Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access August 20, 2010

Antibacterial activity of oleanolic and ursolic acids and their derivatives

  • Krystyna Wolska EMAIL logo , Anna Grudniak , Beata Fiecek , Anna Kraczkiewicz-Dowjat and Anna Kurek
From the journal Open Life Sciences

Abstract

Bacterial resistance to antibiotics is increasing at an alarming rate and many commonly used antibiotics are no longer effective. Thus, there is considerable interest in investigating novel antibacterial compounds, such as the plant-derived pentacyclic triterpenoids, including oleanolic acid (OA), ursolic acid (UA) and their derivatives. These compounds can be isolated from many medicinal and crop plants and their antibacterial, antiviral, antiulcer and anti-inflammatory effects are well documented. OA and UA are active against many bacterial species, particularly Gram-positive species, including mycobacteria. They inhibit bacterial growth and survival, and the spectrum of minimal inhibitory concentration (MIC) values is very broad. In addition, OA, UA and their derivatives display potent antimutagenic activity. Studies to identify the cellular targets and molecular mechanisms of OA and UA action were initiated a few years ago and it has already been demonstrated that both acids influence bacterial gene expression, the formation and maintenance of biofilms, cell autolysis and peptidoglycan turnover. Before these compounds can be used clinically as antimicrobial agents, further extensive studies are required to determine their cytotoxicity and the optimum mode of their application.

[1] Levy S.B., The challenge of antibiotics resistance, Sci. Am., 1998, 278, 46–53 http://dx.doi.org/10.1038/scientificamerican0398-4610.1038/scientificamerican0398-46Search in Google Scholar

[2] Heinemann J.A., Can smart bullets penetrate magic bullet-proof vests, Drug. Discov. Today, 2001, 6, 875–878 http://dx.doi.org/10.1016/S1359-6446(01)01857-810.1016/S1359-6446(01)01857-8Search in Google Scholar

[3] Chibani-Chennoufi S., Sidoti J., Bruttin A., Kutter E., Sarker S., Brussow H., In vitro and in vivo bacteriolytic activities of Escherichia coli phages: implications for phage therapy, Antimicrob. Agents Chemother., 2004, 48, 2558–2569 http://dx.doi.org/10.1128/AAC.48.7.2558-2569.200410.1128/AAC.48.7.2558-2569.2004Search in Google Scholar

[4] Guliani A., Pirri G., Nicoletto S.F., Antimicrobial peptides: an overview of a promising class of therapeutics, Cent. Eur. J. Biol., 2007, 2, 1–3 http://dx.doi.org/10.2478/s11535-007-0010-510.2478/s11535-007-0010-5Search in Google Scholar

[5] Cowan M.M., Plant products as antimicrobial agents, Clin. Microbiol. Rev., 1999, 12, 564–582 10.1128/CMR.12.4.564Search in Google Scholar

[6] Connolly J.D., Hill R.A., Triterpenoids, Nat. Prod. Rep., 2008, 25, 794–830 http://dx.doi.org/10.1039/b718038c10.1039/b718038cSearch in Google Scholar

[7] Liu J., Oleanolic and ursolic acids: Research perspectives, J. Ethnopharmacol., 2005, 100, 92–94 http://dx.doi.org/10.1016/j.jep.2005.05.02410.1016/j.jep.2005.05.024Search in Google Scholar

[8] Farina C., Pinza M., Pifferi G., Synthesis and antiulcer activity of new derivatives of glycyrrhetic, oleanolic and ursolic acids, Pharmacology, 1998, 53, 22–32 10.1016/S0014-827X(97)00013-XSearch in Google Scholar

[9] Chen Y., Liu J., Yang X., Zhao X., Xu H., Oleanolic acid nanosuspensions: preparation, in vitro characterization and enhanced hepatoprotective effect, J. Pharm. Pharmacol., 2005, 57, 259–264 http://dx.doi.org/10.1211/002235705540710.1211/0022357055407Search in Google Scholar PubMed

[10] Li D.W., Hyun J.H., Jeong C.S., Kim Y.S., Lee E.B., Antiinflammatory activity of a-hederin methyl ester from the alkaline hydrolysate of the butanol fraction of Kalopanax pictus bark extract, Biol. Pharm. Bull., 2003, 26, 429–433 http://dx.doi.org/10.1248/bpb.26.42910.1248/bpb.26.429Search in Google Scholar PubMed

