Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access May 22, 2013

Alfalfa (Medicago sativa L.) clones tolerant to salt stress: in vitro selection

  • Angela Campanelli EMAIL logo , Claudia Ruta , Irene Morone-Fortunato and Giuseppe Mastro
From the journal Open Life Sciences

Abstract

In order to quickly and efficiently evaluate the salt tolerance of alfalfa, salinity tests were conducted on Medicago sativa L. var. australis, var. icon, var. loi, and var. gea, under in vitro conditions. Pregerminated seeds of four varieties were subjected to five different NaCl concentrations (0, 50, 100, 150, 200 mM). The influence of saline stress was estimated on the basis of survival percentage, growth parameters, and electrolyte leakage. The seedlings surviving on the medium enriched with salt at the highest concentration were presumed to be tolerant and represented the mother plants for the production of in vitro clones. In the following step, the clones were evaluated in vitro to confirm the salt tolerance. The influence of mild salt stress (75 mM NaCl) on the growth parameters of selected clones was examined. At the end of this trial, the proline accumulation and sodium content in alfalfa shoots were also quantified. The results suggest an increased level of proline promotes salt tolerance. Medicago sativa L. var. icon is highly tolerant in comparison with the other varieties tested. In vitro selection of M. sativa L. varieties on salt-containing media allowed us to obtain clones with increased salinity tolerance.

[1] Jiang H.M., Jiang J.P., Jia Y., Li F.M., Xu J.Z., Soil carbon pool and effects of soil fertility in seeded alfalfa fields on the semi-arid Loess Plateau in China, Soil Biol. Biochem., 2006, 38, 2350–2358 http://dx.doi.org/10.1016/j.soilbio.2006.02.00810.1016/j.soilbio.2006.02.008Search in Google Scholar

[2] Munns R., Husain S., Rivelli A.R., James R.A., Condon A.G., Lindsay M.P., et al., Avenues for increasing salt tolerance of crops, and the role of physiologically based selection traits, Plant Soil, 2002, 247, 93–105 http://dx.doi.org/10.1023/A:102111941479910.1023/A:1021119414799Search in Google Scholar

[3] Flowers T.J., Improving crop salt tolerance, J. Exp. Bot., 2004, 55, 307–319 http://dx.doi.org/10.1093/jxb/erh00310.1093/jxb/erh003Search in Google Scholar

[4] Maas E.V., Hoffman G.J., Crop salt tolerance — current assessment, J. Irrig. Drain. Div. Am. Soc. Civ. Eng., 1977, 103, 115–134 10.1061/JRCEA4.0001137Search in Google Scholar

[5] Wang X., Yang X., Chen L., Feng G., Zhang J., Jin L., Genetic diversity among alfalfa (Medicago sativa L.) cultivars in Northwest China, Acta Agr. Scand. B, 2011, 61, 60–67 http://dx.doi.org/10.1080/09064702.2011.55619510.1080/09064702.2011.556195Search in Google Scholar

[6] Julier B., Huyghe C., Ecalle C., Within- and among-cultivar genetic variation in alfalfa: forage quality, morphology, and yield, Crop Sci., 2000, 40, 365–369 http://dx.doi.org/10.2135/cropsci2000.402365x10.2135/cropsci2000.402365xSearch in Google Scholar

[7] Mills D., Benzioni A., Effect of NaCl salinity on growth and development of jojoba clones: II. Nodal segments grown in vitro, J. Plant Physiol., 1992, 139, 737–741 http://dx.doi.org/10.1016/S0176-1617(11)81720-710.1016/S0176-1617(11)81720-7Search in Google Scholar

[8] Chandler S.F., Manda B.B., Thorpe T.A., Effect of sodium sulphate on tissue cultures of Brassica napus cv. Westar and Brassica campestris L. cv Tobin, J. Plant Physiol. 1986, 126, 105–117 http://dx.doi.org/10.1016/S0176-1617(86)80223-110.1016/S0176-1617(86)80223-1Search in Google Scholar

[9] Liu K., Li S., Effects of sodium chloride on element balance, peroxidase isozyme and protein banding patterns of Lycopersicon leaf cultures and regenerated shoots, Scientia Hort., 1991, 46, 97–108 http://dx.doi.org/10.1016/0304-4238(91)90096-H10.1016/0304-4238(91)90096-HSearch in Google Scholar

