomedical Analysis, 7 (1989): 789–812. http://dx.doi.org/10.1016/0731-7085(89)80001-910.1016/0731-7085(89)80001-9Search in Google Scholar

[321] K. I. Ozomena and R. I. Stefan, Enantioselective potentiometric electrodes based on alpha-, beta-, and gamma-cyclodextrins as chiral selectors for the assay of l-proline. Talanta, 66 (2005): 501–504. http://dx.doi.org/10.1016/j.talanta.2004.11.02410.1016/j.talanta.2004.11.024Search in Google Scholar PubMed

[322] M. K. Amini, S. Shahrokhian, S. Tangestaninejad, and V. Mirkhani, Iron(II) phthalocyanine-modified carbon paste electrode for potentiometric detection of ascorbic acid. Analytical Biochemistry, 290 (2001): 277–282. http://dx.doi.org/10.1006/abio.2000.492910.1006/abio.2000.4929Search in Google Scholar PubMed

[323] B. N. Barsoum, W. M. Watson, I. M. Mahdi, and E. Khaled, Electrometric assay for the determination of acetylcholine using a sensitive sensor based on carbon paste. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 567 (2004): 277–281. http://dx.doi.org/10.1016/j.jelechem.2003.12.03910.1016/j.jelechem.2003.12.039Search in Google Scholar

[324] M. K. Amini, J. H. Khorasani, S. S. Khaloo, and S. Tangestaninejad, Cobalt(II) salophen-modified carbon paste electrode for potentiometric and voltammetric determination of cysteine. Analytical Biochemistry, 320 (2003): 32–38. http://dx.doi.org/10.1016/S0003-2697(03)00355-510.1016/S0003-2697(03)00355-5Search in Google Scholar

[325] S. S. Khaloo, M. K. Amini, S. Tangestaninejad, S. Shahrokhian, and R. Kia, Voltam-metric and potentiometric study of cysteine at Co(II)-phthalocyanine modified carbon paste electrode. Journal of Iranian Chemical Society, 1 (2004): 128–135. 10.1007/BF03246105Search in Google Scholar

[326] S. Shahrokhian and J. Yazdani, Electrocatalytic oxidation of thioglycolic acid (TGA) at carbon paste electrode modified with Co(II)-phthalocyanine: Applications as a potentiometric sensor. Electrochimica Acta, 48 (2003): 4143–4148. http://dx.doi.org/10.1016/S0013-4686(03)00582-610.1016/S0013-4686(03)00582-6Search in Google Scholar

[327] M. K. Amini, S. Shahrokhian, S. Tangestaninejad, and I. M. Baltork, Voltammetric and potentiometric behavior of 2-pyridinethiol, 2-mercaptoethanol and sulfide at iron(II) phthalocyanine modified carbon-paste electrode. Iranian Journal of Chemistry & Chemical Engineering, 20 (2001): 29–36. Search in Google Scholar

[328] H. Ibrahim and A. Khorshid, Modified Carbon paste sensor for cetyltrimethyl-ammonium ion based on its ion-associate with tetrachloropalladate(II). Analytical Sciences (Japan), 23 (2007): 573–579. http://dx.doi.org/10.2116/analsci.23.57310.2116/analsci.23.573Search in Google Scholar

[329] J. Konvalina and K. Vytřas, The present use of (chrono)potentiometric stripping analysis (In Czech). Chemické Listy, 95 (2001): 344–352. Search in Google Scholar

[330] I. Švancara and K. Vytřas, Voltammetry with carbon paste electrodes containing membrane plasticizers used for PVC-based ion-selective electrodes. Anal Chim. Acta, 273 (1993): 195–204. http://dx.doi.org/10.1016/0003-2670(93)80158-H10.1016/0003-2670(93)80158-HSearch in Google Scholar

[331] K. Vytřas and J. Konvalina, New possibilities of potentiometric stripping analysis based on ion-pair formation and accumulation of analyte at carbon paste electrodes (Preliminary note). Electroanalysis, 10 (1998): 787–790. http://dx.doi.org/10.1002/(SICI)1521-4109(199809)10:11<787::AID-ELAN787>3.0.CO;2-Y10.1002/(SICI)1521-4109(199809)10:11<787::AID-ELAN787>3.0.CO;2-YSearch in Google Scholar

[332] K. Vytřas, Ion-pairing principles in the light of construction of ion-selective electrodes and sensors for both voltammetric and potentiometric stripping analysis, in Electroanalytical Chemistry and Allied Topics, eds. S. K. Aggarwal, H. S. Sharma, N. Gopinath, and D. S. C. Purushotham. (Mumbai: SAEST, 2000), pp. 127–130. Search in Google Scholar

[333] J. Konvalina and K. Vytřas, Determination of thallium(III) at a carbon paste electrode with the aid of potentiometric stripping analysis, in Monitororing of Environmental Pollutants (in Czech), eds. K. Vytřas, J. Kellner, J. Fischer. (Univerzita Pardubice, 1999), pp. 99–104. Search in Google Scholar

[334] I. Švancara, B. Ogorevc, S. B. Hočevar, and K. Vytřas, Perspectives of carbon paste electrodes in stripping potentiometry. Analytical Sciences (Japan), 18 (2002): 301–305. http://dx.doi.org/10.2116/analsci.18.30110.2116/analsci.18.301Search in Google Scholar

[335] J. Konvalina, E. Khaled, and K. Vytřas, Carbon paste electrode as a support for mercury film in potentiometric stripping determination of heavy metals. Collection of Czechoslovak Chemical Communications, 65 (2000): 1047–1054. http://dx.doi.org/10.1135/cccc2000104710.1135/cccc20001047Search in Google Scholar

[336] E. Khaled, J. Konvalina, K. Vytřas and H. N. A. Hassan, Investigation of carbon paste electrodes as supports for gold films in stripping potentiometry of Cu(II) and Hg(II) traces. Scientific Papers of the University of Pardubice, Series A; 9 (2003): 19–29. Search in Google Scholar

[337] E. Tesařová and K. Vytřas, Potentiometric stripping analysis with antimony film electrodes. Electroanalysis, 21 (2009): 1075–1080. http://dx.doi.org/10.1002/elan.20080451810.1002/elan.200804518Search in Google Scholar

[338] J.-M. Zen, A. S. Kumar, and D.-M. Tsai, Recent updates of chemically modified electrodes in analytical chemistry (Review). Electroanalysis, 15 (2003): 1073–1087. http://dx.doi.org/10.1002/elan.20039013010.1002/elan.200390130Search in Google Scholar

[339] N. Y. Stozhko, N. A. Malakhova, M. V. Fyodorov, and Kh. Z. Brainina, Modified carboncontaining electrodes in stripping voltammetry of metals. Part I: Glassy carbon and carbon paste electrodes. Journal of Solid State Electrochemistry, 12 (2008): 1185–1204. http://dx.doi.org/10.1007/s10008-007-0472-410.1007/s10008-007-0472-4Search in Google Scholar

[340] N. Y. Stozhko, N. A. Malakhova, M. V. Fyodorov, and Kh. Z. Brainina, Modified carbon-containing electrodes in stripping voltammetry of metals. Part II: Composite and microelectrodes. Journal of Solid State Electrochemistry, 12 (2008): 1219–1230. http://dx.doi.org/10.1007/s10008-007-0474-210.1007/s10008-007-0474-2Search in Google Scholar

[341] K. Vytřas, K. Kalcher, I. Švancara, E. Khaled, J. Ježková, J. Konvalina, and R. Metelka, Recent applications of carbon paste electrodes in potentiometry and stripping analysis; in Chemical Sensors and Analytical Methods, Book of Proceedings; eds. M. Butler, P. Vanýsek, and N. Yamazoe. (Pennigton: Electrochemical Society, 2001), pp. 277–283. Search in Google Scholar

[342] A. Bobrowski and J. Zarebski, Catalytic adsorptive stripping voltammetry at film electrodes. Current Analytical Chemistry, 4 (2008), 191–201. http://dx.doi.org/10.2174/15734110878491138910.2174/157341108784911389Search in Google Scholar

[343] C. Locatelli, Voltammetric analysis of trace levels of platinum group metals: Principles and applications (Review). Electroanalysis, 19 (2007): 2167–2175. http://dx.doi.org/10.1002/elan.20070402610.1002/elan.200704026Search in Google Scholar