[11] Nishino H., Nishino A., Takayasu J., Hasegawa T., Iwashima A., Hitahabayashi K., Inhibition of the tumor-promoting action of 12-O-tetradecanoylphorbol 13-acetate by some oleanane-type triterpenoid compounds, Cancer Res., 1988, 48, 5210–5215 Search in Google Scholar

[12] Udayama M., Ohkawa M., Yoshida N., Kinjo J., Nohara T., Structures of three new oleanane glucuronides isolated from Lathyrus palustris var. pilosus and hepatoprotective activity, Chem. Pharm. Bull., 1998, 46, 1412–1415 10.1248/cpb.46.1412Search in Google Scholar PubMed

[13] Ortiz-Andrade R.R., Garcia-Jimenez S., Castillo-Espana P., Ramirez-Avila G., Villalobos-Molina R., Estrada-Soto S., Alpha-glucosidase inhibitory activity of the methanolic extract from Tournefortia hartwegiana: an anti-hyperglycemic agent, J. Ethnopharmacol., 2007, 109, 48–53 http://dx.doi.org/10.1016/j.jep.2006.07.00210.1016/j.jep.2006.07.002Search in Google Scholar PubMed

[14] Becker H., Scher J.M., Speakman J.B., Zapp J., Bioactivity guided isolation of antimicrobial compounds from Lythrum salicaria, Fitotherapia, 2005, 76, 580–584 http://dx.doi.org/10.1016/j.fitote.2005.04.01110.1016/j.fitote.2005.04.011Search in Google Scholar PubMed

[15] Cunha W.R., Martins C., Ferreira de Silva D., Crotti A.E., Lopez N.P., Albuqureque S., In vitro trypanocidal activity of triterpenes from Miconia species, Planta Med., 2003, 69, 470–472 http://dx.doi.org/10.1055/s-2003-3971910.1055/s-2003-39719Search in Google Scholar PubMed

[16] Baglin I., Mitaine-Offer A.C., Nour M., Tan K., Cavé C., Lacaille-Dubois M.A., A review of natural and modified betulic, ursolic and echinocystic acid derivatives as potential antitumor and anti-HIV agents, Mini Rev. Med. Chem., 2003, 6, 525–539 http://dx.doi.org/10.2174/138955703348791710.2174/1389557033487917Search in Google Scholar PubMed

[17] Kashiwada Y., Wang H.K., Nagao T., Kitanaka S., Yasuda I., Fuijoka T., et al., Anti-AIDS agents. 30. Anti-HIV activity of oleanolic acid, pomolic acid, and structurally related triterpenoids, J. Nat. Prod., 1998, 61, 1090–1095 http://dx.doi.org/10.1021/np980071010.1021/np9800710Search in Google Scholar PubMed

[18] Kashiwada Y., Nagao T., Hashimoto A., Ikeshiro Y., Okabe H. Casentino L.M., Lee K.H., Anti-AIDS agents. 38. Anti-HIV activity of 3-O-acyl ursolic acid derivatives, J. Nat. Prod., 2000, 63, 1619–1622 http://dx.doi.org/10.1021/np990633v10.1021/np990633vSearch in Google Scholar PubMed

[19] Ma C., Nakamura N., Miyashiro H., Hattori M., Shimotohno K., Inhibitory effects of constituents from Cynomorium songsricum and related triterpene derivatives on HIV-1 protease, Chem. Pharm. Bull., 1999, 47, 141–145 10.1248/cpb.47.141Search in Google Scholar PubMed

[20] Mengoni F., Lichtner M., Battinelli L., Marzi M., Mastoianni C.M., Vullo V., et al., In vitro anti-HIV activity of oleanolic acid on infected human mononuclear cells, Planta Med., 2002, 68, 111–114 http://dx.doi.org/10.1055/s-2002-2025610.1055/s-2002-20256Search in Google Scholar PubMed

[21] Fontanay S., Grare M., Mayer J., Finance C., Duval R.M., Ursolic, oleanolic and betulic acids: antibacterial spectra and selectivity indexes, J. Ethnopharmacol., 2008, 120, 272–276 http://dx.doi.org/10.1016/j.jep.2008.09.00110.1016/j.jep.2008.09.001Search in Google Scholar PubMed

