Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access June 29, 2013

Modelling and optimization of chromiumIII biosorption on soybean meal

  • Anna Witek-Krowiak EMAIL logo , Daria Podstawczyk , Katarzyna Chojnacka , Anna Dawiec and Krzysztof Marycz
From the journal Open Chemistry

Abstract

Abstract In this investigation a waste biological material, soybean meal, was applied as a biosorbent for heavy metal ions (CrIII). The diffusive Webber-Morris model and the pseudo-II-order model suitably described the kinetics of CrIII ions binding on soybean meal. The Langmuir-Freundlich equation was valid for the description of the isotherm. Inductively coupled plasma optical emission spectroscopy (ICP-OES), FTIR and scanning electron microscopy with an energy dispersive X-ray analytical system (SEM-EDX) were used in order to identify the mechanism of the metal ions binding. The analysis of the composition of the enriched soybean meal confirmed the contribution of ion exchange in the biosorption process. Three-variable-three-level Box-Behnken design was used to determine the optimal conditions for biosorption of CrIII on soybean meal. The optimal conditions for predicted maximum Cr3+ uptake (61.07 mg g−1) by soybean meal were estimated by Matlab and established as temperature of 38.04°C, initial metal concentration 500 mg L−1 and biosorbent dosage 1 g L−1. Graphical abstract

[1] W. Zhang, L. Chen, D. Liu, Appl. Microbiol. Biotechnol. 93, 1305 (2012) http://dx.doi.org/10.1007/s00253-011-3454-510.1007/s00253-011-3454-5Search in Google Scholar PubMed

[2] D.R. Lide, Handbook of Chemistry and Physics (CRC press, Boca Raton, Florida, USA 2006) Search in Google Scholar

[3] R.A.K. Rao, F. Rehman, J. Hazard. Mater. 181, 405 (2010) http://dx.doi.org/10.1016/j.jhazmat.2010.05.02510.1016/j.jhazmat.2010.05.025Search in Google Scholar PubMed

[4] S. Xu, L. Chen, J. Li, Y. Guan H. Lu, J. Hazard. Mater. 237, 347 (2012) http://dx.doi.org/10.1016/j.jhazmat.2012.08.05810.1016/j.jhazmat.2012.08.058Search in Google Scholar PubMed

[5] D.H.K. Reddy, D.K.V. Ramana, K. Seshaiah, A.V.R. Reddy, Desalination 268, 150 (2011) http://dx.doi.org/10.1016/j.desal.2010.10.01110.1016/j.desal.2010.10.011Search in Google Scholar

[6] A. Witek-Krowiak, R.G. Szafran, S. Modelski, Desalination 265, 126 (2011) http://dx.doi.org/10.1016/j.desal.2010.07.04210.1016/j.desal.2010.07.042Search in Google Scholar

[7] A. Witek-Krowiak, Chem. Eng. J. 171, 976 (2011) http://dx.doi.org/10.1016/j.cej.2011.04.04810.1016/j.cej.2011.04.048Search in Google Scholar

[8] D.H.K. Reddy, K. Seshaiah, A.V.R. Reddy, et al., Carbohyd. Polym. 88, 1077 (2012) http://dx.doi.org/10.1016/j.carbpol.2012.01.07310.1016/j.carbpol.2012.01.073Search in Google Scholar

[9] A. Witek-Krowiak, Chem. Eng. J. 192, 13 (2012) http://dx.doi.org/10.1016/j.cej.2012.03.07510.1016/j.cej.2012.03.075Search in Google Scholar

[10] A. Witek-Krowiak, M. Mitek, K. Pokomeda, et al., Chem. Proc. Eng. 31, 421 (2010) Search in Google Scholar

[11] I. Villaescusa, N. Fiol, J. Poch, et al., Desalination 270, 135 (2011) http://dx.doi.org/10.1016/j.desal.2010.11.03710.1016/j.desal.2010.11.037Search in Google Scholar

[12] N. Das, Hydrometallurgy 103, 180 (2010) http://dx.doi.org/10.1016/j.hydromet.2010.03.01610.1016/j.hydromet.2010.03.016Search in Google Scholar

[13] Z. Aksu, Ö. Tunç, Process. Biochem. 40, 831 (2005) http://dx.doi.org/10.1016/j.procbio.2004.02.01410.1016/j.procbio.2004.02.014Search in Google Scholar

[14] N. Prado, J. Ochoa, A. Amrane, Process Biochem. 44, 1302 (2009) http://dx.doi.org/10.1016/j.procbio.2009.08.00610.1016/j.procbio.2009.08.006Search in Google Scholar

[15] A. Witek-Krowiak, D.H.K. Reddy, Bioresour. Technol. 127, 350 (2013) http://dx.doi.org/10.1016/j.biortech.2012.09.07210.1016/j.biortech.2012.09.072Search in Google Scholar PubMed

[16] G.E.P. Box, D.W. Behnken, Technometrics 2, 455 (1960) http://dx.doi.org/10.1080/00401706.1960.1048991210.1080/00401706.1960.10489912Search in Google Scholar

[17] N.S. Kumar, K. Min, Chem. Eng. J. 168, 562 (2011) http://dx.doi.org/10.1016/j.cej.2011.01.02310.1016/j.cej.2011.01.023Search in Google Scholar

[18] M.A. Wahab, S. Jellali, N. Jedidi, Bioresour. Technol. 101, 5070 (2010) http://dx.doi.org/10.1016/j.biortech.2010.01.12110.1016/j.biortech.2010.01.121Search in Google Scholar PubMed

[19] A.M. Abdel -Aty, N.S. Ammar, H.H. Abdel Ghafar, R.K.J. Ali, Advanced. Res. (in press) Search in Google Scholar

[20] S. Lagergren, K. Sven, Vetenskapsakad. Handl. 24, 1 (1898) Search in Google Scholar

[21] Y.S. Ho, D.A.J. Wase, C.F. Forster, Environm. Technol. 17, 71 (1996) http://dx.doi.org/10.1080/0959333170861636210.1080/09593331708616362Search in Google Scholar

[22] Y. Liu, L. Shen, Biochem. Eng. J. 38, 390 (2008) http://dx.doi.org/10.1016/j.bej.2007.08.00310.1016/j.bej.2007.08.003Search in Google Scholar

[23] W.J. Weber, J.C.J. Morris, Sanitary Eng. Div. Proceed. Am. Soc. Civil. Eng. 89, 31 (1963) 10.1061/JSEDAI.0000430Search in Google Scholar

[24] H. Qiu, L. Lv, B. Pan, Q. Zhang, W. Zhang, Q.J. Zhang, Zhejiang Univ. Sci. A. 5, 716 (2009) http://dx.doi.org/10.1631/jzus.A082052410.1631/jzus.A0820524Search in Google Scholar

[25] I.J. Langmuir, Am. Chem. Soc. 38, 2221 (1916) http://dx.doi.org/10.1021/ja02268a00210.1021/ja02268a002Search in Google Scholar

[26] H.M.F. Freundlich, Z. Phys. Chem. 57(A), 385 (1906) Search in Google Scholar

[27] R.J. Sips, Chem. Phys. 16, 490 (1948) 10.1063/1.1746922Search in Google Scholar

[28] O. Redlich, D.L.J. Peterson, Phys. Chem. 63, 1024 (1959) http://dx.doi.org/10.1021/j150576a61110.1021/j150576a611Search in Google Scholar

Published Online: 2013-6-29
Published in Print: 2013-9-1

© 2013 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 14.5.2024 from https://www.degruyter.com/document/doi/10.2478/s11532-013-0274-8/html
Scroll to top button