Skip to main content
Log in

Left-symmetric algebras, or pre-Lie algebras in geometry and physics

  • Review Article
  • Published:
Central European Journal of Mathematics

Abstract

In this survey article we discuss the origin, theory and applications of left-symmetric algebras (LSAs in short) in geometry in physics. Recently Connes, Kreimer and Kontsevich have introduced LSAs in mathematical physics (QFT and renormalization theory), where the name pre-Lie algebras is used quite often. Already Cayley wrote about such algebras more than hundred years ago. Indeed, LSAs arise in many different areas of mathematics and physics. We attempt to give a survey of the fields where LSAs play an important role. Furthermore we study the algebraic theory of LSAs such as structure theory, radical theory, cohomology theory and the classification of simple LSAs. We also discuss applications to faithful Lie algebra representations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. d’Andrea and V.G. Kac: “Structure theory of finite conformal algebras”, Selecta Math., Vol. 4, (1998), pp. 377–418.

    Article  MathSciNet  MATH  Google Scholar 

  2. L. Auslander: “Simply transitive groups of affine motions”, Am. J. Math., Vol. 99, (1977), pp. 809–826.

    MATH  MathSciNet  Google Scholar 

  3. C. Bai and D. Meng: “A Lie algebraic approach to Novikov algebras”, J. Geom. Phys. Vol. 45(1–2), (2003), pp. 218–230.

    Article  MathSciNet  MATH  Google Scholar 

  4. A.A. Balinskii and S.P. Novikov: “Poisson brackets of hydrodynamic type, Frobenius algebras and Lie algebras”, Sov. Math. Dokl., Vol. 32, (1985), pp. 228–231.

    MATH  Google Scholar 

  5. B. Bakalov and V. Kac: “Field algebras”, Int. Math. Res. Not., Vol. 3, 2003, pp. 123–159.

    Article  MathSciNet  Google Scholar 

  6. O. Baues: “Left-symmetric algebras for gl(n)”, Trans. Amer. Math. Soc., Vol. 351(7), (1999), pp. 2979–2996.

    Article  MATH  MathSciNet  Google Scholar 

  7. Y. Benoist: “Une nilvariété non affine”, J. Differential Geom., Vol. 41, (1995), pp. 21–52.

    MATH  MathSciNet  Google Scholar 

  8. J.P. Benzécri: Variétés localement affines, Thèse, Princeton Univ., Princeton, N.J., 1955.

    Google Scholar 

  9. R.E. Borcherds: “Vertex algebras, Kac-Moody algebras, and the Monster”, Proc. Nat. Acad. Sci., Vol. 83(10), (1986), pp. 3068–3071.

    Article  MathSciNet  Google Scholar 

  10. N. Boyom: “Sur les structures affines homotopes à zéro des groupes de Lie”, J. Diff. Geom., Vol. 31, (1990), pp. 859–911.

    MATH  MathSciNet  Google Scholar 

  11. D. Burde: “Affine structures on nilmanifolds”, Int. J. Math., Vol. 7, (1996), pp. 599–616.

    Article  MATH  MathSciNet  Google Scholar 

  12. D. Burde: “Simple left-symmetric algebras with solvable Lie algebra”, Manuscripta Math., Vol. 95, (1998), pp. 397–411.

    Article  MATH  MathSciNet  Google Scholar 

  13. D. Burde and K. Dekimpe: “Novikov structures on solvable Lie algebras”, J. Geom. Phys., (2006), to appear.

  14. D. Burde and F. Grunewald: “Modules for certain Lie algebras of maximal class”, J. Pure Appl. Algebra, Vol. 99, (1995), pp. 239–254.

    Article  MathSciNet  MATH  Google Scholar 

  15. D. Burde: “Affine cohomology classes for filiform Lie algebras”, Contemporary Math., Vol. 262, (2000), pp. 159–170.

    MATH  MathSciNet  Google Scholar 

  16. D. Burde: Left-invariant affine structures on nilpotent Lie groups, Habilitation thesis, Düsseldorf, 1999.

    MATH  Google Scholar 

  17. D. Burde: “A refinement of Ado’s Theorem”, Archiv Math., Vol. 70, (1998), pp. 118–127.

    Article  MATH  MathSciNet  Google Scholar 

  18. D. Burde: “Estimates on binomial sums of partition functions”, Manuscripta Math., Vol. 103, (2000), pp. 435–446.

    Article  MATH  MathSciNet  Google Scholar 

  19. D. Burde: “Left-invariant affine structures on reductive Lie groups”, J. Algebra, Vol. 181, (1996), pp. 884–902.

    Article  MATH  MathSciNet  Google Scholar 

  20. A. Cayley: On the Theory of Analytic Forms Called Trees, Collected Mathematical Papers of Arthur Cayley, Vol. 3, Cambridge Univ. Press. Cambridge, 1890, 1890, pp. 242–246.