[22] Daffe M., Draper P., The envelope layers of mycobacteria with reference to their pathogenicity, Adv. Microbiol. Physiol., 1988, 39, 131–203 http://dx.doi.org/10.1016/S0065-2911(08)60016-810.1016/S0065-2911(08)60016-8Search in Google Scholar

[23] Zumla A., Grange J., Tuberculosis, Br. Med. J., 1998, 316, 1962–1964 10.1136/bmj.316.7149.1962Search in Google Scholar

[24] Bamuamba K., Gammon D.W., Meyers P., Dijoux-Franca M.-G., Scott G., Anti-mycobacterial activity of five plant species used as traditional medicines in the Western Cape Province (South Africa), J. Ethnopharmacol., 2008, 117, 385–390 http://dx.doi.org/10.1016/j.jep.2008.02.00710.1016/j.jep.2008.02.007Search in Google Scholar

[25] Mosam T., Rapid colorimetric assay for cell growth and survival: application to proliferation and cytotoxicity assays, J. Immunol. Meth., 1983, 65, 55–63 http://dx.doi.org/10.1016/0022-1759(83)90303-410.1016/0022-1759(83)90303-4Search in Google Scholar

[26] Tanachatchairatana T., Bremner J.B., Chokchaisiri R., Suksamraran A., Antimycobacterial activity of cinnamate-based esters of the triterpenes betulic, oleanolic and ursolic acids, Chem. Pharm. Bull., 2008, 56, 194–198 http://dx.doi.org/10.1248/cpb.56.19410.1248/cpb.56.194Search in Google Scholar PubMed

[27] Rojas R., Caviedes L., Aponte J.C., Vaisberg A.J., Lewis W.H., Lamas G., et al., Aegicerin, the first oleanane triterpene with wide-ranging antimycobacterial activity, isolated from Clavija procera, J. Nat. Prod., 2006, 69, 845–846 http://dx.doi.org/10.1021/np050554l10.1021/np050554lSearch in Google Scholar PubMed PubMed Central

[28] Horiuchi K., Shiota S., Hatano T, Yoshida T, Kuroda T., Tsuchiya T., Antimicrobial activity of oleanolic acid from Salvia officinalis and related compounds on vancomycin-resistant enterococci (VRE), Biol. Pharm. Bull., 2007, 30, 1147–1149 http://dx.doi.org/10.1248/bpb.30.114710.1248/bpb.30.1147Search in Google Scholar PubMed

[29] Zheng C.-J., Sohn M.-J., Kim K.-Y., Yu H.-E., Kim W-G., Olean-27-carboxylic acid-type triterpenes with potent antibacterial activity from Aceriphyllum rossii, J. Agric. Food Chem., 2008, 56, 11752–11756 http://dx.doi.org/10.1021/jf802832w10.1021/jf802832wSearch in Google Scholar PubMed

[30] Woldemichael G.M., Singh M.P., Maiese W.M., Timmermann B.N., Constituents of antibacterial extract of Caesalpinia paraguarensis Burk, Z. Naturforsch., 2003, 53, 70–75 10.1515/znc-2003-1-213Search in Google Scholar PubMed

[31] Szakiel A., Ruszkowski D., Grudniak A., Kurek A., Wolska K.I., Doligalska M., et al., Antibacterial and antiparasitic activity of oleanolic acid and its glycosides isolated from marigold (Calendula officinalis), Planta Med., 2008, 74, 1709–1715 http://dx.doi.org/10.1055/s-0028-108831510.1055/s-0028-1088315Search in Google Scholar PubMed

[32] Collins L., Franzblau S.F, Microplate alarm blue assay versus BACTEC 460 system for high-throughput screening of compounds against Mycobacterium tuberculosis and Mycobacterium avium, Antimicrob. Agents Chemother., 1997, 41, 1004–1009 10.1128/AAC.41.5.1004Search in Google Scholar PubMed PubMed Central

[33] Gu J.-Q., Wang Y., Franzblau S.G., Montenegro G., Timmermann B.N., Constituents of Quinchamalium majus with potential antitubercular activity, Z. Naturforsch., 2004, 59, 797–802 10.1515/znc-2004-11-1206Search in Google Scholar PubMed