[344] J. Zima, I. Švancara, J. Barek, and K. Pecková, Carbon Paste Electrodes for the Determination of Detrimental Substances in Drinking Water, in: Progress on Drinking Water Research, eds. M. H. Lefebvre and M. M. Roux. (New York: Nova Science Publ., in press; https://www.novapublishers.com/catalog/product_info.php?cPath=23_597_703&products_id=7407&osCsid=cf1cb6ee708126d565c89956e2512406; January 30, 2008. Search in Google Scholar

[345] Kh. Z. Brainina, Electroanalysis: From laboratory to field versions (Review). Journal of Analytical Chemistry, 56 (2001): 303–312. http://dx.doi.org/10.1023/A:101663580942810.1023/A:1016635809428Search in Google Scholar

[346] N. Serrano, J. M. Díaz Cruz, C. Ariño, and M. Esteban, Stripping chronopotentiometry in environmental analysis (Review). Electroanalysis, 19 (2007): 2039–2049. http://dx.doi.org/10.1002/elan.20070395610.1002/elan.200703956Search in Google Scholar

[347] D. Lowinsohn and M. Bertotti, Electrochemical sensors: Fundamentals and applications in micro-environments. Quimica Nova, 29 (2006): 1318–1325. 10.1590/S0100-40422006000600029Search in Google Scholar

[348] O. D. Renedo, M. A. Alonso Lomillo, and M. J. A. Martinez, Recent developments in the field of screen-printed electrodes and their related applications (Review). Talanta, 73 (2007): 202–219. http://dx.doi.org/10.1016/j.talanta.2007.03.05010.1016/j.talanta.2007.03.050Search in Google Scholar PubMed

[349] Z. Navrátilová and P. Kula, Clay modified electrodes: Present applications and prospects. Electroanalysis, 15 (2003): 837–846. http://dx.doi.org/10.1002/elan.20039010310.1002/elan.200390103Search in Google Scholar

[350] S. E. W. Jones and R. G. Compton, Fabrication and applications of nanoparticle-modified electrodes in stripping analysis. Current Analytical Chemistry, 4 (2008): 177–182. http://dx.doi.org/10.2174/15734110878491137010.2174/157341108784911370Search in Google Scholar

[351] P. Kula and Z. Navrátilová, Anion exchange of gold chloro complexes on carbon paste electrode modified with montmorillonite for determination of gold in pharmaceuticals. Electroanalysis, 13 (2001): 795–798. http://dx.doi.org/10.1002/1521-4109(200105)13:8/9<795::AID-ELAN795>3.0.CO;2-S10.1002/1521-4109(200105)13:8/9<795::AID-ELAN795>3.0.CO;2-SSearch in Google Scholar

[352] K.-S. Ha, J.-H. Kim, Y.-S. Ha, S.-S. Lee, and M.-L. Seo, Anodic stripping voltam-metric determination of silver(I) at a carbon paste electrode modified with S2O2-donor podand. Analycal Letters, 34 (2001): 675–686. http://dx.doi.org/10.1081/AL-10010321110.1081/AL-100103211Search in Google Scholar

[353] S.-B. Zhang, X.-J. Zhang, and X.-Q. Lin, An ethylenediaminetetraacetic acid modified carbon paste electrode for the determination of silver ion. Fenxi Huaxue (Chinese Journal of Analytical Chemistry), 30 (2002): 745–747. Search in Google Scholar

[354] M.-S. Won, J.-S. Yeom, J.-H. Yoon, E.-D. Jeong, and Y.B. Shim, Determination of Ag(I) ion at a modified carbon paste electrode containing N,N′-diphenyl oxamide. Bulletin of the Korean Chemical Socienty, 24 (2003): 948–952. http://dx.doi.org/10.5012/bkcs.2003.24.7.94810.5012/bkcs.2003.24.7.948Search in Google Scholar

[355] C.-H. Yang, W.-S. Huang, and S.-H. Zhang, Highly sensitive electrochemical determination of trace Pb2+ and Ag+ in the presence of cetyltrimethylamonium bromide. Fenxi Huaxue (Chinese Journal of Analytical Chemistry), 31 (2003): 794–798. Search in Google Scholar

[356] Y.-H. Li, H.-Q. Xie, and F.-Q. Zhou, Alizarin violet modified carbon paste electrode for the determination of trace silver(I) by adsorptive voltammetry. Talanta, 67 (2005): 28–33. http://dx.doi.org/10.1016/j.talanta.2005.02.00910.1016/j.talanta.2005.02.009Search in Google Scholar

[357] A. Mohadesi and M. A. Taher, Stripping voltammetric determination of silver(I) at carbon paste electrode modified with 3-amino-2-mercapto quinazolin-4(3H)-one. Talanta, 71 (2007): 615–619. http://dx.doi.org/10.1016/j.talanta.2006.05.00110.1016/j.talanta.2006.05.001Search in Google Scholar

[358] A. V. Laganovsky, Z. O. Kormosh, A. O. Fedorchuk, V. P. Sachanyuk, and O. V. Parasyuk, AgCrTiS4: Synthesis, Properties, and Analytical Application. Metallurgic Material Transactions — B, 39 (2008): 155–159. http://dx.doi.org/10.1007/s11663-007-9121-710.1007/s11663-007-9121-7Search in Google Scholar

[359] W. Huang, C. Yang, and S. Zhang, Anodic stripping voltammetric determination of mercury by use of a sodium montmorillonite-modified carbon-paste electrode. Analytical and Bioanalytical Chemistry, 274 (2002): 998–1001. http://dx.doi.org/10.1007/s00216-002-1438-010.1007/s00216-002-1438-0Search in Google Scholar

[360] Y.-T. Kong, G.-H. Choi, M.-S. Won, and Y.-B. Shim, Determination of Hg2(2+) ions using the specific reaction with a picolinic acid N-oxide modified electrode. Chemical Letters, 31 (2002): 54–55. http://dx.doi.org/10.1246/cl.2002.5410.1246/cl.2002.54Search in Google Scholar

[361] A. Walcarius, M. Etienne, and C. Delacôte, Uptake of inorganic HgII by organically modified silicates: Influence of pH and chloride concentration on the binding pathways and electrochemical monitoring of the processes. Analytica Chimica Acta, 508 (2004): 87–98. http://dx.doi.org/10.1016/j.aca.2003.11.05510.1016/j.aca.2003.11.055Search in Google Scholar

[362] M. Colilla, M. A. Mendiola, J. R. Procopio, and M. T. Sevilla, Application of a carbon paste electrode modified with a Schiff base ligand to mercury speciation in water. Electroanalysis, 17 (2005): 933–940. http://dx.doi.org/10.1002/elan.20040319810.1002/elan.200403198Search in Google Scholar

[363] N. L. Dias and D. R. Do Carmo, Stripping voltammetry of mercury(II) with a chemically modified carbon paste electrode containing silica gel functionalized with 2,5-dimercapto-1,3,4-thiadiazol. Electroanalysis, 17 (2005): 1540–1546. http://dx.doi.org/10.1002/elan.20040325210.1002/elan.200403252Search in Google Scholar

[364] I. K. Tonle, E. Ngameni, and A. Walcarius, Preconcentration and voltammetric analysis of Hg(II) at carbon paste electrode modified with natural smectite-type clays grafted with organic chelating groups. Sensors & Actuators B, Chemical; 110 (2005): 195–203. http://dx.doi.org/10.1016/j.snb.2005.01.02710.1016/j.snb.2005.01.027Search in Google Scholar

[365] N. L. D. Filho, D. R. do Carmo, F. Gessner, and A. H. Rosa, Preparation of a clay-modified carbon paste electrode based on 2-thiazoline-2-thiolhexadecylammonium sorption for the sensitive determination of Hg(II) ion. Analytical Sciences, 21 (2005): 1309–1316. http://dx.doi.org/10.2116/analsci.21.130910.2116/analsci.21.1309Search in Google Scholar PubMed

[366] F. Dias, L. Newton, L. D. R. do Carmo, and A. H. Rosa, An electroanalytical application of 2-aminothiazole-modified silica gel after adsorption and separation of Hg(II) from heavy metals in aqueous solution. Electrochimica Acta, 52 (2006): 965–972. http://dx.doi.org/10.1016/j.electacta.2006.06.03310.1016/j.electacta.2006.06.033Search in Google Scholar