    Google Scholar 

  21. Y. Carriére, F. Dal’bo and G. Meigniez: “Inexistence de structures affines sur les fibres de Seifert”, Math. Ann., Vol. 296, (1993), pp. 743–753.

    Article  MathSciNet  MATH  Google Scholar 

  22. K.S. Chang, H. Kim and H. Lee: “On radicals of left-symmetric algebra”, Commun. Algebra, Vol. 27(7), (1999), pp. 3161–3175.

    MATH  Google Scholar 

  23. K.S. Chang, H. Kim and H. Lee: “Radicals of a left-symmetric algebra on a nilpotent Lie group”, Bull. Korean Math. Soc. Vol. 41(2), (2004), pp. 359–369.

    Article  MathSciNet  MATH  Google Scholar 

  24. F. Chapoton and M. Livernet: “Pre-Lie algebras and the rooted trees operad”, Intern. Math. Research Notices, Vol. 8, (2001), pp. 395–408.

    Article  MathSciNet  Google Scholar 

  25. A. Connes and D. Kreimer: “Hopf algebras, renormalization and noncommutative geometry”, Comm. Math. Phys., Vol. 199(1), (1998), pp. 203–242.

    Article  MathSciNet  MATH  Google Scholar 

  26. K. Dekimpe and M. Hartl: “Affine structures on 4-step nilpotent Lie algebras” J. Pure Appl. Math., Vol. 129, (1998), pp. 123–134.

    Google Scholar 

  27. K. Dekimpe and W. Malfait: “Affine structures on a class of virtually nilpotent groups”, Topology Appl., Vol. 73, (1996), pp. 97–119.

    Article  MathSciNet  MATH  Google Scholar 

  28. J. Dixmier and W.G. Lister: “Derivations of nilpotent Lie algebras”, Proc. Amer. Math. Soc., Vol. 8, (1957), pp. 155–158.

    Article  MathSciNet  MATH  Google Scholar 

  29. J. Dorfmeister: “Quasi-clans”, Abh. Math. Semin. Univ. Hamburg, Vol. 50, (1980), pp. 178–187.

    Article  MATH  MathSciNet  Google Scholar 

  30. A. Dzhumaldil’daev and C. Löfwall: “Trees, free right-symmetric algebras, free Novikov algebras and identities”, Homology Homotopy Appl., Vol. 4(2), (2002), pp. 165–190.

    MathSciNet  MATH  Google Scholar 

  31. A. Dzhumaldil’daev: “N-commutators”, Comment. Math. Helv., Vol. 79(3), (2004), pp. 516–553.

    MathSciNet  Google Scholar 

  32. A. Dzhumaldil’daev: “Cohomologies and deformations of right-symmetric algebras”, J. Math. Sci., Vol. 93(6), (1999), pp. 836–876.

    Article  MathSciNet  Google Scholar 

  33. I.B. Frenkel, Y. Huang and J. Lepowsky: “On axiomatic approaches to vertex operator algebras and modules”, Mem. Amer. Math. Soc., Vol. 104(494), (1993), pp. 1–64.

    MathSciNet  Google Scholar 

  34. I.B. Frenkel, J. Lepowsky and A. Meurman: Vertex operator algebras and the Monster. Pure and Applied Mathematics, Vol. 134, Academic Press, Boston, MA, 1988, pp. 1–508.

    Google Scholar 

  35. M. Gerstenhaber: “The cohomology structure of an associative ring”, Ann. Math., Vol. 78, (1963), pp. 267–288.

    Article  MATH  MathSciNet  Google Scholar 

  36. V. Gichev: “On complete affine structures in Lie groups”, Preprint ArXiv.

  37. W.A. de Graaf: “Constructing faithful matrix representations of Lie algebras”, In: Proceedings of the 1997 International Symposium on Symbolic and Algebraic Computation, ACM, New York, pp. 54–59 (electronic).

  38. J. Helmstetter: “Radical d’une algèbre symétrique a gauche”, Ann. Inst. Fourier, Vol. 29, (1979), pp. 17–35.

    MATH  MathSciNet  Google Scholar 

  39. N. Jacobson: “A note on automorphisms and derivations of Lie algebras”, Proc. Amer. Math. Soc., Vol. 6, (1955), pp. 281–283.

    Article  MATH  MathSciNet  Google Scholar 

  40. N. Jacobson: “Schur’s theorem on commutative matrices”, Bull. Amer. Math. Soc., Vol. 50, (1944), pp. 431–436.

    Article  MATH  MathSciNet  Google Scholar 

  41. V. Kac: Vertex algebras for beginners, University Lecture Series, Vol. 10, American Mathematical Society, Providence, 1998, pp. 1–201.

    MATH  Google Scholar 

  42. H. Kim: “Complete left-invariant affine structures on nilpotent Lie groups”, J. Diff. Geom., Vol. 24, (1986), pp. 373–394.

    MATH  Google Scholar 

  43. S. Kobayashi and K. Nomizu: Foundations of Differential Geometry, Vols. I and II, Wiley-Interscience Publishers, New York and London, 1969.