[34] Gu J.-Q., Wang Y., Franzblau S.G., Montenegro G., Yang D., Timmermann B.N., Antitubercular constituents of Valeriana laxiflora, Planta Med., 2004, 70, 509–514 http://dx.doi.org/10.1055/s-2004-82714910.1055/s-2004-827149Search in Google Scholar PubMed

[35] Jiménez-Arellanes A., Meckes M., Torres J., Luna-Herrera J., Antimycobacterial triterpenoids from Lantana hispida (Verbenaceae), J. Ethnopharmacol., 2007, 111, 202–205 http://dx.doi.org/10.1016/j.jep.2006.11.03310.1016/j.jep.2006.11.033Search in Google Scholar PubMed

[36] Caldwell C.G., Franzblau S.G., Suarez E., Timmermann B.N., Oleanane triterpenes from Junellia tridens, J. Nat. Prod., 2000, 63, 1611–1614 http://dx.doi.org/10.1021/np000223310.1021/np0002233Search in Google Scholar PubMed

[37] Cantrell C.L., Lu T.S., Fronczek F.R., Fischer N.H., Adams L.B., Franzblau S.G., Antimicrobial cycloartanes from Borrichia frutescens, J. Nat. Prod., 1996, 59, 1131–1136 http://dx.doi.org/10.1021/np960551w10.1021/np960551wSearch in Google Scholar PubMed

[38] Singh M.P., Petersen P.J., Weiss W.J., Kong F., Greenstein M., Saccharomycins, novel heptadecaglycoside antibiotics produced by Saccharothrix espanaensis: Antibacterial and mechanistic activities, Antimicrob. Agents Chemother., 2000, 44, 2154–2159 http://dx.doi.org/10.1128/AAC.44.8.2154-2159.200010.1128/AAC.44.8.2154-2159.2000Search in Google Scholar PubMed PubMed Central

[39] National Committee for Clinical Laboratory Standards, Methods for antimicrobial susceptibility tests for bacteria that grow aerobically; Approved Standard M7-A6, NCCLS, Wayne, PA, USA, 2003 Search in Google Scholar

[40] Scalon Cunha L.C., Andrade e Silva M.L., Cardoso Furtado N.A., Vinholis A.H., Gomes Martins C.H., da Silva Filho A.A., et al., Antibacterial activity of triterpene acids and semi-synthetic derivatives against oral pathogens, Z. Naturforsch., 2007, 62, 668–672 10.1515/znc-2007-9-1007Search in Google Scholar PubMed

[41] Timbekova A.E., Isaev M.I., Abubakirov N.K., Chemistry and biological activity of triterpenoid glycosides from Medicago sativa, Adv. Exp. Med. Biol., 1996, 405, 171–182 10.1007/978-1-4613-0413-5_14Search in Google Scholar PubMed

[42] Yadava R.N., A new biologically active triterpenoid saponin from the leaves of Lepidagathis hyalina Nees, Nat. Prod. Lett., 2001, 15, 315–322 10.1080/10575630108041298Search in Google Scholar PubMed

[43] Yadava R.N., Jharbade J., A new bioactive triterpenoid saponin from the seeds of Lactuca scariola Linn, Nat. Prod. Res., 2007, 21, 500–506 http://dx.doi.org/10.1080/1478641060113012510.1080/14786410601130125Search in Google Scholar

[44] Kuete V., Wabo G.F., Ngameni B., Mbaveng A.T., Metuno R., Etoa F.X., et al., Antimicrobial activity of the methanolic extract, fractions and compounds from the stem bark of Irvingia gabonensis (Ixonanthaceae), J. Ethnopharmacol., 2007, 114, 54–60 http://dx.doi.org/10.1016/j.jep.2007.07.02510.1016/j.jep.2007.07.025Search in Google Scholar

[45] Cai L., Wu C.D., Compounds from Syzygium aromaticum possessing growth inhibitory activity against oral pathogens, J. Nat. Prod., 1996, 59, 987–990 http://dx.doi.org/10.1021/np960451q10.1021/np960451qSearch in Google Scholar

[46] Djoukeng J.D., Abou-Mansour E., Tabacchi R., Tapondjou A.L., Bouda H., Lontsi D., Antibacterial triterpenes from Syzygium guineense (Myrtaceae), J. Ethnopharmacol., 2005, 101, 283–286 http://dx.doi.org/10.1016/j.jep.2005.05.00810.1016/j.jep.2005.05.008Search in Google Scholar