[367] N. L. Dias, L. Caetano, D. R. do Carmo, and A. H. Rosa, Preparation of a silica gel modified with 2-amino-1,3,4-thiadiazole for adsorption of metal ions and electroanalytical application. Journal of Brazilian Chemical Society, 17 (2006): 473–481. 10.1590/S0103-50532006000300007Search in Google Scholar

[368] N. L. Dias, D. R. do Carmo, and A. H. Rosa, Selective sorption of mercury(II) from aqueous solution with an organically modified clay and its electroanalytical application. Separation Sciences Technology, 41 (2006): 733–746 http://dx.doi.org/10.1080/0149639050052689610.1080/01496390500526896Search in Google Scholar

[369] L. H. Marcolino, B. C. Janegitz, B. C. Lourencao, and O. Fatibello, Anodic stripping voltammetric determination of mercury in water using a chitosan-modified sarbon paste electrode. Analytical Letters, 40 (2007): 3119–3128. http://dx.doi.org/10.1080/0003271070164546310.1080/00032710701645463Search in Google Scholar

[370] H. Zejli, J. de Cisneros, I. N. Rodríguez, H. Elbouhouti, M. Choukairi, D. Bouchta, and K. R. Temsamani, Electrochemical analysis of mercury using a cryptofix carbon-paste electrode. Analytical Letters, 40 (2007): 2788–2798. http://dx.doi.org/10.1080/0003271070157790610.1080/00032710701577906Search in Google Scholar

[371] M. C. Rizea, A. F. Danet, and S. Kalinowski, Determination of mercury(II) after its preconcentration on a carbon paste electrode modified with Cadion A. Revista de Chimie (Bucharest), 58 (2007): 266–269. Search in Google Scholar

[372] E. Sar, H. Berber, B. Asct, and H. Cankitrtaran, Determination of some heavy metal ions with a carbon paste electrode modified by poly(glycidylmethacrylate-methyl-ethacrylatedivinylbenzene) microspheres functionalized by 2-aminothiazole. Electro-analysis, 20 (2008): 1533–1541. 10.1002/elan.200804208Search in Google Scholar

[373] I. Cesarino, G. Marino, J. D. Matos, and E. T. G. Cavalheiro, Evaluation of a carbon paste electrode modified with organofunctionalised SBA-15 nanostructured silica in the simultaneous determination of lead, copper and mercury ions. Talanta, 15 (2008): 15–21. http://dx.doi.org/10.1016/j.talanta.2007.06.03210.1016/j.talanta.2007.06.032Search in Google Scholar

[374] J Ruiperéz, M. A. Mendiola, M. Tereza Sevilla, J. R. Procopio, L. Hernández, Application of a macrocyclic thio-hydrazone modified carbon paste electrode to copper speciation in water samples. Electroanalysis, 14 (2002): 532–539. http://dx.doi.org/10.1002/1521-4109(200204)14:7/8<532::AID-ELAN532>3.0.CO;2-#Search in Google Scholar

[375] A. Abbaspour and S. S. M. Moosavi, Chemically modified carbon paste electrode for determination of copper(II) by potentiometric method. Talanta, 56 (2002): 91–96. http://dx.doi.org/10.1016/S0039-9140(01)00549-510.1016/S0039-9140(01)00549-5Search in Google Scholar

[376] Y. Zhang, X. Q. Lu, K. M. Zhu, Z. H. Wang, and J. W. Kang, Voltammetric detection of traces of copper using a casbon paste electrode modified with tetraphenylporphyrin. Analytical Letters, 35 (2002): 369–381. http://dx.doi.org/10.1081/AL-12000253610.1081/AL-120002536Search in Google Scholar

[377] C. T. Gautier, W. T. L. da Silva, M. O. O. Rezende, and N. El Murr, Sensitive and reproducible quantification of Cu2+ by stripping with a carbon paste electrode modified with humic acid. Journal of Environmental Science Health, Part A; 38 (2003): 1811–1823. http://dx.doi.org/10.1081/ESE-12002288010.1081/ESE-120022880Search in Google Scholar PubMed

[378] S. Yang, X.-Q. Lu, Y.-H. Xue, X.-Q. Feng, and X.-F. Wang, 4-methoxy-2,5-bis(3,5-dimethylpyrazoyl)-1,3,5-triazine modified carbon paste electrode for trace Cu(II) determination by differential pulse voltammetry. Rare Metals, 22 (2003): 250–253. Search in Google Scholar

[379] I. Jureviciutė and A. Malinauskas, Preparation of 2-mercaptobenzothiazole modified carbon paste electrode and its application to the stripping analysis of copper. Chemia Analyticzna (Warsaw), 49 (2004): 339–349. Search in Google Scholar

[380] A. F. Danet, D. Neagu, M. P. Dondoi, and N. Iliescu, Anodic stripping voltammetric determination of copper(II) with salicylaldoxime carbon paste electrodes. Revista de Chimie (Bucharest), 55 (2004): 1–4. Search in Google Scholar

[381] S. Kilinc Alpat, Ü. Yuksel, and H. Akçay, Development of a novel carbon paste electrode containing a natural zeolite for the voltammetric determination of copper. Electrochemistry Communications, 7 (2005): 130–134. http://dx.doi.org/10.1016/j.elecom.2004.11.01710.1016/j.elecom.2004.11.017Search in Google Scholar

[382] N. Liu and J. F. Song, Catalytic adsorptive stripping voltammetric determination of copper(II) on a carbon paste electrode. Analytical and Bioanalytical Chemistry, 383 (2005): 358–364. http://dx.doi.org/10.1007/s00216-005-3412-010.1007/s00216-005-3412-0Search in Google Scholar PubMed

[383] E. C. Canpolat, E. Sar, N. Y. Coskun, and H. Cankurtaran, Determination of trace amounts of copper in tap water samples with a calix[4] arene modified carbon paste electrode by differential pulse anodic stripping voltammetry. Electroanalysis, 19 (2007): 1109–1115. http://dx.doi.org/10.1002/elan.20060382910.1002/elan.200603829Search in Google Scholar

[384] J. H. Yoon, G. Muthuraman, S. B. Yoon, and M. S. Won, Pt-nanoparticle incorporated carbon paste electrode for the determination of Cu(II) ion by anodic stripping voltammetry. Electroanalysis, 19 (2007): 1160–1166. http://dx.doi.org/10.1002/elan.20070383510.1002/elan.200703835Search in Google Scholar

[385] B. C. Janegitz, L. H. Marcolino, and O. Fatibello Filho, Anodic stripping voltammetric determination of copper (II) in wastewaters using a carbon paste electrode modified with chitosan. Quimica Nova 30 (2007): 1673–1676. Search in Google Scholar

[386] M. A. Taher, M. Esfandyarpour, S. Abbasi, and A. Mohadesi, Indirect determination of trace copper(II) by adsorptive stripping voltammetry with zincon at a carbon paste electrode. Electroanalysis, 20 (2008): 374–278. http://dx.doi.org/10.1002/elan.20070397610.1002/elan.200703976Search in Google Scholar

[387] H. M. Abu Shawish, S. M. Saadeh, and A. R. Hussein, Enhanced sensitivity for Cu(II) ions by a salicylidine-functionalized polysiloxane carbon paste electrode. Talanta, 76 (2008): 941–948. http://dx.doi.org/10.1016/j.talanta.2008.04.06310.1016/j.talanta.2008.04.063Search in Google Scholar PubMed

[388] S. K. Alpat, S. Alpat, B. Kutlu, O. Ozbayrak, and H. B. Buyukisik, Development of biosorption-based algal biosensor for Cu(II) using Tetraselmis chuii. Sensors & Actuators B, Chemical; 128 (2008): 273–278. http://dx.doi.org/10.1016/j.snb.2007.06.01110.1016/j.snb.2007.06.011Search in Google Scholar

[389] K. H. Lubert and L. Beyer, Carbon paste electrode modified with the copper(II) complex of N-benzoyl-N′,N′-Di-N-butyl-thiourea—voltammetric behavior and response to copper(II). Solvent Extraction and Ion Exchange, 26 (2008): 321–331. http://dx.doi.org/10.1080/0736629080205364510.1080/07366290802053645Search in Google Scholar