[10] Cano E.A., Perez A.F., Monero V., Caro M., Bolarin M.C., Evaluation of salt tolerance in cultivated and wild tomato species through in vitro shoot apex culture, Plant Cell Tiss. Org. Cult. 1998, 53, 19–26 http://dx.doi.org/10.1023/A:100601700114610.1023/A:1006017001146Search in Google Scholar

[11] Emilio A.C., Francisco P.A., Vicente M., Manuel C., Maria C.B., Evaluation of salt tolerance in cultivated and wild tomato species through in vitro shoot apex culture, Plant Cell Tiss Org. Cult. 1998, 53, 19–26 http://dx.doi.org/10.1023/A:100601700114610.1023/A:1006017001146Search in Google Scholar

[12] Mercado J.A., Sancho C., Jimenez B.S., Peran U.R., Pliego A.F., Quesada M.A., Assessment of in vitro growth of apical stem sections and adventitious organogenesis to evaluate salinity tolerance in cultivated tomato, Plant Cell Tiss. Org. Cult., 2000, 62, 101–106 http://dx.doi.org/10.1023/A:102650360339910.1023/A:1026503603399Search in Google Scholar

[13] Amini F., Ehsanpour A.A., Soluble proteins, proline, carbohydrates and Na+/Cl-changes in two tomato (Lycopersicon esculentum Mill.) cultivars under in vitro salt stress, Am. J. Biochem. Biotech., 2005, 1, 212–216 10.3844/ajbbsp.2005.212.216Search in Google Scholar

[14] Amini F., Ehsanpour A.A., Response of tomato (Lycopersicon esculentum Mill.) cultivars to MS, water agar and salt stress in in vitro culture, Asian J. Plant Sci., 2006, 9, 170–175 10.3923/pjbs.2006.170.175Search in Google Scholar

[15] Mohamed A.N., Rahman M.H., Alsadon A.A., Islam R., Accumulation of proline in NaCl-treated callus of six tomato (Lycopersicon esculentum Mill.) cultivars, Plant Tissue Cult. Biotech., 2007, 17, 217–220 10.3329/ptcb.v17i2.3242Search in Google Scholar

[16] Aazami M.A., Torabi M., Shekari F., Response of some tomato cultivars to sodium chloride stress under in vitro culture condition, Afr. J. Agric. Res., 2010, 5, 2589–2592 Search in Google Scholar

[17] Tewary P.K., Sharma A., Raghunath M.K., Sarkar A., In vitro response of promising mulberry (Morus sp.) genotypes for tolerance to salt and osmotic stresses, Plant Growth Regul., 2000, 30, 17–21 http://dx.doi.org/10.1023/A:100629783031810.1023/A:1006297830318Search in Google Scholar

[18] Vijayan K., Chakraborti S.P., Ghosh P.D., In vitro screening of mulberry (Morus spp.) for salinity tolerance, Plant Cell Rep., 2003, 22, 350–357 http://dx.doi.org/10.1007/s00299-003-0695-510.1007/s00299-003-0695-5Search in Google Scholar

[19] Martinez C.A., Maestri M., Lani E.G., In vitro salt tolerance and proline accumulation in Andean potato (Solanum spp.) differing in frost resistance, Plant Sci., 1996, 116, 177–184 http://dx.doi.org/10.1016/0168-9452(96)04374-910.1016/0168-9452(96)04374-9Search in Google Scholar

[20] Lutts S., Kinet J.M., Boharmunt J., Effect of various salt and mannitol on ion and proline accumulation in relation to osmotic adjustment in rice callus cultures, J. Plant Physiol., 1996, 149, 186–195 http://dx.doi.org/10.1016/S0176-1617(96)80193-310.1016/S0176-1617(96)80193-3Search in Google Scholar

[21] Zhu G.Y., Kinet J.M., Bertin P., Bouharmont J., Lutts S., Crosses between cultivars and tissue culture selected plants for salt resistance improvement in rice, Oryza sativa, Plant Breeding, 2000, 119, 497–504 http://dx.doi.org/10.1046/j.1439-0523.2000.00517.x10.1046/j.1439-0523.2000.00517.xSearch in Google Scholar