[47] Pannizzi L., Catalano S., Miarelli C., Cioni P.L., Campeol E., In vitro antimicrobial activity of extracts and isolated constituents of Geum rivale, Phytother. Res., 2000, 14, 561–563 http://dx.doi.org/10.1002/1099-1573(200011)14:7<561::AID-PTR651>3.0.CO;2-H10.1002/1099-1573(200011)14:7<561::AID-PTR651>3.0.CO;2-HSearch in Google Scholar

[48] Clark A.M., El-Feraly E.S., Li W.S., Antimicrobial activity of phenolic constituents of Magnolia grandiflora L., J. Pharm. Sci., 1981, 70, 951–952 http://dx.doi.org/10.1002/jps.260070083310.1002/jps.2600700833Search in Google Scholar

[49] Wächter G.A., Valcic S., Franzblau S.C., Suarez E., Timmermann B.N., Antitubercular activity of triterpenoids from Lippia turbinata, J. Nat. Prod., 2001, 64, 37–41 http://dx.doi.org/10.1021/np000267b10.1021/np000267bSearch in Google Scholar

[50] Caliş T., Satana M.E., Yürüker A., Kelican P., Demirdamar R., Alaçam R., et al., Triterpene saponins from Cyclamen mirabile and their biological activities, J. Nat. Prod., 1997, 60, 315–318 http://dx.doi.org/10.1021/np960658j10.1021/np960658jSearch in Google Scholar

[51] Yeung M.-F., Lau C.S.B., Chan R.C.Y., Zong Y., Che C.-T., Search for antibacterial constituents from a Tibetan medical plant, Gentianopsis paludosa, Phytother. Res., 2009, 23, 123–125 http://dx.doi.org/10.1002/ptr.250610.1002/ptr.2506Search in Google Scholar

[52] Jiménez A., Meckes M., Alvarez V., Torres J., Parra R., Secondary metabolites from Chamaedora tepejilote (Palmae) are active against Mycobacterium tuberculosis, Phytother. Res., 2005, 19, 320–322 http://dx.doi.org/10.1002/ptr.166410.1002/ptr.1664Search in Google Scholar

[53] da Silva Filho A.A., de Sousa J.P., Soares S., Furtado N.A., Andrade e Silva M.L., Cunha W.R., et al., Antimicrobial activity of the extract and isolated compounds from Baccharis dracunculifolia D.C. (Asteraceae), Z. Naturforsch, 2008, 63, 40–46 10.1515/znc-2008-1-208Search in Google Scholar

[54] Takechi M., Tanaka Y., Structure-activity relationships of synthetic methyl ursolate glycosides, Phytochemistry, 1993, 34, 675–677 http://dx.doi.org/10.1016/0031-9422(93)85338-R10.1016/0031-9422(93)85338-RSearch in Google Scholar

[55] Woldemichael G.M., Franzblau S.G, Zhang F., Wang Y., Timmerman B.N., Inhibitory effect of sterols from Ruprechtia triflora and diterpenes from Calceolaria pinnifolia on the growth of Mycobacterium tuberculosis, Planta Med., 2003, 69, 628–631 http://dx.doi.org/10.1055/s-2003-4110910.1055/s-2003-41109Search in Google Scholar

[56] Mallavadhani U.V., Mahapatra A., Jamil K., Reddy P.S., Antimicrobial activity of some pentacyclic triterpenes and their synthesized 3-O-lipophilic chains, Biol. Pharm. Bull., 2004, 27, 1576–1579 http://dx.doi.org/10.1248/bpb.27.157610.1248/bpb.27.1576Search in Google Scholar

[57] Chattopadhyay D., Mati K., Kundu A.P., Chakraborty M.S., Bhadra R., Mandal S.C., et al., Antimicrobial activity of Alstonia macrophylla: a folklore of bay islands, J. Ethnopharmacol., 2001, 77, 49–55 http://dx.doi.org/10.1016/S0378-8741(01)00264-110.1016/S0378-8741(01)00264-1Search in Google Scholar

[58] Chattopadhyay D., Arunachalan G., Mandal A.B., Sur T.K., Mandal S.C., Bhattacharya S.K., Antimicrobial and antiinflammatory activity of folklore: Mallotus peltatus leaf extract, J. Ethnopharmacol., 2002, 82, 229–237 http://dx.doi.org/10.1016/S0378-8741(02)00165-410.1016/S0378-8741(02)00165-4Search in Google Scholar