[390] G. Marino, M. F. Bergamini, M. F. S. Teixeira, and E. T. G. Cavalheiro, Evaluation of a carbon paste electrode modified with organofunctionalized amorphous silica in the cadmium determination in a differential pulse anodic stripping voltammetric procedure. Talanta, 59 (2003): 1021–1028. http://dx.doi.org/10.1016/S0039-9140(03)00004-310.1016/S0039-9140(03)00004-3Search in Google Scholar

[391] E. Shams and R. Torabi, Determination of nanomolar concentrations of cadmium by anodicstripping voltammetry at a carbon paste electrode modified with zirconium phosphated amorphous silica. Sensors & Actuators B, Chemical; 117 (2006): 86–92. http://dx.doi.org/10.1016/j.snb.2005.10.04910.1016/j.snb.2005.10.049Search in Google Scholar

[392] I. Cesarino, G. Marino, J. D. R. Matos, and E. T. G. Cavalheiro, Using the organofunctionalised SBA-15 nanostructured silica as a carbon paste electrode modifier: Determination of cadmium ions by differential anodic pulse stripping voltammetry. Journal of Brazilian Chemical Society, 18 (2007): 810–817. 10.1590/S0103-50532007000400021Search in Google Scholar

[393] M. H. Mashhadizadeh, K. Eskandari, A. Foroumadi, and A. Shafiee, Self-assembled mercapto-compound-gold-nanoparticle-modified carbon paste electrode for potentiometric determination of cadmium(II). Electroanalysis, 20 (2008): 1891–1896. http://dx.doi.org/10.1002/elan.20080426410.1002/elan.200804264Search in Google Scholar

[394] Y.-F. Kuang, J.-L. Zou, L.-Z. Ma, Y.-J. Feng, and P.-H. Deng, Determination of trace Cd(II) in water sample using 1,10-phenanthroline-5,6-dione modified carbon paste electrode. Fenxi Huaxue (Chinese Journal of Analytical Chemistry), 36 (2008): 103–106. Search in Google Scholar

[395] K. Fanta and B. S. Chandravanshi, Differential pulse anodic stripping voltammetric determination of cadmium(II) with N-p-chlorophenylcinnamohydroxamic acid modified carbon paste electrode. Electroanalysis, 13 (2001): 484–492. http://dx.doi.org/10.1002/1521-4109(200104)13:6<484::AID-ELAN484>3.0.CO;2-M10.1002/1521-4109(200104)13:6<484::AID-ELAN484>3.0.CO;2-MSearch in Google Scholar

[396] W. Yantasee, Y.-H. Lin, G. E. Fryxell, and B. J. Busche, Simultaneous detection of cadmium, copper, and lead using a carbon paste electrode modified with carbamoyl-phosphonic acid self-assembled monolayer on mesoporous silica (SAMMS). Analytica Chimica Acta, 502 (2004): 207–212. http://dx.doi.org/10.1016/j.aca.2003.10.00110.1016/j.aca.2003.10.001Search in Google Scholar

[397] I. Adraoui, M. E. Rhazi, and A. Amine, Fibrinogencoated bismuth film electrodes for voltammetric analysis of lead and cadmium using the batch injection analysis. Analytical Letters, 40 (2007): 349–368. http://dx.doi.org/10.1080/0003271060096467610.1080/00032710600964676Search in Google Scholar

[398] L.-Y. Cao, J.-B. Jia, and Z.-H. Wang, Sensitive determination of cadmium and lead by using differential pulse stripping voltammetry with in-situ bismuth-modified zeolite doped carbon paste electrodes. Electrochimica Acta, 53 (2008): 2177–2182. http://dx.doi.org/10.1016/j.electacta.2007.09.02410.1016/j.electacta.2007.09.024Search in Google Scholar

[399] C.-G. Hu, K.-B. Wu, X. Dai, and S.-S. Hu, Simultaneous determination of lead(II) and cadmium(II) at a diacetyl-dioxime modified carbon paste electrode by differential pulse stripping voltammetry. Talanta, 60 (2003): 17–24. http://dx.doi.org/10.1016/S0039-9140(03)00116-410.1016/S0039-9140(03)00116-4Search in Google Scholar

[400] M. G. Roa, S. M. T. Ramirez, M. A. R. Romero, and L. Galicia, Determination of lead and cadmium using a poly-cyclodextrin-modified carbon paste electrode with anodic stripping voltammetry. Analytical and Bioanalytical Chemistry, 377 (2003): 763–769. http://dx.doi.org/10.1007/s00216-003-2126-410.1007/s00216-003-2126-4Search in Google Scholar

[401] V. S: Ijeri and A. K. Srivastava, Voltammetric determination of lead at chemically modified electrodes based on crown ethers. Analytical Sciences (Japan), 17 (2001): 605–608. http://dx.doi.org/10.2116/analsci.17.60510.2116/analsci.17.605Search in Google Scholar

[402] W. Yantasee, Y. H. Lin, T. S. Zemanian, and G. E. Fryxell, Voltammetric detection of lead(II) and mercury(II) using a carbon paste electrode modified with thiol self-assembled monolayer on mesoporous silica (SAMMS). Analyst (UK), 128 (2003): 467–462. http://dx.doi.org/10.1039/b300467h10.1039/b300467hSearch in Google Scholar

[403] W. Ouangpipat, T. Lelasattarathkul, C. Dongduen, and S. Liawruangrath, Bioaccu-mulation and determination of lead using treated-pennisetum-modified carbon paste electrode. Talanta, 61 (2003): 455–464. http://dx.doi.org/10.1016/S0039-9140(03)00316-310.1016/S0039-9140(03)00316-3Search in Google Scholar

[404] S. Majid, M. El Rhazi, A. Amine, A. Curulli, and G. Palleschi, Carbon paste electrode bulkmodified with the conducting polymer poly(1,8-diaminonaphthalene): Application to lead determination. Microchimica Acta, 143 (2003): 195–204. http://dx.doi.org/10.1007/s00604-003-0058-510.1007/s00604-003-0058-5Search in Google Scholar

[405] A. Rahmani, M. F. Mousavi, S. M. Golabi, M. Shamsipur, H. Sharghi, Voltammetric determination of lead(II) using chemically modified carbon paste with bis[1-hydroxy-9,10,-anthraquinone-2-methyl]sulfide. Chemia Analyticzna (Warsaw), 49 (2004): 359–368. Search in Google Scholar

[406] I. Adraoui, M. El Rhazi, A. Amine, L. Idrissi, A. Curulli, and G. Palleschi, Lead determination by anodic stripping voltammetry using a p-phenylenediamine modified carbon paste electrode. Electroanalysis, 17 (2005): 685–693. http://dx.doi.org/10.1002/elan.20040314010.1002/elan.200403140Search in Google Scholar

[407] E. Shams, F. Alibeygi, and R. Torabi, Determination of nanomolar concentrations of Pb(II) using carbon paste electrode modified with zirconium phosphated amorphous silica. Electroanalysis, 18 (2006): 773–778. http://dx.doi.org/10.1002/elan.20050344810.1002/elan.200503448Search in Google Scholar

[408] R. Torabi, E. Shams, M. A. Zolfigol, and S. Afshar, Anodic stripping voltammetric determination of lead(II) with a 2-aminopyridinated-silica modified carbon paste electrode. Analytical Letters, 39 (2006): 2643–2655. http://dx.doi.org/10.1080/0003271060075537110.1080/00032710600755371Search in Google Scholar

[409] M. D. Vásquez, M. L. Tascón, L. Deban, Determination of Pb(II) with a dithizone-modified carbon paste electrode. Journal of Enviromental Sciences, 41 (2006): 2735–274 10.1080/10934520600966433Search in Google Scholar PubMed

[410] R. E. Mojica Elmer, S. P. Gomez, J. R. L. Micor, and C. C. Deocaris, Lead detection using a pineapple bioelectrode. Philippine Agricultural Sciences, 89 (2006): 134–140. Search in Google Scholar