[22] Basu S., Gangopadhyay G., Mukherjee B.B., Salt tolerance of rice in vitro: Implication of accumulation of Na+, K+ and proline, Plant Cell Tiss. Org. Cult., 2002, 69, 55–64 http://dx.doi.org/10.1023/A:101502891962010.1023/A:1015028919620Search in Google Scholar

[23] Watanabe S., Kojima K., Ide Y., Sasaki S., Effects of saline and osmotic stress on proline and sugar accumulation in Populus euphratica in vitro, Plant Cell Tiss. Org. Cult., 2000, 63, 199–206 http://dx.doi.org/10.1023/A:101061950368010.1023/A:1010619503680Search in Google Scholar

[24] Zhang F., Yang Y.L., He W.L., Zhao X., Zhang L.X., Effects of salinity on growth and compatible solutes of callus induced from Populus euphratica, In Vitro Cell Dev. Biol., 2004, 40, 491–494 10.1079/IVP2004546Search in Google Scholar

[25] Dziadczyk P., Bolibok H., Tyrka M., Hortyñski J.A., In vitro selection of strawberry (Fragaria × ananassa Duch.) clones tolerant to salt stress, Euphytica, 2003, 132, 49–55 http://dx.doi.org/10.1023/A:102464760051610.1023/A:1024647600516Search in Google Scholar

[26] Morabito D., Mills D., Prat D., Dizengremel P., Response of clones of Eucalyptus microtheca to NaCl in vitro, Tree Physiol., 1994, 14, 201–210 http://dx.doi.org/10.1093/treephys/14.2.20110.1093/treephys/14.2.201Search in Google Scholar

[27] Chen D.M., Keiper F.J., De Filippis L.F., Physiological changes accompanying the induction of salt tolerance in Eucalyptus microcorys shoots in tissue culture, J. Plant Physiol., 1998, 152, 555–563 http://dx.doi.org/10.1016/S0176-1617(98)80277-010.1016/S0176-1617(98)80277-0Search in Google Scholar

[28] Woodward A.J., Bennett I.J., The effect of salt stress and abscisic acid on proline production, chlorophyll content and growth of in vitro propagated shoots of Eucalyptus camaldulensi, Plant Cell Tiss. Org. Cult., 2005, 82, 189–200 http://dx.doi.org/10.1007/s11240-005-0515-410.1007/s11240-005-0515-4Search in Google Scholar

[29] Singh S.K., Sharma H.C., Goswami H.M., Datta S.P., Singh S.P., In vitro growth and leaf composition of grapevine cultivars as affected by sodium chloride, Biol. Plant., 2000, 43, 283–286 http://dx.doi.org/10.1023/A:100272071478110.1023/A:1002720714781Search in Google Scholar

[30] Hamrouni L., Abdallah F.B., Abdelly C., Ghorbel A., In vitro culture: a simple and efficient way for salttolerant grapevine genotype selection [La culture in vitro: un moyen rapide et efficace pour sélectionner des génotypes de vigne tolérant la salinité], C. R. Biol., 2008, 331, 152–163 (in French) http://dx.doi.org/10.1016/j.crvi.2007.11.00210.1016/j.crvi.2007.11.002Search in Google Scholar PubMed

[31] Shiyab S.M., Shibli R.A., Mohammad M.M., Influence of sodium chloride salt stress on growth and nutrient acquisition of sour orange in vitro, J. Plant Nutr., 2003, 26, 985–996 http://dx.doi.org/10.1081/PLN-12002007010.1081/PLN-120020070Search in Google Scholar

[32] Montoliu A., López-Climent M.F., Arbona V., Pérez-Clemente R.M., Aurelio Gómez-Cadenas A., A novel in vitro tissue culture approach to study salt stress responses in citrus, Plant Growth Regul., 2009, 59, 179–187 http://dx.doi.org/10.1007/s10725-009-9401-010.1007/s10725-009-9401-0Search in Google Scholar