[59] Zhang Y., Bao F., Hu J., Liang S., Zhang Y., Du G., et al., Antibacterial ligands and triterpenoids from Rostellularia procumbens, Planta Med., 2007, 73, 1596–1599 http://dx.doi.org/10.1055/s-2007-99374710.1055/s-2007-993747Search in Google Scholar PubMed

[60] Jaki B.U., Franzblau S.G., Chadwich L.R., Lakin D.C., Zhang F., Wang Y., et al., Purity-activity relationships of natural products: the case of anti-TB active ursolic acid, J. Nat. Prod., 2008, 71, 1742–1748 http://dx.doi.org/10.1021/np800329j10.1021/np800329jSearch in Google Scholar PubMed

[61] Changsen C., Franzblau S.G., Palittapongarnpin P., Improved green fluorescent protein reporter genebased microplate screening for antituberculosis compounds by utilizing an acetamidase promoter, Antimicrob. Agents Chemother., 2003, 47, 3682–3687 http://dx.doi.org/10.1128/AAC.47.12.3682-3687.200310.1128/AAC.47.12.3682-3687.2003Search in Google Scholar PubMed PubMed Central

[62] Setzer W.N., Rozmus G.F., Setzer M.C., Schmidt J.M., Vogler B., Reeb S., et al., Bioactive principles in the bark of Philidiostigma tropicum, J. Mol. Model., 2006, 12, 703–711 http://dx.doi.org/10.1007/s00894-005-0047-110.1007/s00894-005-0047-1Search in Google Scholar PubMed

[63] Lee J.H., Jeong C.S., Gardenia jasminoides Ellis ethanol extract and its constituents reduce the risks of gastritis and reverse gastric lesions in rats, Food Chem. Toxicol., 2009, 47, 1127–1131 http://dx.doi.org/10.1016/j.fct.2009.01.03710.1016/j.fct.2009.01.037Search in Google Scholar

[64] Akbar E., Malik A., Antimicrobial triterpenes from Debregeasia salicifolia, Nat. Prod. Lett., 2002, 16, 339–344 http://dx.doi.org/10.1080/1057563029003308810.1080/10575630290033088Search in Google Scholar

[65] Chandramu C., Manohar R.D., Krupadanam D.G., Dashavantha R.V., Isolation, characterization and biological activity of betulic acid and ursolic acid from Vitex negundo L., Phytother. Res., 2003, 17, 129–134 http://dx.doi.org/10.1002/ptr.108810.1002/ptr.1088Search in Google Scholar

[66] Li X.Q., Gao K., Jia Z.J., Eremophilenolides and other constituents from the roots of Ligularia sagitta, Planta Med., 2003, 69, 356–360 http://dx.doi.org/10.1055/s-2003-3887210.1055/s-2003-38872Search in Google Scholar

[67] Jovel E.M., Zhou X.L., Ming D.S., Wahabe T.R., Towers G.H., Bioactivity-guided isolation of the active compounds from Rosa nutkana and quantitative analysis of ascorbic acid by HPLC, Can. J. Physiol. Pharmacol., 2007, 85, 865–871 http://dx.doi.org/10.1139/Y07-05310.1139/Y07-053Search in Google Scholar

[68] Niikawa M., Hayashi H., Sato T., Nagase H., Kito H., Isolation of substances from glossy privet (Ligustrum lucidum Alt.) inhibiting the mutagenicity of benzo[a]pyrene in bacteria, Mutat. Res., 1993, 319, 1–9 http://dx.doi.org/10.1016/0165-1218(93)90025-910.1016/0165-1218(93)90025-9Search in Google Scholar

[69] Maron D.M., Ames B.D., Revised methods for the Salmonella mutagenicity test, Mutation Res., 1983, 113, 173–215 10.1016/0165-1161(83)90010-9Search in Google Scholar

[70] Lira Wde M., dos Santos F.V., Sannomiya M., Rodrigues C.M., Vilegas W., Varanda E.A., Modulatory effect of Byrsonima basiloba extracts on the mutagenicity of certain direct and indirect-acting mutagens in Salmonella typhimurium assays, J. Med. Food., 2008, 11, 111–119 http://dx.doi.org/10.1089/jmf.2007.55310.1089/jmf.2007.553Search in Google Scholar PubMed