    Google Scholar 

  44. J.-L. Koszul: “Domaines bornés homogènes et orbites de groupes de transformations affines”, Bull. Soc. Math. France, Vol. 89, (1961), pp. 515–533

    MATH  MathSciNet  Google Scholar 

  45. D. Kreimer: “New mathematical structures in renormalizable quantum field theories”, Ann. Phys., Vol. 303(1), (2003), pp. 179–202.

    Article  MATH  MathSciNet  Google Scholar 

  46. D. Kreimer: “Structures in Feynman Graphs-Hopf Algebras and Symmetries”, Proc. Symp. Pure Math., Vol. 73, (2005), pp. 43–78.

    MathSciNet  Google Scholar 

  47. N.H. Kuiper: Sur les surfaces localement affines, Colloque de Géometrie différentielle, Strasbourg, 1953, pp. 79–86.

  48. J. Lepowsky and H. Li: “Introduction to Vertex Operator Algebras and Their Representations”, Progr. Math. Vol. 227, (2003), pp. 1–316.

    Google Scholar 

  49. J.P. May: “Geometry of Iterated Moduli Spaces”, Lecture Notes in Math., Vol. 271, 1972.

  50. J. Milnor: “On fundamental groups of complete affinely flat manifolds”, Advances Math., Vol. 25, (1977), pp. 178–187.

    Article  MATH  MathSciNet  Google Scholar 

  51. A. Mizuhara: “On the radical of a left-symmetric algebra”, Tensor N. S., Vol. 36, (1982), pp. 300–302.

    MATH  MathSciNet  Google Scholar 

  52. A. Mizuhara: “On the radical of a left-symmetric algebra II”, Tensor N. S., Vol. 40, (1983), pp. 221–232.

    MATH  MathSciNet  Google Scholar 

  53. T. Nagano and K. Yagi: “The affine structures on the real two torus”, Osaka J. Math., Vol. 11, (1974), pp. 181–210.

    MathSciNet  MATH  Google Scholar 

  54. A. Nijenhuis: “The graded Lie algebras of an algebra”, Indag. Math., Vol. 29, (1967), pp. 475–486.

    MathSciNet  Google Scholar 

  55. A. Nijenhuis: “On a class of common properties of some different types of algebras, II”, Nieuw Arch. Wisk. 3, Vol. 17, (1969), pp. 87–108.

    MATH  MathSciNet  Google Scholar 

  56. M. Nisse: “Structure affine des infranilvariétés et infrasolvariétés”, C. R. Acad. Sci. Paris, Vol. 310, (1990), pp. 667–670.

    MATH  MathSciNet  Google Scholar 

  57. J.M. Osborn: “Novikov algebras”, Nova J. Algebra Geom., Vol. 1(1), (1992), pp. 1–13.

    MATH  MathSciNet  Google Scholar 

  58. J.M. Osborn: “Infinite dimensional Novikov algebras of characteristic 0”, J. Algebra, Vol. 167(1), (1994), pp. 146–167.

    Article  MATH  MathSciNet  Google Scholar 

  59. B.E. Reed: “Representations of solvable Lie algebras”, Michigan Math. J., Vol. 16, (1969), pp. 227–233.

    Article  MATH  MathSciNet  Google Scholar 

  60. M. Rosellen: “A course in vertex algebra”, Preprint, (2005).

  61. J. Scheuneman: “Affine structures on three-step nilpotent Lie algebras”, Proc. Amer. Math. Soc., Vol. 46, (1974), pp. 451–454.

    Article  MATH  MathSciNet  Google Scholar 

  62. I. Schur: “Zur Theorie vertauschbarer Matrizen”, J. Reine Angew. Mathematik, Vol. 130, (1905), pp. 66–76.

    Article  MATH  Google Scholar 

  63. D. Segal: “The structure of complete left-symmetric algebras”, Math. Ann., Vol. 293, (1992), pp. 569–578.

    Article  MATH  MathSciNet  Google Scholar 

  64. J. Smillie: “An obstruction to the existence of affine structures”, Invent. Math., Vol. 64, (1981), pp. 411–415.

    Article  MATH  MathSciNet  Google Scholar 

  65. W.P. Thurston: Three-dimensional Geometry and Topology, Vol. 1, Princeton Mathematical Series, Vol. 35, Princeton University Press, 1997.

  66. E.B. Vinberg: “Convex homogeneous cones”, Transl. Moscow Math. Soc., Vol. 12, (1963), pp. 340–403.

    MATH  Google Scholar 

  67. E. Zelmanov: “On a class of local translation invariant Lie algebras”, Soviet Math. Dokl., Vol. 35, (1987), pp. 216–218.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Burde, D. Left-symmetric algebras, or pre-Lie algebras in geometry and physics. centr.eur.j.math. 4, 323–357 (2006). https://doi.org/10.2478/s11533-006-0014-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11533-006-0014-9

Keywords

MSC (2000)

Navigation