[33] Chelli-Chaabouni A., Mosbah A.B., Maalej M., Gargouri K., Gargouri-Bouzid R., Drira N., In vitro salinity tolerance of two pistachio rootstocks: Pistacia vera L. and P. atlantica Desf, Environ. Exp. Bot., 2010, 69, 302–312 http://dx.doi.org/10.1016/j.envexpbot.2010.05.01010.1016/j.envexpbot.2010.05.010Search in Google Scholar

[34] Munns R., Comparative physiology of salt and water stress, Plant Cell Environ., 2002, 25, 239–250 http://dx.doi.org/10.1046/j.0016-8025.2001.00808.x10.1046/j.0016-8025.2001.00808.xSearch in Google Scholar

[35] Hare P.D., Cress W.A., Van Staden J., Dissecting the roles of osmolyte accumulation during stress, Plant Cell Environ., 1998, 21, 535–553 http://dx.doi.org/10.1046/j.1365-3040.1998.00309.x10.1046/j.1365-3040.1998.00309.xSearch in Google Scholar

[36] Heuer B., Osmoregulatory role of proline in plants exposed to environmental stresses, In: Pessarakli M. (Ed.), Handbook of Plant and Crop Stress, 2nd edn. CRC, 1999 10.1201/9780824746728.ch32Search in Google Scholar

[37] Ghoulam A.F., Fares K., Effects of salt stress on growth, inorganic ions and proline accumulation in relation to osmotic adjustment in five sugar beet cultivars, Environ. Exp. Bot., 2002, 47, 39–50 http://dx.doi.org/10.1016/S0098-8472(01)00109-510.1016/S0098-8472(01)00109-5Search in Google Scholar

[38] Heuer B., Influence of exogenous application of proline and glycinebetaine on growth of salt-stressed tomato plants, Plant Sci., 2003, 165, 693–699 http://dx.doi.org/10.1016/S0168-9452(03)00222-X10.1016/S0168-9452(03)00222-XSearch in Google Scholar

[39] Ashraf M., Foolad M.R., Roles of glycine-betaine and proline in improving plant abiotic stress resistance, Environ. Exp. Bot., 2007, 59, 206–216 http://dx.doi.org/10.1016/j.envexpbot.2005.12.00610.1016/j.envexpbot.2005.12.006Search in Google Scholar

[40] Kaya C., Tuna A.L., Ashraf M., Altunlu H., Improved salt tolerance of melon (Cucumis melo L.) by the addition of proline and potassium nitrate, Environ. Exp. Bot., 2007, 60, 397–403 http://dx.doi.org/10.1016/j.envexpbot.2006.12.00810.1016/j.envexpbot.2006.12.008Search in Google Scholar

[41] Khorami R., Safarnejad Shouvarzi M., Effect of salt stress on ion distribution and proline accumulation in Foeniculum vulgare using in vitro technique, IJSN, 2010, 2, 168–175 Search in Google Scholar

[42] Cushman J.C., Osmoregulation in plants: implications for agriculture, Amer. Zool., 2001, 41, 758–769 http://dx.doi.org/10.1668/0003-1569(2001)041[0758:OIPIFA]2.0.CO;2Search in Google Scholar

[43] Mahajan S., Tuteja N., Cold, salinity and drought stresses: An overview, Arch. Biochem. Biophys., 2005, 444, 139–158 http://dx.doi.org/10.1016/j.abb.2005.10.01810.1016/j.abb.2005.10.018Search in Google Scholar PubMed

[44] Mansour M.M.F., Cell permeability under salt stress, In: Jaiwal P.K., Singh R.P., Gulati A. (Eds.), Strategies for improving salt tolerance in higher plants, Oxford and IBH, New Delhi, 1997 Search in Google Scholar

[45] Jamil M., Ashraf M., Rehman S., Rha E.S., Cell membrane stability (CMS): a simple technique to check salt stress alleviation through seed priming with GA3 in canola, In: Ashraf M., Ozturk M., Athar H.R., Salinity and water stress, improving crop efficiency, Springer-Verlag, Berlin, 2009 Search in Google Scholar

[46] Sullivan C.Y., Mechanism of heat and drought resistance in grain sorghum and methods of measurement, In: Rao N.G.P., L.R. House Editors, Sorghum in the seventies, Oxford & IBH Publ Co., New Delhi, India, 1972 Search in Google Scholar