[71] Young H.S., Chung H.Y., Lee C.K., Park K.Y., Yokozawa T., Oura H., Ursolic acid inhibits aflatoxin B1-induced mutagenicity in a Salmonella assay system, Biol. Pharm. Bull., 1994, 17, 990–992 10.1248/bpb.17.990Search in Google Scholar PubMed

[72] Miyazawa M., Okuno Y., Imanishi K., Suppression of the SOS-inducing activity of mutagenic heterocyclic amine, Trp-P-1, by triterpenoid from Uncaria siniensis in Salmonella typhimurium TA1535/pSK1002 Umu test, J. Agric. Food Chem., 2005, 53, 2312–2315 http://dx.doi.org/10.1021/jf035430y10.1021/jf035430ySearch in Google Scholar PubMed

[73] Janion C., Inducible SOS response system of DNA repair and mutagenesis in Escherichia coli, Int. J. Biol. Sci., 2008, 23, 338–344 10.7150/ijbs.4.338Search in Google Scholar PubMed PubMed Central

[74] Ohtsuka M., Fukuda K., Yano H., Kojiro M., Effect of nine active ingredients in Chinese herbal medicine sho-saiko-to on 2-(2-furyl)-3-(5-nitro-2-furyl) acrylamide mutagenicity, Jpn. J. Cancer Res., 1995, 86, 1131–1135 10.1111/j.1349-7006.1995.tb03305.xSearch in Google Scholar PubMed PubMed Central

[75] Lee K.T., Sohn I.C., Park H.J., Kim D.W., Jung G.O., Park K.Y., Essential moiety for antimutagenic and cytotoxic activity of hederagenin monodesmosides and bidesmosides isolated from the stem bark of Kalopanax pictus, Planta Med., 2000, 66, 329–332 http://dx.doi.org/10.1055/s-2000-853910.1055/s-2000-8539Search in Google Scholar PubMed

[76] Park K.Y., Jung G.O., Choi J., Lee K.T., Park H.J., Potent antimutagenic and their anti-lipid peroxidative effect of kaikasaponin III and tectorigenin from the flower of Pueraria thunbergiana, Arch. Pharm. Res., 2002, 25, 320–324 http://dx.doi.org/10.1007/BF0297663310.1007/BF02976633Search in Google Scholar PubMed

[77] Wei H., Ca Q., Rahn R., Zhang X., Wang Y. Lebwohl M., DNA structural integrity and base composition affect ultraviolet light-induced oxidative DNA damage, Biochemistry, 1998, 37, 6485–6490 http://dx.doi.org/10.1021/bi972702f10.1021/bi972702fSearch in Google Scholar PubMed

[78] Park J.T., Uehara T., How bacteria consume their own exoskeleton (turnover and recycling of cell wall peptidoglycan), Microbiol. Mol. Biol. Rev., 2008, 72, 211–227 http://dx.doi.org/10.1128/MMBR.00027-0710.1128/MMBR.00027-07Search in Google Scholar PubMed PubMed Central

[79] Kurek A., Grudniak A.M., Szwed M., Klicka A., Samluk Ł., Wolska K.I., et al., Oleanolic acid and ursolic acid affect peptidoglycan metabolism in Listeria monocytogenes, Antonie van Leeuwenhoek, 2010, 97, 61–68 http://dx.doi.org/10.1007/s10482-009-9388-610.1007/s10482-009-9388-6Search in Google Scholar PubMed

[80] Cossart P., Listeriology (1926–2007); the rise of a model pathogen, Microb. Infect., 2007, 9, 1143–1146 http://dx.doi.org/10.1016/j.micinf.2007.05.00110.1016/j.micinf.2007.05.001Search in Google Scholar PubMed

[81] Charpentier E., Courvalin P., Antibiotic resistance in Listeria spp., Antimicrob. Agents Chemother., 1999, 43, 2103–2108 10.1128/AAC.43.9.2103Search in Google Scholar PubMed PubMed Central

[82] Kozai K., Suzuki J., Okada M., Nagasaka N., Effect of oleanolic acid-cyclodextrin inclusion compounds on dental caries by in vitro experiment and ratcaries model, Microbios, 1999, 97, 179–188 Search in Google Scholar

