Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access September 15, 2011

Mathematical model for a Herschel-Bulkley fluid flow in an elastic tube

  • Kuppalapalle Vajravelu EMAIL logo , Sreedharamalle Sreenadh , Palluru Devaki and Kerehalli Prasad
From the journal Open Physics

Abstract

The constitution of blood demands a yield stress fluid model, and among the available yield stress fluid models for blood flow, the Herschel-Bulkley model is preferred (because Bingham, Power-law and Newtonian models are its special cases). The Herschel-Bulkley fluid model has two parameters, namely the yield stress and the power law index. The expressions for velocity, plug flow velocity, wall shear stress, and the flux flow rate are derived. The flux is determined as a function of inlet, outlet and external pressures, yield stress, and the elastic property of the tube. Further when the power-law index n = 1 and the yield stress τ 0 → 0, our results agree well with those of Rubinow and Keller [J. Theor. Biol. 35, 299 (1972)]. Furthermore, it is observed that, the yield stress and the elastic parameters (t 1 and t 2) have strong effects on the flux of the non-Newtonian fluid flow in the elastic tube. The results obtained for the flow characteristics reveal many interesting behaviors that warrant further study on the non-Newtonian fluid flow phenomena, especially the shear-thinning phenomena. Shear thinning reduces the wall shear stress.

[1] T. Young, Philos. T. R. Soc. Lond. 98, 164 (1808) http://dx.doi.org/10.1098/rstl.1808.001410.1098/rstl.1808.0014Search in Google Scholar

[2] S.I. Rubinow, J.B. Keller, J. Theor. Biol. 35, 299 (1972) http://dx.doi.org/10.1016/0022-5193(72)90041-010.1016/0022-5193(72)90041-0Search in Google Scholar

[3] A.C. Burton, Am. J. Physiol. 164, 319 (1951) 10.1152/ajplegacy.1951.164.2.319Search in Google Scholar

[4] D.L. Fry, Comput. Biomed. Res. 2, 111 (1968) http://dx.doi.org/10.1016/0010-4809(68)90030-X10.1016/0010-4809(68)90030-XSearch in Google Scholar

[5] G.A. Brecher, Am. J. Physiol. 169, 423 (1952) 10.1152/ajplegacy.1952.169.2.423Search in Google Scholar PubMed

[6] S. Rodbrad, Circulation 11, 280 (1955) 10.1161/01.CIR.11.2.280Search in Google Scholar PubMed

[7] A.C. Guyton, In: W.F. Hamilton (Ed.), Handbook of Physiology Circulation II, Vol. 2 (American Physiologic Society, Washington DC, 1963) 1099 Search in Google Scholar

[8] G.A. Brecher, Venos Return (Grune and Stratton, New York, 1956) Search in Google Scholar

[9] J. Bainster, R.W. Torrance, Q. J. Exp. Physiol. 45, 352 (1960) 10.1113/expphysiol.1960.sp001491Search in Google Scholar PubMed

[10] S. Permutt, B. Bromberger-Barnea, H.N. Bane, Med. Thorac. 19, 239 (1962) 10.1159/000192224Search in Google Scholar PubMed

[11] F.P. Knowlton, E.H. Starling, J. Physiol.-London 44, 206 (1912) 10.1113/jphysiol.1912.sp001511Search in Google Scholar PubMed PubMed Central

[12] P. Chaturani, V.R. Ponnalagar, Biorheology 22, 521 (1985) 10.3233/BIR-1985-22606Search in Google Scholar PubMed

[13] V.P. Srivastava, M. Sexena, J. Biomech. 27, 921 (1994) http://dx.doi.org/10.1016/0021-9290(94)90264-X10.1016/0021-9290(94)90264-XSearch in Google Scholar

[14] N. Iida, Jpn. J. Appl. Phys. 17, 203 (1978) http://dx.doi.org/10.1143/JJAP.17.20310.1143/JJAP.17.203Search in Google Scholar

[15] G.W. Scott-Blair, D.C. Spanner, An Introduction to Biorheology (Elsevier Scientific Publishing Company, Amsterdam, 1974) Search in Google Scholar

[16] G.W. Scott-Blair, Rheol. Acta 5, 184 (1966) http://dx.doi.org/10.1007/BF0198242410.1007/BF01982424Search in Google Scholar

[17] A.G. Hoekstra, J. van’t-Hoff, A.M. Artoli, P.M.A. Sloot, Future Gener. Comp. Sy. 20, 917 (2004) http://dx.doi.org/10.1016/j.future.2003.12.00310.1016/j.future.2003.12.003Search in Google Scholar

[18] D.S. Sankar, K. Hemalatha, Appl. Math. Model. 31, 1847 (2007) http://dx.doi.org/10.1016/j.apm.2006.06.00910.1016/j.apm.2006.06.009Search in Google Scholar

[19] K. Vajravelu, S. Sreenadh, V. Ramesh-Babu, Appl. Math. Comput. 169, 726 (2005) http://dx.doi.org/10.1016/j.amc.2004.09.06310.1016/j.amc.2004.09.063Search in Google Scholar

[20] C. Tu, M. Deville, J. Biomech. 29, 899 (1996) http://dx.doi.org/10.1016/0021-9290(95)00151-410.1016/0021-9290(95)00151-4Search in Google Scholar

[21] P. Chaturani, R.P. Swamy, Journal of Biorheology 22, 521 (1985) 10.3233/BIR-1985-22606Search in Google Scholar PubMed

[22] D.S. Sankar, K. Hemalatha, Appl. Math. Comput. 188, 567 (2007) http://dx.doi.org/10.1016/j.amc.2006.10.01310.1016/j.amc.2006.10.013Search in Google Scholar

[23] K. Vajravelu, S. Sreenadh, V. Ramesh-Babu, Q. Appl. Math. 64, 593 (2005) 10.1090/S0033-569X-06-01020-9Search in Google Scholar

[24] K. Vajravelu, S. Sreenadh, V. Ramesh-Babu, Int. J. Nonlin. Mech. 40, 83 (2005) http://dx.doi.org/10.1016/j.ijnonlinmec.2004.07.00110.1016/j.ijnonlinmec.2004.07.001Search in Google Scholar

[25] D.S. Snakar, U. Lee, Commun. Nonlinear Sci. 14, 2971 (2009) http://dx.doi.org/10.1016/j.cnsns.2008.10.01510.1016/j.cnsns.2008.10.015Search in Google Scholar

[26] R.B. Bird, W.E. Stewart, E.N. Lightfoot, Transport Phenomena, 2nd ed. (Wiley, New York, 2007) 11 Search in Google Scholar

[27] M.R. Roach, A.C. Burton, Can. J. Biochem. Phys. 37, 557 (1957) http://dx.doi.org/10.1139/o59-05910.1139/o59-059Search in Google Scholar

Published Online: 2011-9-15
Published in Print: 2011-10-1

© 2011 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 3.5.2024 from https://www.degruyter.com/document/doi/10.2478/s11534-011-0034-3/html
Scroll to top button