[47] Bajji M., Kinet J.M., Lutts S., The use of the electrolyte leakage method for assessing cell membrane stability as a water stress tolerance test in durum wheat, Plant Growth Regul., 2001, 36, 61–70 http://dx.doi.org/10.1023/A:101473271454910.1023/A:1014732714549Search in Google Scholar

[48] Lutts S., Kinet J.M., Bouharmont J., NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance, Ann. Bot., 1996, 78, 389–398 http://dx.doi.org/10.1006/anbo.1996.013410.1006/anbo.1996.0134Search in Google Scholar

[49] Farooq S., Azam F., The use of cell membrane stability (CMS) technique to screen for salt tolerant wheat varieties, J. Plant Physiol., 2006, 163, 629–637 http://dx.doi.org/10.1016/j.jplph.2005.06.00610.1016/j.jplph.2005.06.006Search in Google Scholar PubMed

[50] Xue Y.F., Liu Z.P., Antioxidant enzymes and physiological characteristics in two Jerusalem artichoke cultivars under salt stress, Russ. J. Plant Physiol., 2007, 55, 776–781 http://dx.doi.org/10.1134/S102144370806006X10.1134/S102144370806006XSearch in Google Scholar

[51] Avato P., Morone-Fortunato I., Ruta C., D’Elia R., Glandular hairs and essential oils in micropropagated plants of Salvia officinalis L., Plant Sci., 2005, 169, 29–36 http://dx.doi.org/10.1016/j.plantsci.2005.02.00410.1016/j.plantsci.2005.02.004Search in Google Scholar

[52] McKimmie T., Dobrenz A.K., A method for evaluation of salt tolerance during germination, emergence, and seedling establishment, Agron. J., 1987, 79, 943–945 http://dx.doi.org/10.2134/agronj1987.00021962007900050038x10.2134/agronj1987.00021962007900050038xSearch in Google Scholar

[53] Rumbaugh M.D., Pendery B.M., Remove from marked records germination salt resistance of alfalfa (Medicago sativa L.) germplasm in relation to subspecies and centers of diversity, Plant Soil, 1990, 124, 47–51 http://dx.doi.org/10.1007/BF0001093010.1007/BF00010930Search in Google Scholar

[54] Al-Khatib M.M., McNeilly T., Collins J.C., The potential of selection and breeding for improved salt tolerance in lucerne (Medicago sativa L.), Euphytica, 1992, 65, 43–51 http://dx.doi.org/10.1007/BF0002219810.1007/BF00022198Search in Google Scholar

[55] Al-Khatib M.M., McNeilly T., Collins J.C., Between and within cultivar variability in salt tolerance in lucerne, (Medicago sativa L.), Genet. Resour. Crop Ev., 1994, 41, 159–164 http://dx.doi.org/10.1007/BF0005163210.1007/BF00051632Search in Google Scholar

[56] Peel M.D., Waldron B.L., Jensen K.B., Chatterton N.J., Horton H., Dudley L.M., Screening for salinity tolerance in alfalfa: a repeatable method, Crop Sci., 2004, 44, 2049–2053 http://dx.doi.org/10.2135/cropsci2004.204910.2135/cropsci2004.2049Search in Google Scholar

[57] Torabi M., Halim R.A., Sinniah U.R., Choukan R., Influence of salinity on the germination of Iranian alfalfa ecotypes, Afr. J. Agricult. Res., 2011, 6, 4624–4630 Search in Google Scholar

[58] Soltani A., Khodarahmpour Z., Jafari A.A., Nakhjavan S., Selection of alfalfa (Medicago sativa L.) cultivars for salt stress tolerance using germination indices, Afr. J. Biotechnol., 2012, 11, 7899–7905 10.5897/AJB11.3977Search in Google Scholar

[59] Farissi M., Bouizgaren A., Faghire M., Bargaz A., Ghoulam C., Agro-physiological responses of Moroccan alfalfa (Medicago sativa L.) populations to salt stress during germination and early seedling stages, Seed Sci. Technol., 2011, 39, 389–401 10.15258/sst.2011.39.2.11Search in Google Scholar

