Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access August 27, 2014

Investigation of complex impedance and modulus properties of Nd doped 0.5BiFeO3-0.5PbTiO3 multiferroic Composites

  • Ajay Behera EMAIL logo , Nilaya Mohanty , Santosh Satpathy , Banarji Behera and Pratibindhya Nayak
From the journal Open Physics

Abstract

0.5BiNdxFe1−x O 3 − 0.5PbTiO3 (BNxF1−x − PT)(x = 0.05, 0.10, 0.15, 0.20) composites were successfully synthesized by a solid state reaction technique. At room temperature, X-ray diffraction shows tetragonal structure for all concentrations of Nd doped 0.5BiFeO3 − 0.5PbTiO3 composites. The nature of Nyquist plot confirms the presence of bulk effects only for BNxF1−x − PT (x = 0.05, 0.10, 0.15, 0.20) composites. The bulk resistance is found to decreases with the increasing temperature as well as Nd concentration and exhibits a typical negative temperature coefficient of resistance (NTCR) behavior. Both the complex impedance and modulus studies have suggested the presence of non-Debye type of relaxation in the composites. Conductivity spectra reveal the presence of hopping mechanism in the electrical transport process of the composites. The activation energy calculated from impedance plot of the composite decreases with increasing Ndx concentration and found to be 0.89, 0.76, 0.71 and 0.70 eV for x=0.05, 0.10, 0.15 and 0.20 respectively.

[1] G.A. Smolenskii, I.E. Chupis, Sov. Phys. Uspekhi 25, 475 (1982) http://dx.doi.org/10.1070/PU1982v025n07ABEH00457010.1070/PU1982v025n07ABEH004570Search in Google Scholar

[2] Yu.N. Venevtsev, V.V. Gagulin, Ferroelectrics 162, 23 (1994) http://dx.doi.org/10.1080/0015019940824508610.1080/00150199408245086Search in Google Scholar

[3] N.A. Hill, J. Phys. Chem. B 104, 6694 (2000) http://dx.doi.org/10.1021/jp000114x10.1021/jp000114xSearch in Google Scholar

[4] N.A. Spaldin, M. Fiebig, Science 309, 391 (2005) http://dx.doi.org/10.1126/science.111335710.1126/science.1113357Search in Google Scholar

[5] J. Wang et al., Science 299, 1719 (2003) http://dx.doi.org/10.1126/science.108061510.1126/science.1080615Search in Google Scholar

[6] N.A. Hill, A. Filippetti, J. Magn. Magn. Mater 242, 976 (2002) http://dx.doi.org/10.1016/S0304-8853(01)01078-210.1016/S0304-8853(01)01078-2Search in Google Scholar

[7] M. Fiebig, J. Phys D: Appl. Phys. 38, R123 (2005) http://dx.doi.org/10.1088/0022-3727/38/8/R0110.1088/0022-3727/38/8/R01Search in Google Scholar

[8] R. Ramesh, N.A. Spaldin, Nature Materials 6, 21 (2007) http://dx.doi.org/10.1038/nmat180510.1038/nmat1805Search in Google Scholar PubMed

[9] S.W. Cheong, M. Mostovory, Nature Materials 6, 13 (2007) http://dx.doi.org/10.1038/nmat180410.1038/nmat1804Search in Google Scholar PubMed

[10] W. Eerenstein, N.D. Mathur, J.F. Scott, Nature (London) 442, 759 (2006) http://dx.doi.org/10.1038/nature0502310.1038/nature05023Search in Google Scholar PubMed

[11] J. Silva, A. Reyes, H. Esparza, H. Camacho, L. Fuentes, Integrated Ferroelectrics 126, 47 (2011) http://dx.doi.org/10.1080/10584587.2011.57498610.1080/10584587.2011.574986Search in Google Scholar

[12] S.T. Zhang et al., Appl. Phys. Lett. 88, 162901 (2006) http://dx.doi.org/10.1063/1.219592710.1063/1.2195927Search in Google Scholar

[13] Y. Zhang, S. Yu, J. Cheng, J. Euro. Ceramic Soc. 30, 271 (2010) http://dx.doi.org/10.1016/j.jeurceramsoc.2009.05.00510.1016/j.jeurceramsoc.2009.05.005Search in Google Scholar

[14] C.F. Chung, J.P. Lin, J.M. Wu, Appl. Phys. Lett. 88, 242909 (2006) http://dx.doi.org/10.1063/1.221413810.1063/1.2214138Search in Google Scholar

[15] X. Qi, J. Dho, R. Tomov, M.G. Blamire, J.L. MacManus- Driscoll, Appl. Phys. Lett. 86, 062903 (2005) http://dx.doi.org/10.1063/1.186233610.1063/1.1862336Search in Google Scholar

[16] M.K. Singh, H.M. Jang, S. Ryu, M.H. Jo, Appl. Phys. Lett. 88, 042907 (2006) http://dx.doi.org/10.1063/1.216803810.1063/1.2168038Search in Google Scholar