[83] Chen J.-C., Ho T.-H., Chang Y.-S., Wu S.-L., Li C.-C., Hsiang C.-Y., Identification of Escherichia coli enterotoxin inhibitors from traditional medical herbs in silico, in vitro and in vivo analyses, J. Ethnopharmacol., 2009, 121, 372–378 http://dx.doi.org/10.1016/j.jep.2008.11.01110.1016/j.jep.2008.11.011Search in Google Scholar PubMed

[84] Holmgren J., Svennerholm A.M., Bacterial enteric infections and vaccine development, Gastroenterol. Clin. North Amer., 1992, 21, 283–302 10.1016/S0889-8553(21)00032-7Search in Google Scholar

[85] Ren D., Zuo R., González Barrios A.F., Bedzyk L.A., Eldridge G.R., Pasmore M.E., et al., Differential gene expression for investigation of Escherichia coli biofilm inhibition by plant extract ursolic acid, Appl. Environ. Microbiol., 2005, 71, 4022–4034 http://dx.doi.org/10.1128/AEM.71.7.4022-4034.200510.1128/AEM.71.7.4022-4034.2005Search in Google Scholar PubMed PubMed Central

[86] Li Y.-H., Lau P.C., Lee J.H., Ellen R.P., Cvitkovitch D.G., Natural genetic transformation of Streptococcus mutans growing in biofilms, J. Bacteriol., 2001, 183, 897–908 http://dx.doi.org/10.1128/JB.183.3.897-908.200110.1128/JB.183.3.897-908.2001Search in Google Scholar PubMed PubMed Central

[87] Potera C., Forging a link between biofilms and disease, Science, 1999, 19, 1837–1838 http://dx.doi.org/10.1126/science.283.5409.183710.1126/science.283.5409.1837Search in Google Scholar PubMed

[88] Wei Y., Lee J.-M., Richmond C., Blatner F.R., Rafalski J.A., Larossa R.A., High-density microarray-mediated gene expression profiling of Escherichia coli, J. Bacteriol., 2001, 183, 545–556 http://dx.doi.org/10.1128/JB.183.2.545-556.200110.1128/JB.183.2.545-556.2001Search in Google Scholar PubMed PubMed Central

[89] Watnick P., Kotler R., Biofilm, city of microbes, J. Bacteriol., 2000, 182, 2675–2679 http://dx.doi.org/10.1128/JB.182.10.2675-2679.200010.1128/JB.182.10.2675-2679.2000Search in Google Scholar PubMed PubMed Central

[90] Ramachandran S., Prasad N.R., Effect of ursolic acid, a triterpenoid antioxidant, on ultraviolet-B radiation-induced cytotoxicity, lipid peroxidation and DNA damage in human lymphocytes, Chem. Biol. Interact., 2008, 176, 99–107 http://dx.doi.org/10.1016/j.cbi.2008.08.01010.1016/j.cbi.2008.08.010Search in Google Scholar PubMed

[91] Chu R., Griffin C., Staub R.D., Shoemaker M., Climent J., Leitman D., Cohen I., Shtivelman E., Fong S., Selective concomitant inhibition of mTORC1 and TORC2 activity in estrogen receptor negative breast cancer cells by BN107 and oleanolic acid, Int. J. Cancer, (in press), DOI:10.1002.ijc.25116 Search in Google Scholar

[92] Kim J., Jang D.S., Kim H., Kim J.S., Anti-lipase and lipolytic activities of ursolic acid isolated from the roots of Actinidia arguta, Arch. Pharm. Res., 2009, 32, 983–987 http://dx.doi.org/10.1007/s12272-009-1702-310.1007/s12272-009-1702-3Search in Google Scholar PubMed

[93] Xi J., Chang Q., Chan C.K., Meng Z.Y., Wang G.N., Sun J.B., Wang Y.T., Tong H.H., Zheng Y., Formulation development and bioavailability evaluation of a self-nanoemulsified drug delivery system of oleanolic acid, AAPS Pharm. Sci. Tech., 2009, 10, 172–182 http://dx.doi.org/10.1208/s12249-009-9190-910.1208/s12249-009-9190-9Search in Google Scholar PubMed PubMed Central

Published Online: 2010-8-20
Published in Print: 2010-10-1

© 2010 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 17.5.2024 from https://www.degruyter.com/document/doi/10.2478/s11535-010-0045-x/html
Scroll to top button