[60] Groat R.G., Vance C.P., Root nodule enzymes of ammonia assimilation in alfalfa (Medicago sativa L.), Plant Physiol., 1981, 67, 1198–1203 http://dx.doi.org/10.1104/pp.67.6.119810.1104/pp.67.6.1198Search in Google Scholar PubMed PubMed Central

[61] Bates L.S., Waldren R.P., Teare I.D., Rapid determination of free proline for water stress studies, Plant Soil, 1973, 39, 205–207 http://dx.doi.org/10.1007/BF0001806010.1007/BF00018060Search in Google Scholar

[62] Baker D.E., Gorsline G.W., Smith C.G., Thomas W.I., Grube W.E., Raglan J.L., Techniques for rapid analysis of corn leaves for eleven elements, Agron. J., 1964, 56, 133–136 http://dx.doi.org/10.2134/agronj1964.00021962005600020003x10.2134/agronj1964.00021962005600020003xSearch in Google Scholar

[63] Watson M.E., Isaac R.A., Analitical instruments for soil and plant analysis, In: Westerman R.L. (Ed.), Soil Testing and Plant Analysis, 3rd edn. SSSA Book Series 3, Soil Science Society of America, Madison, W.I, 1990 Search in Google Scholar

[64] Tal M., In vitro methodology for increasing salt tolerance in crop plants, Acta Hortic., 1993, 336, 69–78 10.17660/ActaHortic.1993.336.8Search in Google Scholar

[65] Tal M., In vitro selection for salt tolerance in crop plants: theoretical and practical considerations, In Vitro Cell. Dev. Biol.-Plant, 1994, 30, 175–180 http://dx.doi.org/10.1007/BF0282302810.1007/BF02823028Search in Google Scholar

[66] Masood A., Shah N.A., Zeeshan M., Abraham G., Differential response of antioxidant enzymes to salinity stress in two varieties of Azolla (Azolla pinnata and Azolla filiculoides), Environ. Exp. Bot., 2006, 58, 216–222 http://dx.doi.org/10.1016/j.envexpbot.2005.08.00210.1016/j.envexpbot.2005.08.002Search in Google Scholar

[67] Zimmerman E.M., Jull L.G., Sodium chloride injury on buds of Acer platanoides, Tilia cordata, and Viburnum lantana, Arboric. Urb. For., 2006, 32, 45–53 10.48044/jauf.2006.006Search in Google Scholar

[68] Khayyat M., Tehranifar A., Akbarian A., Shayesteh Nia S., Khabari S., Effect of calcium forms on electrolyte leakage, total nitrogen, yield and biomass production by strawberry plants under NaCl salinity, J. Cent. Eur. Agric., 2009, 10, 297–302 Search in Google Scholar

[69] Ashraf M., McNeilly T., Bradshaw A.D., The response to NaCl and ionic content of selected salt-tolerant and normal lines of three legume forage species in sand culture, New Phytol., 1986, 104, 463–471 http://dx.doi.org/10.1111/j.1469-8137.1986.tb02913.x10.1111/j.1469-8137.1986.tb02913.xSearch in Google Scholar

[70] Johnson D.W., Smith S.E., Dobrenz A.K., Improved regrowth salt tolerance in alfalfa, Forage and Grain: A College of Agriculture Report, College of Agriculture, University of Arizona, Tucson, AZ, 1989 Search in Google Scholar

[71] Khan M.G., Silberbush M., Lips S.H., Responses of alfalfa to potassium, calcium, and nitrogen under stress induced by sodium chloride, Biol. Plantarum, 1997, 40, 251–259 http://dx.doi.org/10.1023/A:100107270468610.1023/A:1001072704686Search in Google Scholar

[72] Torabi M., Halim M.R.A., Variation of root and shoot growth and free proline accumulation in Iranian alfalfa ecotypes under salt stress, J. Food Agric. Environ., 2010, 8, 323–327 Search in Google Scholar

[73] Sibole J.V., Cabot C., Poschenrieder C., Barceló J., Ion allocation in two different salt-tolerant Mediterranean Medicago species, J. Plant Physiol., 2003, 160, 1361–1365 http://dx.doi.org/10.1078/0176-1617-0081110.1078/0176-1617-00811Search in Google Scholar PubMed