[17] G.L. Yuan, S.W. Or, H.L.W. Chan, J. Appl. Phys. 101, 064101 (2007) http://dx.doi.org/10.1063/1.243370910.1063/1.2433709Search in Google Scholar

[18] Yu.N. Venevstev et al., Sov. Phys. Crystallogr. 5, 594 (1960) Search in Google Scholar

[19] N. Wang et al., Phys. Rev. B 72, 104434 (2005) http://dx.doi.org/10.1103/PhysRevB.72.10443410.1103/PhysRevB.72.104434Search in Google Scholar

[20] W.M. Zhu, H.Y. Guo, Z. Ye, Phys. Rev. B 78, 014401 (2008) http://dx.doi.org/10.1103/PhysRevB.78.01440110.1103/PhysRevB.78.014401Search in Google Scholar

[21] V.V.S.S. Sai Sunder, J. Mater. Res. 10, 1301 (1995) http://dx.doi.org/10.1557/JMR.1995.130110.1557/JMR.1995.1301Search in Google Scholar

[22] E. Wu, J. Appl. Cryst. 22, 506 (1989) http://dx.doi.org/10.1107/S002188988900506610.1107/S0021889889005066Search in Google Scholar

[23] P. Scherrer, Gottinger Nachrichten 2, 98 (1918) Search in Google Scholar

[24] J.R. Mac Donald, Impedance Spectroscopy (Wiley, New York, 1987) Search in Google Scholar

[25] B. Behera, P. Nayak, R.N.P. Choudhary, J. Mater. Sci: Mater Electron 19, 1005 (2008) 10.1007/s10854-007-9441-zSearch in Google Scholar

[26] D.C. Sinclair, A.R. West, J. Appl. Phys. 66, 3850 (1989) http://dx.doi.org/10.1063/1.34404910.1063/1.344049Search in Google Scholar

[27] R.N.P. Choudhary, D.K. Pradhan, C.M. Tirado, G.E. Bonilla, R.S. Katiyar, Physica B 393, 24 (2007) http://dx.doi.org/10.1016/j.physb.2006.12.00610.1016/j.physb.2006.12.006Search in Google Scholar

[28] B. Behera, P. Nayak, R.N.P. Choudhary, Cent. Eur. J. Phys. 6, 289 (2008) http://dx.doi.org/10.2478/s11534-008-0030-410.2478/s11534-008-0030-4Search in Google Scholar

[29] J. Plocharski, W. Wieczoreck, Solid State Ion 28, 979 (1988) http://dx.doi.org/10.1016/0167-2738(88)90315-310.1016/0167-2738(88)90315-3Search in Google Scholar

[30] V. Provenzano, L.P. Boesch, V. Volterra, C.T. Moynihan, P.B. Macedo, J. Am. Ceram. Soc. 55, 492 (1972) http://dx.doi.org/10.1111/j.1151-2916.1972.tb13413.x10.1111/j.1151-2916.1972.tb13413.xSearch in Google Scholar

[31] H. Jain, C.H. Hsieh, J. Non-Cryst. Solids 172, 1408 (1994) http://dx.doi.org/10.1016/0022-3093(94)90669-610.1016/0022-3093(94)90669-6Search in Google Scholar

[32] H. Singh, A. Kumar, K.L. Yadav, Mater. Sci. Eng. B 176, 540 (2011) http://dx.doi.org/10.1016/j.mseb.2011.01.01010.1016/j.mseb.2011.01.010Search in Google Scholar

[33] B. Behera, P. Nayak, R.N.P. Choudhary, Mater. Res. Bull. 43, 401 (2008) http://dx.doi.org/10.1016/j.materresbull.2007.02.04210.1016/j.materresbull.2007.02.042Search in Google Scholar

[34] B. Behera, P. Nayak, R.N.P. Choudhary, Mater. Chem. Phys. 106, 193 (2007) http://dx.doi.org/10.1016/j.matchemphys.2007.05.03610.1016/j.matchemphys.2007.05.036Search in Google Scholar

[35] Q. Ke, X. Lou, Y. Wang, J. Wang, Phys. Rev. B 82, 024102 (2010) http://dx.doi.org/10.1103/PhysRevB.82.02410210.1103/PhysRevB.82.024102Search in Google Scholar

[36] N. Baskaran, J. Appl. Phys. 92, 825 (2002) http://dx.doi.org/10.1063/1.148745610.1063/1.1487456Search in Google Scholar

[37] P.B. Macedo, C.T. Moynihan, R. Bose, Phys. Chem. Glasses 13, 171 (1972) Search in Google Scholar

[38] F. Borsa, D.R. Torgeson, S.W. Martin, H.K. Patel, Phys. Rev. B 46, 795 (1992) http://dx.doi.org/10.1103/PhysRevB.46.79510.1103/PhysRevB.46.795Search in Google Scholar

[39] A.K. Jonscher, Nature 267, 673 (1977) http://dx.doi.org/10.1038/267673a010.1038/267673a0Search in Google Scholar

Published Online: 2014-8-27
Published in Print: 2014-12-1

© 2014 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 12.5.2024 from https://www.degruyter.com/document/doi/10.2478/s11534-014-0523-2/html
Scroll to top button