[411] M. Ghlaci, B. Rezaei, and R. J. Kalbasi, High selective SiO2-Al2O3 mixed-oxide modified carbon paste electrode for anodic stripping voltammetric determination of Pb(II). Talanta, 73 (2007): 37–45. http://dx.doi.org/10.1016/j.talanta.2007.02.02610.1016/j.talanta.2007.02.026Search in Google Scholar PubMed

[412] D. Sun, C.-D. Wan, G. Li, and K.-B. Wu, Electrochemical determination of lead(II) using a montmorillonite calcium-modified carbon paste electrode. Microchimica Acta, 158 (2007): 255–260. http://dx.doi.org/10.1007/s00604-006-0686-710.1007/s00604-006-0686-7Search in Google Scholar

[413] M. B. Gholivand and M. Malekian, Determination of trace amount of lead(II) in sweet fruit-flavored powder drinks by differential pulse adsorptive stripping voltammetry at carbon paste electrode. Electroanalysis, 20 (2008): 367–373. http://dx.doi.org/10.1002/elan.20070401910.1002/elan.200704019Search in Google Scholar

[414] T. Mikysek, I. Švancara, K. Vytřas, and B. G. Banica, F. G, Functionalised resin-modified carbon paste sensor for the voltammetric determination of Pb(II) within a wide concentration range. Electrochemistry Communications, 10 (2008): 242–245. http://dx.doi.org/10.1016/j.elecom.2007.11.03210.1016/j.elecom.2007.11.032Search in Google Scholar

[415] R. Y. A. Hassan, I. H. I. Habib, and H. N. A. Hassan, Voltammetric determination of lead (II) in medical lotion and biological samples ising chitosan-carbon paste electrode. International Journal of Electrochemical Sciences, 3 (2008): 935–945. Search in Google Scholar

[416] J. Konvalina, Carbon Paste Electrodes in Stripping Potentiometry, Dissertation Thesis (in Czech). (Pardubice: University of Pardubice, 2001), pp. 75–85. Search in Google Scholar

[417] H.-Q. Xie, Y.-H. Li, F.-Q. Zhou, H.-S. Guo, and B. Yi, Determination of trace tin by adsorptive voltammetry at an alizarin violet modified carbon paste electrode. Fenxi Huaxue (Chinese Journal of Analytical Chemistry), 29 (2001): 822–824. Search in Google Scholar

[418] Y.-H. Li, H.-Q. Xie, F.-Q. Zhou, and H. S. Guo, Determination of trace tin by anodic stripping voltammetry at a carbon paste electrode. Electroanalysis, 18 (2006): 976–980. http://dx.doi.org/10.1002/elan.20050348410.1002/elan.200503484Search in Google Scholar

[419] W.-S. Huang, Voltammetric determination of bismuth in water and nickel metal samples with a sodium montmoril-lonite (SWy-2) modified carbon paste electrode. Microchimica Acta, 14 (2004): 125–129. http://dx.doi.org/10.1007/s00604-003-0104-310.1007/s00604-003-0104-3Search in Google Scholar

[420] H.-S. Guo, Y.-H. Li, P.-F. Xiao, and N.-Y. He, Determination of trace amount of bismuth(III) by adsorptive anodic stripping voltammetry at carbon paste electrode. Analytica Chimica Acta, 534 (2005): 143–147. http://dx.doi.org/10.1016/j.aca.2004.04.02010.1016/j.aca.2004.04.020Search in Google Scholar

[421] H.-S. Guo, Y.-H. Li, X.-K. Chen, L.-B. Nie and N.-Y. He, Determination of trace antimony(III) by adsorption stripping voltammetry at carbon paste electrode. Sensors, 5 (2005): 284–292. http://dx.doi.org/10.3390/s504028410.3390/s5040284Search in Google Scholar

[422] D. Watanabe, T. Furuike, M. Midorikawa, and T. Tanaka, Simultaneous determination of copper and antimony by differential pulse anodic stripping voltammetry with a carbon-paste electrode. Bunseki Kagaku (Japan Analyst), 54 (2005): 907–912. http://dx.doi.org/10.2116/bunsekikagaku.54.90710.2116/bunsekikagaku.54.907Search in Google Scholar

[423] C. D. Mattos, D. R. do Carmo, M. F. de Oliveira, and N. R. Stradiotto, Voltammetric determination of total iron in fuel ethanol using a 1,10-fenanthroline / Nafion carbon paste-modified electrode. International Journal of Electrochemical Science, 3 (2008): 338–345. Search in Google Scholar

[424] H. R. Pouretedal and M. H Keshavarz, Cyclam modified carbon paste electrode as a potentiometric sensor for determination of cobalt(II) ions. Gaodeng Xuexiao Huaxue Xuebao (Chemical Research in Chinese Universities), 21 (2005): 28–31. Search in Google Scholar

[425] M. M. Ardakani, Z. Akrami, H. Kazemian, and H. R. Zare, Accumulation and voltammetric determination of cobalt at zeolite-modified electrodes. Journal of Analytical Chemistry, 63 (2008): 184–191. 10.1134/S1061934808020147Search in Google Scholar

[426] P. S. González, V. A. Cortínez, and C. A. Fontan, Determination of nickel by anodic adsorptive stripping voltammetry with a cation exchanger-modified carbon paste electrode. Talanta, 58 (2002): 679–690. http://dx.doi.org/10.1016/S0039-9140(02)00381-810.1016/S0039-9140(02)00381-8Search in Google Scholar

[427] T. F. Oliveira, M. F. de Oliveira, B. V. Roberto, and S. N Ramos, Determination of nickel in fuel ethanol using a carbon paste modified electrode containing dimethylglyoxime. Microchimica Acta, 155 (2006): 397–401. http://dx.doi.org/10.1007/s00604-006-0638-210.1007/s00604-006-0638-2Search in Google Scholar

[428] M. Galík, I. Švancara, and K. Vytřas, Stripping voltammetric determination of platinum metals at carbon paste electrodes modified with cationic surfactants; in Sensing in Electroanalysis, eds. K. Vytřas and K. Kalcher. (University of Pardubice, 2005), pp. 89–107. Search in Google Scholar

[429] I. Švancara, M. Galík, and K. Vytřas, Stripping voltammetric determination of platinum metals at a carbon paste electrode modified with cationic surfactants. Talanta, 72 (2007): 512–518. http://dx.doi.org/10.1016/j.talanta.2006.11.01410.1016/j.talanta.2006.11.014Search in Google Scholar

[430] B. Rezaei; M. Ghiaci, and M. E. Sedaghat, A selective modified bentonite-porphyrin carbon paste electrode for determination of Mn(II) by using anodic stripping voltammetry. Sensors & Actuators B, Chemical; 131 (2008): 439–447. http://dx.doi.org/10.1016/j.snb.2007.12.01710.1016/j.snb.2007.12.017Search in Google Scholar

[431] M. Rievaj, P. Tomčík, Z. Janošíková, D. Bustin, and R. G. Compton, Determination of trace Mn(II) in pharma-ceutical diet supplements by cathodic stripping voltammetry on bare carbon paste electrode. Chemia Analyticzna (Warsaw), 53 (2008): 153–161. Search in Google Scholar

[432] I. Švancara, P. Foret, and K. Vytřas, A Study on the determination of chromium as chromate at a carbon paste electrode modified with surfactants. Talanta, 64 (2004): 844–852. http://dx.doi.org/10.1016/j.talanta.2004.03.06210.1016/j.talanta.2004.03.062Search in Google Scholar

[433] A. M. Gevorgyan, S. V. Vakhnenko, and A. T. Artykov, Thick-film graphite-containing electrodes for determining selenium by stripping voltammetry. Journal of Analytical Chemistry, 59 (2004): 371–380. http://dx.doi.org/10.1023/B:JANC.0000022791.76804.2610.1023/B:JANC.0000022791.76804.26Search in Google Scholar

[434] M. E. Sánchez Fernández, L. M. Cubillana Aguilera, J. M. Palacios Satander, I. Naranjo Rodríguez, and J. L. H. H. de Cisnéros, An oxidative procedure of the electrochemical determination of chromium(VI) using modified carbon paste electrodes. Bulletin of Electrochemistry, 21 (2005): 529–535. Search in Google Scholar

