Skip to main content
Log in

Explicit expression of Cartan’s connection for Levi-nondegenerate 3-manifolds in complex surfaces, and identification of the Heisenberg sphere

  • Research Article
  • Published:
Central European Journal of Mathematics

Abstract

We study effectively the Cartan geometry of Levi-nondegenerate C 6-smooth hypersurfaces M 3 in ℂ2. Notably, we present the so-called curvature function of a related Tanaka-type normal connection explicitly in terms of a graphing function for M, which is the initial, single available datum. Vanishing of this curvature function then characterizes explicitly the local biholomorphic equivalence of such M 3 ⊂ ℂ2 to the Heisenberg sphere ℍ3, such M’s being necessarily real analytic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aghasi M., Alizadeh B.M., Merker J., Sabzevari M., A Gröbner-bases algorithm for the computation of the cohomology of Lie (super) algebras, Adv. Appl. Clifford Algebr. (in press), DOI: 10.1007/s00006-011-0319-z

  2. Aghasi M., Merker J., Sabzevari M., Effective Cartan-Tanaka connections for C 6-smooth strongly pseudoconvex hypersurfaces M 3 ⊂ ℂ2, C. R. Math. Acad. Sci. Paris, 2011, 349(15–16), 845–848

    Article  MathSciNet  MATH  Google Scholar 

  3. Aghasi M., Merker J., Sabzevari M., Effective Cartan-Tanaka connections on C 6 strongly pseudoconvex hypersurfaces M 3 ⊂ ℂ2, preprint available at http://arxiv.org/abs/1104.1509

  4. Aghasi M., Merker J., Sabzevari M., Some Maple worksheets accompanying the present publication, preprint available on demand

  5. Beloshapka V.K., A universal model for a real submanifold, Math. Notes, 2004, 75(3–4), 475–488

    Article  MathSciNet  MATH  Google Scholar 

  6. Beloshapka V., Ezhov V., Schmalz G., Canonical Cartan connection and holomorphic invariants on Engel CR manifolds, Russ. J. Math. Phys., 2007, 14(2), 121–133

    Article  MathSciNet  MATH  Google Scholar 

  7. Boggess A., CR manifolds and the tangential Cauchy-Riemann complex, Studies in Advanced Mathematics, CRC Press, Boca Raton, 1991

    Google Scholar 

  8. Čap A., Schichl H., Parabolic geometries and canonical Cartan connections, Hokkaido Math. J., 2000, 29(3), 453–505

    MathSciNet  MATH  Google Scholar 

  9. Čap A., Slovák J., Parabolic Geometries. I, Math. Surveys Monogr., 154, American Mathematical Society, Providence, 2009

    Google Scholar 

  10. Cartan É., Sur la géométrie pseudo-conforme des hypersurfaces de l’espace de deux variables complexes. I, Ann. Math. Pures Appl., 1932, 11, 17–90

    Article  MathSciNet  MATH  Google Scholar 

  11. Cartan É., Sur la géométrie pseudo-conforme des hypersurfaces de l’espace de deux variables complexes. II, Ann. Sc. Norm. Super. Pisa Cl. Sci., 1932, 2(1), 333–354

    MathSciNet  Google Scholar 

  12. Chern S.S., Moser J.K., Real hypersurfaces in complex manifolds, Acta Math., 1975, 133, 219–271

    Article  MathSciNet  MATH  Google Scholar 

  13. Crampin M., Cartan connections and Lie algebroids, SIGMA Symmetry Integrability Geom. Methods Appl., 2009, 5, #061

    MathSciNet  Google Scholar 

  14. Ezhov V., McLaughlin B., Schmalz G., From Cartan to Tanaka: getting real in the complex world, Notices Amer. Math. Soc., 2011, 58(1), 20–27

    MathSciNet  MATH  Google Scholar 

  15. Gaussier H., Merker J., Nonalgebraizable real analytic tubes in ℂn, Math. Z., 2004, 247(2), 337–383

    Article  MathSciNet  MATH  Google Scholar 

  16. Isaev A., Spherical Tube Hypersurfaces, Lecture Notes in Math., 2020, Springer, Heidelberg, 2011

    Google Scholar 

  17. Jacobowitz H., An introduction to CR structures, Math. Surveys Monogr., 32, American Mathematical Society, Providence, 1990

    Google Scholar 

  18. Le A., Cartan connections for CR manifolds, Manuscripta Math., 2007, 122(2), 245–264

    Article  MathSciNet  MATH  Google Scholar 

  19. Merker J., Lie symmetries and CR geometry, J. Math. Sciences (N.Y.), 2008, 154(6), 817–922

    Article  MathSciNet  Google Scholar 

  20. Merker J., Nonrigid spherical real analytic hypersurfaces in ℂ2, Complex Var. Elliptic Equ., 2010, 55(12), 1155–1182

    Article  MathSciNet  MATH  Google Scholar 

  21. Merker J., Porten E., Holomorphic extension of CR functions, envelopes of holomorphy and removable singularities, IMRS Int. Math. Res. Surv., 2006, #28295

  22. Merker J., Sabzevari M., Canonical Cartan connection for maximally minimal 5-dimensional generic M 5 ⊂ ℂ4 (in preparation)

  23. Nurowski P., Sparling G.A.J., Three-dimensional Cauchy-Riemann structures and second-order ordinary differential equations, Class. Quant. Gravity, 2003, 20(23), 4995–5016

    Article  MathSciNet  MATH  Google Scholar 

  24. Olver P.J., Equivalence, Invariants and Symmetry, Cambridge, Cambridge University Press, 1995

    MATH  Google Scholar 

  25. Sharpe R.W., Differential Geometry, Grad. Texts in Math., 166, Springer, New York, 1997

    Google Scholar 

  26. Tanaka N., On differential systems, graded Lie algebras and pseudogroups, J. Math. Kyoto Univ., 1970, 10, 1–82

    MathSciNet  MATH  Google Scholar 

  27. Tanaka N., On non-degenerate real hypersurfaces, graded Lie algebras and Cartan connections, Japan J. Math. (N.S.), 1976, 2(1), 131–190

    MathSciNet  Google Scholar 

  28. Webster S.M., Holomorphic differential invariants for an ellipsoidal real hypersurface, Duke Math. J., 2000, 104(3), 463–475

    Article  MathSciNet  MATH  Google Scholar 

  29. Yamaguchi K., Differential systems associated with simple graded Lie algebras, In: Progress in Differential Geometry, Adv. Stud. Pure Math., 22, Kinokuniya, Tokyo, 1993, 413–494

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joël Merker.

About this article

Cite this article

Merker, J., Sabzevari, M. Explicit expression of Cartan’s connection for Levi-nondegenerate 3-manifolds in complex surfaces, and identification of the Heisenberg sphere. centr.eur.j.math. 10, 1801–1835 (2012). https://doi.org/10.2478/s11533-012-0052-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11533-012-0052-4

MSC

Keywords

Navigation