Skip to main content
Log in

Stable bundles on hypercomplex surfaces

  • Research Article
  • Published:
Central European Journal of Mathematics

Abstract

A hypercomplex manifold is a manifold equipped with three complex structures I, J, K satisfying the quaternionic relations. Let M be a 4-dimensional compact smooth manifold equipped with a hypercomplex structure, and E be a vector bundle on M. We show that the moduli space of anti-self-dual connections on E is also hypercomplex, and admits a strong HKT metric. We also study manifolds with (4,4)-supersymmetry, that is, Riemannian manifolds equipped with a pair of strong HKT-structures that have opposite torsion. In the language of Hitchin’s and Gualtieri’s generalized complex geometry, (4,4)-manifolds are called “generalized hyperkähler manifolds”. We show that the moduli space of anti-self-dual connections on M is a (4,4)-manifold if M is equipped with a (4,4)-structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Apostolov V, Cauduchon P., Grantcharov G., Bi-Hermitian structures on complex surfaces, Proc. London Math. Soc. (3), 1999, 79(2), 414–428

    Article  MATH  MathSciNet  Google Scholar 

  2. Besse A., Einstein Manifolds, Springer-Verlag, New York, 1987

    MATH  Google Scholar 

  3. Bismut J.M., A local index theorem for non-Kählerian manifolds, Math. Ann., 1989, 284, 681–699

    Article  MATH  MathSciNet  Google Scholar 

  4. Boyer C.P., A note on hyperhermitian four-manifolds, Proc. Amer. Math. Soc., 1988, 102(1), 157–164

    Article  MATH  MathSciNet  Google Scholar 

  5. Braam P.J., Hurtubise J., Instantons on Hopf surfaces and monopoles on solid tori, J. Reine Angew. Math., 1989, 400, 146–172

    MATH  MathSciNet  Google Scholar 

  6. Buchdahl N.P., Hermitian-Einstein connections and stable vector bundles over compact complex surfaces, Math. Ann., 1988, 280, 625–648

    Article  MATH  MathSciNet  Google Scholar 

  7. Bredthauer A., Generalized Hyperkähler Geometry and Supersymmetry, preprint available at http://arxiv.org/abs/hep-th/0608114

  8. Cavalcanti G.R., Reduction of metric structures on Courant algebroids, preprint

  9. Thomas F., Ivanov S., Parallel spinors and connections with skew-symmetric torsion in string theory, Asian J. Math., 2002, 6(2), 303–335

    MATH  MathSciNet  Google Scholar 

  10. Gates S.J.,Jr., Hull C.M., Roček M., Twisted multiplets and new supersymmetric nonlinear σ-models, Nuclear Phys. B, 1984,248(1), 157–186

    Article  MathSciNet  Google Scholar 

  11. Gauduchon P., Le théorème de l’excentricité nulle, C. R. Acad. Sci. Paris Sér. A-B, 1977, 285, 387–390 (in French)

    MATH  MathSciNet  Google Scholar 

  12. Gauduchon P., La 1-forme de torsion d’une variete hermitienne compacte, Math. Ann., 1984, 267, 495–518 (in French)

    Article  MATH  MathSciNet  Google Scholar 

  13. Gauduchon P., Hermitian connections and Dirac operators, Boll. Un. Mat. Ital. B (7), 1997, 11, 257–288

    MATH  MathSciNet  Google Scholar 

  14. Goto R., On deformations of generalized Calabi-Yau, hyperKähler, G2 and Spin(7) structures I, preprint available at http://arxiv.org/abs/math/0512211

  15. Grantcharov G., Poon Y.S., Geometry of hyper-Kähler connections with torsion, Comm. Math. Phys., 2000, 213(1), 19–37

    Article  MATH  MathSciNet  Google Scholar 

  16. Gualtieri M., Generalized complex geometry, Ph.D. thesis, Oxford University, available at http://arxiv.org/abs/math/0401221

  17. Hitchin N., Generalized Calabi-Yau manifolds, Q. J. Math., 2003, 54(3), 281–308

    Article  MATH  MathSciNet  Google Scholar 

  18. Hitchin N., Instantons, Poisson structures and generalized Kähler geometry, Comm. Math. Phys., 2006, 265(1), 131–164

    Article  MATH  MathSciNet  Google Scholar 

  19. Howe P.S., Papadopoulos G., Twistor spaces for hyper-Kähler manifolds with torsion, Phys. Lett. B, 1996, 379(1–4), 80–86

    MathSciNet  Google Scholar 

  20. Huybrechts D., Generalized Calabi-Yau structures, K3 surfaces, and B-fields, Int. J. Math., 2005, 16

  21. Ivanov S., Papadopoulos G., Vanishing theorems and string backgrounds, Classical Quantum Gravity, 2001, 18(6), 1089–1110

    Article  MATH  MathSciNet  Google Scholar 

  22. Joyce D., Compact hypercomplex and quaternionic manifolds, J. Differential Geom., 1992, 35(3), 743–761

    MATH  MathSciNet  Google Scholar 

  23. Kaledin D., Integrability of the twistor space for a hypercomplex manifold, Selecta Math. (N.S.), 1998, 4, 271–278

    Article  MATH  MathSciNet  Google Scholar 

  24. Kato Ma., Compact Differentiable 4-folds with quaternionic structures, Math. Ann., 1980, 248, 79–86

    Article  MATH  MathSciNet  Google Scholar 

  25. Li J., Yau S.-T., Hermitian Yang-Mills connections on non-Kähler manifolds, In: Mathematical aspects of string theory, World Scientific, 1987

  26. Lübke M., Teleman A., The Kobayashi-Hitchin correspondence, World Scientific Publishing Co., Inc., River Edge, NJ, 1995

    MATH  Google Scholar 

  27. Nash O., Differential geometry of monopole moduli spaces, Ph.D. Thesis, University of Oxford, 2006

  28. Obata M., Affine connections on manifolds with almost complex, quaternionic, or Hermitian structures, Jap. J. Math., 1956, 26,43–77

    MathSciNet  Google Scholar 

  29. Pedersen H., Poon Y.S., Deformations of hypercomplex structures, J. Reine Angew. Math., 1998, 499, 81–99

    MATH  MathSciNet  Google Scholar 

  30. Tyurin A.N., The Weil-Petersson metric in the moduli space of stable vector bundles and sheaves over an algebraic surface, Math. USSR-Izv., 1992, 38(3), 599–620

    Article  MathSciNet  Google Scholar 

  31. Verbitsky M., Hyperholomorphic vector bundles over hyperkähler manifolds, J. Algebraic Geom., 1996, 5(4), 633–669

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruxandra Moraru.

About this article

Cite this article

Moraru, R., Verbitsky, M. Stable bundles on hypercomplex surfaces. centr.eur.j.math. 8, 327–337 (2010). https://doi.org/10.2478/s11533-010-0006-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11533-010-0006-7

MSC

Keywords

Navigation