[435] X.-W. Zheng, Z.-J. Zhang, Q. Wang, and H.-C. Ding, Electrogenerated chemiluminescence determination of Mo(VI) based on its sensitizing effect in electrochemical reduction luminol. Fenxi Huaxue (Chinese Journal of Analytical Chemistry), 31 (2003): 1076–1078. Search in Google Scholar

[436] Y.-H. Li, Y.-X. Wang, and M.-H. Huang, Determination of trace vanadium by adsorptive stripping voltammetry at a carbon paste electrode. Electroanalysis, 20 (2008): 1440–1444. http://dx.doi.org/10.1002/elan.20080420010.1002/elan.200804200Search in Google Scholar

[437] J.-N. Li, J. Zhang, P.-H. Deng, and J.- J. Fei, Carbon paste electrode for trace zirconium(IV) determination by adsorption voltammetry. Analyst (UK), 126 (2001): 2032–2035. 10.1039/b101071aSearch in Google Scholar

[438] J.-N. Li, J. Zhang, P.-H. Deng, and Y.-Q. Peng, Adsorption voltammetry of the mix-polynuclear complex of zirconium-calcium-alizarin red S at a carbon paste electrode. Analytica Chimica Acta, 431 (2001): 81–87. http://dx.doi.org/10.1016/S0003-2670(00)01200-910.1016/S0003-2670(00)01200-9Search in Google Scholar

[439] Y.-H. Li, Q.-L. Zhao, and M.-H: Huang, Adsorptive anodic stripping voltammetry of zirconium(IV)-alizarin red S complex at a carbon paste electrode. Microchimica Acta, 157 (2007): 245–249. http://dx.doi.org/10.1007/s00604-006-0655-110.1007/s00604-006-0655-1Search in Google Scholar

[440] S.-M. Liu, J.-N. Li and X. Mao, Stripping voltammetric determination of zirconium with complexing preconcentration of zirconium(IV) at a morin-modified carbon paste electrode. Electroanalysis, 15 (2003): 1751–1755. http://dx.doi.org/10.1002/elan.20030275010.1002/elan.200302750Search in Google Scholar

[441] S.-M. Liu, J.-N. Li, and X. Mao, Determination of zirconium by second-order derivative adsorption voltammetry of zirconium (IV)-morin complex at a carbon paste electrode. Fenxi Huaxue (Chinese Journal of Analytical Chemistry), 32 (2004): 195–197. Search in Google Scholar

[442] S. M. Liu, J.-N. Li, S.-J. Zhang, and J. Q. Zhao, Study on the adsorptive stripping voltammetric determination of trace cerium at a carbon paste electrode modified in situ with cetyltrimethylammonium bromide. Applied Surface Science, 252 (2005): 2078–2084. http://dx.doi.org/10.1016/j.apsusc.2005.03.16910.1016/j.apsusc.2005.03.169Search in Google Scholar

[443] J.-N. Li, S.-M. Liu, Z.-H. Yan, X. Mao, and P. Gao, Determination of trace metals in industrial boron carbide by solid sampling optical emission spectrometry. Optimization of DC arc excitation. Microchimica Acta, 154 (2006): 241–243. http://dx.doi.org/10.1007/s00604-006-0514-010.1007/s00604-006-0514-0Search in Google Scholar

[444] M. Javanbakht, H. Khoshsafar, M. R. Ganjali, P. Norouzi, A Badei, and A. Hashe-minasa, Stripping voltammetry of Ce(III) with a chemically modified carbon paste electrode containing functionalized nanoporous silica gel. Electroanalysis, 20 (2008): 203–206. http://dx.doi.org/10.1002/elan.20070403810.1002/elan.200704038Search in Google Scholar

[445] S.-M. Liu, L.-H. Yi, and J.-N. Li, Studies on anodic adsorptive stripping voltammetry of gallium(III)-alizarin complexone at carbon paste electrodes and its application. Chinese Journal of Analytical Chemistry, 31 (2003): 1489–1492. Search in Google Scholar

[446] Y.-H. Li, Q.-L. Zhao, and M.-H. Huang, Cathodic adsorptive voltammetry of gallium-alizarin red S complex at a carbon paste electrode. Electroanalysis, 17 (2005): 343–347. http://dx.doi.org/10.1002/elan.20020309610.1002/elan.200203096Search in Google Scholar

[447] J. Zhang, J.-N. Li, and P.-H. Deng, Adsorption voltammetry of the scandium-alizarin red S complex onto a carbon paste electrode. Talanta, 54 (2001): 561–566. http://dx.doi.org/10.1016/S0039-9140(00)00668-810.1016/S0039-9140(00)00668-8Search in Google Scholar

[448] J.-N. Li, F.-Y. Yi, D.-S. Shen, and J. J. Fei, Adsorptive stripping voltammetric study of scandium-alizarin complexan complex at a carbon paste electrode. Analytical Letters, 35 (2002): 1361–1372. http://dx.doi.org/10.1081/AL-12000667210.1081/AL-120006672Search in Google Scholar

[449] S.-M. Liu, J.-N. Li, and P. Gao, Anodic adsorptive stripping voltammetry at a carbon paste electrode for determination of trace thorium. Analytical Letters, 36 (2003): 1381–1392. http://dx.doi.org/10.1081/AL-12002109310.1081/AL-120021093Search in Google Scholar

[450] J.-N. Li, F.-Y. Yi, Z.-M. Jiang, and J.-J. Fei, Adsorptive voltammetric study of Th(IV) alizarin complex at a carbon paste electrode. Microchimica Acta, 143 (2003): 287–292. http://dx.doi.org/10.1007/s00604-003-0070-910.1007/s00604-003-0070-9Search in Google Scholar

[451] K.-B. Ji and S.-S. Hu, Square wave voltammetric determination of trace amounts of europium(III) at montmoril-lonite-modified carbon paste electrodes. Collection of Czecho-slovak Chemical Communations, 69 (2004): 1590–1599. http://dx.doi.org/10.1135/cccc2004159010.1135/cccc20041590Search in Google Scholar

[452] J.-N. Li, S.-M. Liu, X. Mao, P. Gao, and Z.-H. Yan, Trace determination of rare earths by adsorption voltammetry at a carbon paste electrode. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 561 (2004): 137–142. http://dx.doi.org/10.1016/j.jelechem.2003.06.01210.1016/j.jelechem.2003.06.012Search in Google Scholar

[453] O. A. Farghaly, A novel method for determination of magnesium in urine and water samples with mercury film-plated carbon paste electrode. Talanta, 63 (2004): 497–501. http://dx.doi.org/10.1016/j.talanta.2003.12.02210.1016/j.talanta.2003.12.022Search in Google Scholar

[454] N. Liu and J.-F. Song, Determination of free calcium at a carbon paste electrode adsorptive stripping voltam-metric method. Fenxi Huaxue (Chinese Journal of Analytical Chemistry), 33 (2005): 1261–1264. Search in Google Scholar

[455] M. F. S. Teixeira, F. C. Moraes, O. F. Filho, and N. Bocchi, Voltammetric determination of lithium ions in pharma-ceutical formulation using a L-MnO2-modified carbon-paste electrode. Analytica Chimica Acta, 443 (2001): 249–255. http://dx.doi.org/10.1016/S0003-2670(01)01213-210.1016/S0003-2670(01)01213-2Search in Google Scholar

[456] M. F. S. Teixeira, F. C. Moraes, E. T. G. Cavalheiro, and N. Bocchi, Differential pulse anodic voltammetric determination of lithium ions in pharmaceutical formulations using a carbon paste electrode modified with spinel-type manganese oxide. Journal of Pharmaceutical and Biomedical Analysis, 31 (2003): 537–543. http://dx.doi.org/10.1016/S0731-7085(02)00726-410.1016/S0731-7085(02)00726-4Search in Google Scholar

[457] M. F. S. Teixeira, M. F. Bergamini, and N. Bocchi, Lithium ions determination by selective pre-concentration and differential pulse anodic stripping voltammetry using a carbon paste electrode modified with a spinel-type manganese oxid. Talanta, 62 (2004): 603–609. http://dx.doi.org/10.1016/j.talanta.2003.09.00410.1016/j.talanta.2003.09.004Search in Google Scholar