[74] Mohammadi H., Poustini K., Ahmadi A., Root nitrogen remobilization and ion status of two alfalfa (Medicago sativa L.) cultivars in response to salinity stress, J. Agron. Crop Sci., 194, 126–134 10.1111/j.1439-037X.2008.00294.xSearch in Google Scholar

[75] Sannazzaro A.I., Echeverría M., Albertó E.O., Ruiz O.A., Menéndez AB., Modulation of polyamine balance in Lotus glaber by salinity and arbuscular mycorrhiza, Plant Physiol. Biochem., 2007, 45, 39–46 http://dx.doi.org/10.1016/j.plaphy.2006.12.00810.1016/j.plaphy.2006.12.008Search in Google Scholar PubMed

[76] Aghaleh M., Niknam V., Effect of salinity on some physiological and biochemical parameters in explants of two cultivars of soybean (Glycine max L.), J. Phytol., 2009, 1, 86–94 Search in Google Scholar

[77] Petrusa L., Winicov I., Proline status in salt-tolerante and salt sensitive alfalfa cell lines and plants in response to NaCl, Plant Physiol. Biochem., 1997, 35, 303–310 Search in Google Scholar

[78] Szabados L., Savouré A., Proline: a multifunctional amino acid, Trends Plant Sci., 2010, 15, 89–97 http://dx.doi.org/10.1016/j.tplants.2009.11.00910.1016/j.tplants.2009.11.009Search in Google Scholar PubMed

[79] Lehmann S., Funck D., Szabados L., Rentsch D., Proline metabolism and transport in plant development, Amino Acids, 2010, 39, 949–962 http://dx.doi.org/10.1007/s00726-010-0525-310.1007/s00726-010-0525-3Search in Google Scholar PubMed

[80] Hassan N.M., Serag M.S., El-Feky F.M., Nemat Alla M.M., In vitro selection of mung bean and tomato for improving tolerance to NaCl, Ann. Appl. Biol., 2008, 152, 319–330 http://dx.doi.org/10.1111/j.1744-7348.2008.00221.x10.1111/j.1744-7348.2008.00221.xSearch in Google Scholar

[81] Delauney A.J., Verma D.P.S., Proline biosynthesis and osmoregulation in plants, Plant J., 1993, 4, 215–223 http://dx.doi.org/10.1046/j.1365-313X.1993.04020215.x10.1046/j.1365-313X.1993.04020215.xSearch in Google Scholar

[82] Ashraf M., The effect of NaCl on water relations, chlorophyll, and protein and proline contents of two cultivars of Black gram (Vigna mungo L.), Plant Soil, 1989, 119, 205–210 http://dx.doi.org/10.1007/BF0237040910.1007/BF02370409Search in Google Scholar

[83] Lutts S., Kinet J.M., Bouharmont J., Effects of salt stress on growth, mineral nutrition and proline accumulation in relation to osmotic adjustment in rice (Oryza sativa L.) cultivars differing in salinity resistance, Plant Growth Reg., 1996, 19, 207–218 http://dx.doi.org/10.1007/BF0003779310.1007/BF00037793Search in Google Scholar

[84] Lutts S., Majerus V., Kinet J.-M., NaCl effects on proline metabolism in rice (Oryza sativa) seedlings, Physiol. Plant., 1999, 105, 450–458 http://dx.doi.org/10.1034/j.1399-3054.1999.105309.x10.1034/j.1399-3054.1999.105309.xSearch in Google Scholar

[85] de-Lacerda C.F., Cambraia J., Oliva M.A., Ruiz H.A., Prisco J.T., Solute accumulation and distribution during shoot and leaf development in two sorghum genotypes under salt stress, Environ. Exp. Bot., 2003, 49, 107–120 http://dx.doi.org/10.1016/S0098-8472(02)00064-310.1016/S0098-8472(02)00064-3Search in Google Scholar

Published Online: 2013-5-22
Published in Print: 2013-8-1

© 2013 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 30.4.2024 from https://www.degruyter.com/document/doi/10.2478/s11535-013-0194-1/html
Scroll to top button