[458] I. Szymanska, H. Radecka, J. Radecki, P. A. Gale, and C. N. Warriner, Ferrocene-substituted calix[4]pyrrole modified carbon paste electrodes for anion detection in water samples. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 591 (2006): 223–228. http://dx.doi.org/10.1016/j.jelechem.2006.04.00710.1016/j.jelechem.2006.04.007Search in Google Scholar

[459] A. Walcarius, G. Lefévre, J. P. Rapin, G. Renaudin, and M. François, Voltammetric detection of iodide after accumulation by Friedel’s salt. Electroanalysis, 13 (2001): 313–320. http://dx.doi.org/10.1002/1521-4109(200103)13:4<313::AID-ELAN313>3.0.CO;2-Q10.1002/1521-4109(200103)13:4<313::AID-ELAN313>3.0.CO;2-QSearch in Google Scholar

[460] Q. He, J.-J. Fei, and S. H. Hu, Voltammetric method based on an ion-pairing reaction for the determination of trace amount of iodide at carbon-paste electrodes. Analytical Sciences (Japan), 19 (2003): 681–686. http://dx.doi.org/10.2116/analsci.19.68110.2116/analsci.19.681Search in Google Scholar

[461] H. Hamidi, E. Shams, B. Yadollahi, and F. K. Esfahani, Fabrication of bulk-modified carbon paste electrode containing α-PW12O403− polyanion supported on modified silica gel: Preparation, electrochemistry and electrocatalysis. Talanta, 74 (2008): 909–914. http://dx.doi.org/10.1016/j.talanta.2007.07.02610.1016/j.talanta.2007.07.026Search in Google Scholar

[462] H. Wang, G. Xu, and S. Dong, Electrochemiluminescence of dichlorotris (1,10-phenanthroline) ruthenium(II) with peroxydisulfate in purely aqueous solution at carbon paste electrode. Microchemical Journal, 72 (2002): 43–48. http://dx.doi.org/10.1016/S0026-265X(01)00156-410.1016/S0026-265X(01)00156-4Search in Google Scholar

[463] J. B. Raoof, R. Ojani, and H. Karimi Maleh, Electrocatalytic determination of sulfite at the surface of new ferrocene derivative-modified carbon paste electrode. International Journal of Electrochemical Sciences, 2 (2007): 257–269. Search in Google Scholar

[464] J. B. Raoof, R. Ojani, and H. Karimi-Maleh, Electrocatalytic determination of sulfite using 1-[4-(ferrocenyl-ethynyl)phenyl]-1-ethanone modified carbon paste electrode. Asian Journal of Chemistry, 20 (2008): 483–494. 10.1002/elan.200704176Search in Google Scholar

[465] S. S. Kumar and S. S. Narayanan, Electrocatalytic oxidation of sulfite on a nickel aquapentacyanoferrate modified electrode: Application for simple and selective determination. Electroanalysis, 20 (2008): 1427–1433. http://dx.doi.org/10.1002/elan.20070419610.1002/elan.200704196Search in Google Scholar

[466] J. C. Quintana, L. Idrissi, G. Palleschi, P. Albertano, A. Amine, M. El Rhazi, and D. Moscone, Investigation of amperometric detection of phosphate: Application in seawater and cyanobacterial biofilm samples. Talanta, 63 (2004): 567–574. http://dx.doi.org/10.1016/j.talanta.2003.11.04010.1016/j.talanta.2003.11.040Search in Google Scholar PubMed

[467] Y. Xue, X.-W. Zheng, and G.-X. Li, Determination of phosphate in water by means of a new electrochemi-luminescence technique based on the combination of liquid-liquid extraction with benzene-modified carbon paste electrode. Talanta, 72 (2007): 450–456. http://dx.doi.org/10.1016/j.talanta.2006.11.00310.1016/j.talanta.2006.11.003Search in Google Scholar PubMed

[468] V. M. Ivama and S. H. P. Serrano, Rhodium-prussian blue modified carbon paste electrode (Rh-PBMCPE) for amperometric detection of hydrogen peroxide. Journal of Brazilian Chemical Society, 14 (2003): 551–555. 10.1590/S0103-50532003000400010Search in Google Scholar

[469] C.-Y. Li, Y. Chen, C.-F. Wang, H.-B. Li, and Y.-Y. Chen, Electrocatalytic oxidation of H2O2 at a carbon paste electrode modified with a nickel (II)-5, 11, 17, 23-tetra-tert-butyl-25, 27-bis(Diethylcarbamoylmethoxy) calix[4]arene complex and its application. Wuhan University, Journal of Natural Sciences, 8 (2003): 857–860. 10.1007/BF02900831Search in Google Scholar

[470] Y. H. Lin, X. L. Cui, and L. Y. Li, Low-potential amperometric determination of hydrogen peroxide with a carbon paste electrode modified with nanostructured cryptomelane-type manganese oxides. Electrochemistry Communications, 7 (2005): 166–172. http://dx.doi.org/10.1016/j.elecom.2004.12.00510.1016/j.elecom.2004.12.005Search in Google Scholar

[471] E. S. Ribeiro, S. L. P. Dias, Y. Gushikem, and L. T. Kubota, Cobalt(II) porphyrin complex immobilized on the binary oxide SiO2/Sb2O3: electrochemical properties and dissolved oxygen reduction study. Electrochimica Acta, 49 (2004): 829–834. http://dx.doi.org/10.1016/j.electacta.2003.10.00110.1016/j.electacta.2003.10.001Search in Google Scholar

[472] Q. He, C.-G. Hu, X.-P. Dang, Y.-L. Wei, and S. Hua, Electrocatalytic reduction of dioxygen at cetyltrimethyl-ammonium bromide modified carbon paste electrode. Electro-chemistry, 72 (2004): 5–8. 10.5796/electrochemistry.72.5Search in Google Scholar

[473] M. P. Francisco, W. S. Cardoso, and Y. Gushikem, Carbon paste electrodes of the mixed oxide SiO2 / Nb2O5 prepared by sol-gel method: dissolved dioxygen sensor. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 574 (2005): 291–297. http://dx.doi.org/10.1016/j.jelechem.2004.08.01010.1016/j.jelechem.2004.08.010Search in Google Scholar

[474] G.-H. Lu, D.-W. Long, T. Zhan, and H.-Y. Zhao, The electrochemical behavior of a ruthenium (II) — Polypyrindine complex and its electrocatalyis of nitrite. Fenxi Huaxue (Chinese Journal of Analytical Chemistry), 30 (2002): 1115–1118. Search in Google Scholar

[475] S.-Q. Liu and H.-X. Ju, Nitrite reduction and detection at a carbon paste electrode containing hemoglobin and colloidal gold. Analyst (UK), 128 (2003): 1420–1424. http://dx.doi.org/10.1039/b310100b10.1039/b310100bSearch in Google Scholar

[476] M. Badea, A. Amine, M. Benzine, A. Curulli, D. Moscone, A. Lupu, G. Volpe, and G. Palleschi, Rapid and selective electrochemical determination of nitrite in cured meat in the presence of ascorbic acid. Microchimica Acta, 147 (2004): 51–58. http://dx.doi.org/10.1007/s00604-004-0220-810.1007/s00604-004-0220-8Search in Google Scholar

[477] W. S. Cardoso and Y. Gushikem, Electrocatalytic oxidation of nitrate on a carbon paste electrode modified with Co(II) porphyrion adsorbed on SiO2 / SnO2 / phosphate prepared by the sol-gel method. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 583 (2005): 300–306. http://dx.doi.org/10.1016/j.jelechem.2005.06.01510.1016/j.jelechem.2005.06.015Search in Google Scholar

[478] L. Idrissi, A. Amine, M. El Rhazi, and F. E. Cherkaoui, Electrochemical detection of ntrite based on the reaction with 2,3-diaminonaphthalene. Analytical. Letters, 38 (2005): 1943–1955. http://dx.doi.org/10.1080/0003271050023275210.1080/00032710500232752Search in Google Scholar

[479] R. Ojani, J. B. Raoof, and E. Zarei, Electrocatalytic reduction of nitrite using ferricyanide: Application for its simple and selective determination. Electrochim. Acta, 52 (2006): 753–759. http://dx.doi.org/10.1016/j.electacta.2006.06.00510.1016/j.electacta.2006.06.005Search in Google Scholar

[480] R. Ojani, J. B. Raoof, and E. Zarei, Poly(o-toluidine) modified carbon paste electrode: A sensor for electrocatalytic reduction of nitrite. Electroanalysis, 20 (2008): 379–385. http://dx.doi.org/10.1002/elan.20070404510.1002/elan.200704045Search in Google Scholar

[481] R. Ojani, V. Rahmanifar, and P. Naderi, Electrocatalytic reduction of nitrite by phosphotungstic heteropolyanion. application for its simple and selective determination. Electroanalysis, 20 (2008): 1092–1098. http://dx.doi.org/10.1002/elan.20070415710.1002/elan.200704157Search in Google Scholar

[482] M. A. Kamyabi and F. Aghajanloo, Electrocatalytic oxidation and determination of nitrite on carbon paste electrode modified with oxovanadium(IV)-4-methyl salophen. Journal of Electroanalytical Chemistry and Interfacial Electro-chemistry, 614 (2008): 157–165. http://dx.doi.org/10.1016/j.jelechem.2007.11.02610.1016/j.jelechem.2007.11.026Search in Google Scholar

[483] E. Casero, F. Pariente, E. Lorenzo, L. Beyer, and J. Losada, Electrocatalytic oxidation of nitric oxide at 6,17-diferrocenyldibenzo[b,i]5,9,14,18-tetraaza[14]annulen-Ni(II) modified electrodes. Electroanalysis, 13 (2001): 1411–1416. http://dx.doi.org/10.1002/1521-4109(200111)13:17<1411::AID-ELAN1411>3.0.CO;2-G10.1002/1521-4109(200111)13:17<1411::AID-ELAN1411>3.0.CO;2-GSearch in Google Scholar

[484] H. R. Zare and A. Nasirizadeh, Electrocatalytic characteristics of hydrazine and hydroxylamine oxidation at coumestan modified carbon paste electrode. Electroanalysis, 18 (2006): 507–512. http://dx.doi.org/10.1002/elan.20050340810.1002/elan.200503408Search in Google Scholar

[485] C. A. Pessoa, Y. Gushikem, and S. Nagasaki, Cobalt porphyrin immobilized on a niobium(V) oxide grafted — silica gel surface: Study of the catalytic oxidation of hydrazine. Electroanalysis, 14 (2002): 1072–1076. http://dx.doi.org/10.1002/1521-4109(200208)14:15/16<1072::AID-ELAN1072>3.0.CO;2-X10.1002/1521-4109(200208)14:15/16<1072::AID-ELAN1072>3.0.CO;2-XSearch in Google Scholar

[486] S. T. Fujiwara, Y. Gushikem, C. A. Pessoa, and S. Nakagaki, Electrochemical studies of a new iron porphyrin entrapped in a propylpyridiniumsilsesquioxane polymer immobilized on a SiO2 / Al2O3 surface. Electroanalysis, 17 (2005): 783–788. http://dx.doi.org/10.1002/elan.20040315310.1002/elan.200403153Search in Google Scholar

[487] W. Siangproh, O. Chailapakul, R. Laocharoensuk, and J. Wang, Microchip capillary electrophoresis / electro-chemical detection of hydrazine compounds at a cobalt phthalo-cyanine modified electrochemical detector. Talanta, 67 (2005): 903–907. http://dx.doi.org/10.1016/j.talanta.2005.04.02410.1016/j.talanta.2005.04.024Search in Google Scholar

[488] A. Abbaspour and M. A. Kamyabi, Electrocatalytic oxidation of hydrazine on a carbon paste electrode modified by hybrid hexacyanoferrates of copper and cobalt films. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 576 (2005): 73–83. http://dx.doi.org/10.1016/j.jelechem.2004.10.00810.1016/j.jelechem.2004.10.008Search in Google Scholar

[489] J. B. Raoof, R. Ojani, and M. Ramine, Electrocatalytic oxidation and voltammetric determination of hydrazine on the tetrabromo-p-benzoquinone modified carbon paste electrode. Electroanalysis, 19 (2007): 597–603. http://dx.doi.org/10.1002/elan.20060376010.1002/elan.200603760Search in Google Scholar

[490] C. D. C. Conceiçao, R. C. Faria, O. Fatibello, and A. A. Tanaka, Electrocatalytic oxidation and voltammetric determination of hydrazine in industrial boiler feed water using a cobalt phthalocyanine-modified electrode. Analytical Letters, 41 (2008): 1010–1021. http://dx.doi.org/10.1080/0003271080197852510.1080/00032710801978525Search in Google Scholar

[491] Z. D. Chen and M. Hojo, Determination of phenol using a carbon paste electrode modified with overoxidized polypyrrole/polyvinylpyrrolidone films. Bunseki Kagaku, 56 (2007):669–673. http://dx.doi.org/10.2116/bunsekikagaku.56.66910.2116/bunsekikagaku.56.669Search in Google Scholar

[492] X. Cheng, Q. J. Wang, S. Zhang, W. D. Zhang, P. G. He, and Y. Z. Fang, Determination of four kinds of carbamate pesticides by capillary zone electrophoresis with amperometric detection at a polyamide-modified carbon paste electrode. Talanta, 71 (2007):1083–1087. http://dx.doi.org/10.1016/j.talanta.2006.06.00110.1016/j.talanta.2006.06.001Search in Google Scholar

[493] N. German, S. Armalis, J. Zima, and J. Barek, Voltammetric determination of fluoren-9-ol and 2-acetamidofluorene using carbon paste electrodes. Collection of Czechoslovak Chemical Communications, 70 (2005):292–304. http://dx.doi.org/10.1135/cccc2005029210.1135/cccc20050292Search in Google Scholar

[494] S. Shahrokhian and M. Ghalkhani, Simultaneous voltammetric detection of ascorbic acid and uric acid at a carbon-paste modified electrode incorporating thionine-nafion ion-pair as an electron mediator. Electrochimica Acta, 51 (2006):2599–2606. http://dx.doi.org/10.1016/j.electacta.2005.08.00110.1016/j.electacta.2005.08.001Search in Google Scholar

[495] A. G. Angelikaki and S. T. Girousi, Sensitive detection of tetracycline, oxytetra-cycline, and chlortetracycline in the presence of copper(II) ions using a DNA-modified carbon paste electrode. Chemia Analityczna, 53 (2008):445–454. Search in Google Scholar

[496] J. Wang and X.-J. Zhang, Needle-type dual microsensor for the simultaneous monitoring of glucose and insulin. Analytical Chemistry, 73 (2001):844–847. http://dx.doi.org/10.1021/ac000939310.1021/ac0009393Search in Google Scholar PubMed

[497] J. B. Raoof, R. Ojani, and A. Kiani, Apple-modified carbon paste electrode: A biosensor for selective determination of dopamine in pharmaceutical formulations. Bulletin of Electrochemistry, 21 (2005):223–228. Search in Google Scholar

[498] H. R. Zare, N. Nasirizadeh, M. Mazloum- Ardakani, and M. Namazian, Electrochemical properties and electro-catalytic activity of hematoxylin modified carbon paste electrode toward the oxidation of reduced nicotinamide adenine dinucleotide (NADH). Sensors and Actuators B-Chemical, 120 (2006):288–294. http://dx.doi.org/10.1016/j.snb.2006.02.04310.1016/j.snb.2006.02.043Search in Google Scholar

[499] H. Qi, X.-X. Li, P. Chen, and C.-X. Zhang, Electrochemical detection of DNA hybridization based on polypyrrole/ss-DNA/multi-wall carbon nanotubes paste electrode. Talanta, 72 (2007):1030–1035. http://dx.doi.org/10.1016/j.talanta.2006.12.03210.1016/j.talanta.2006.12.032Search in Google Scholar PubMed

[500] K. Jiao, Y. Ren, G. Y. Xu, and X. Z. Zhang, Voltammetric study on deoxyribonucleic acid immobilization and hybridization on stearic acid/ aluminum ion films and the detection of specific gene related to phosphinothricin acethyl-transferase gene from Bacillus Amyloliquefaciens gene. Chinese Journal of Analytical Chemistry, 33 (2005):1381–1384. Search in Google Scholar

Published Online: 2009-10-6
Published in Print: 2009-12-1

© 2009 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 19.5.2024 from https://www.degruyter.com/document/doi/10.2478/s11532-009-0097-9/html
Scroll to top button