Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access April 9, 2008

Review of surfactin chemical properties and the potential biomedical applications

  • Gabriela Seydlová EMAIL logo and Jaroslava Svobodová
From the journal Open Medicine

Abstract

Surfactin, a highly powerful biosurfactant produced by various strains of the genus Bacillus, exhibits antibacterial, antiviral, antitumor and hemolytic action. This anionic cyclic lipopeptide is constituted by a heptapeptide interlinked with a β-hydroxy fatty acid. Due to its amhipathic nature surfactin incorporates into the phospholipid bilayer and induces permeabilization and perturbation of target cells. The rising antibiotic resistance as well as a number of remarkable surfactin activities shows that it deserves special interest and is considered as a candidate compound for combating several health related issues. In this review, the current state of knowledge of surfactin properties, biomedical potential and limitations for its application is presented.

[1] Boman H.G., Peptide antibiotics and their role in innate immunity, Annu. Rev. Immunol., 1995, 13, 61–92 http://dx.doi.org/10.1146/annurev.iy.13.040195.00042510.1146/annurev.iy.13.040195.000425Search in Google Scholar

[2] Zasloff M., Innate immunity, antimicrobial peptides, and protection of the oral cavity, Lancet, 2002, 360, 1116–7 http://dx.doi.org/10.1016/S0140-6736(02)11239-610.1016/S0140-6736(02)11239-6Search in Google Scholar

[3] Zhang L., Falla T.J., Cationic antimicrobial peptides — An update, Expert. Opin. Invest. Drugs, 2004, 13, 97–106 10.1517/13543784.13.2.97Search in Google Scholar

[4] Giuliani A., Pirri G., Fabiole Nicoletto S., Antimicrobial peptides: an overview of a promising class of therapeutics, Central European Journal of Biology, 2007, 2, 1–33 http://dx.doi.org/10.2478/s11535-007-0010-510.2478/s11535-007-0010-5Search in Google Scholar

[5] Arima K., Kakinuma A., Tamura G., Surfactin, a crystalline peptidelipid surfactant produced by Bacillus subtilis: isolation, characterization and its inhibition of fibrin clot formation, Biochem. Biophys. Res. Commun., 1968, 31, 488–494 http://dx.doi.org/10.1016/0006-291X(68)90503-210.1016/0006-291X(68)90503-2Search in Google Scholar

[6] Kakinuma A., Hori M., Isono M., Tamura G., Arima K., Determination of amino acid sequence in surfactin, a crystalline peptidolipid surfactant produced by Bacillus subtilis, Agric. Biol. Chem., 1969, 33, 971–997 10.1080/00021369.1969.10859408Search in Google Scholar

[7] Rosenberg E., Ron E.Z., High-and low-molecularmass microbial surfactants, Appl. Microbiol. Biotechnol., 1999, 52, 154–162 http://dx.doi.org/10.1007/s00253005150210.1007/s002530051502Search in Google Scholar

[8] Mulligan C.N., Environmental applications for biosurfactants, Environ. Pollut., 2005, 133, 183–198 http://dx.doi.org/10.1016/j.envpol.2004.06.00910.1016/j.envpol.2004.06.009Search in Google Scholar

[9] Becher P., Emulsions, theory and practice, 2nd ed., Reinhold Publishing, New York, 1965 Search in Google Scholar

[10] Cameotra S.S., Makkar R.S., Synthesis of biosurfactants in extreme conditions, Appl. Microbiol. Biotechnol., 1998, 50, 520–529 http://dx.doi.org/10.1007/s00253005132910.1007/s002530051329Search in Google Scholar

[11] Geiger T., Clarke S., Deamidation, isomerization, and racemization at asparaginyl and aspartyl residues in peptides. Succinimide-linked reactions that contribute to protein degradation, J. Biol. Chem., 1987, 262, 785–794 10.1016/S0021-9258(19)75855-4Search in Google Scholar

[12] Desai J.D., Banat I.M., Microbial production of surfactants and their commercial potential, Microbiol. Mol. Biol. Rev., 1997, 61, 47–64 10.1128/mmbr.61.1.47-64.1997Search in Google Scholar

[13] Kinsinger R.F., Kearns D.B., Hale M., Fall R., Genetic requirements for potassium ion-dependent colony spreading in Bacillus subtils, J. Bacteriol., 2005, 187, 8462–8469 http://dx.doi.org/10.1128/JB.187.24.8462-8469.200510.1128/JB.187.24.8462-8469.2005Search in Google Scholar

[14] Julkowska D., Obuchowski M., Holland I.B., Séror S.J., Comparative analysis of the development of swarming communities of Bacillus subtilis 168 and a natural wild type: critical effects of surfactin and the composition of the medium, J. Bacteriol., 2005, 187, 65–76 http://dx.doi.org/10.1128/JB.187.1.65-76.200510.1128/JB.187.1.65-76.2005Search in Google Scholar

[15] Stanley N.R., Lazazzera B.A, Environmental signals and regulatory pathways that influence biofilm formation, Mol. Microbiol., 2004, 52, 917–924 http://dx.doi.org/10.1111/j.1365-2958.2004.04036.x10.1111/j.1365-2958.2004.04036.xSearch in Google Scholar

[16] Bonmatin J.M., Laprévote O., Peypoux F., Diversity among microbial cyclic lipopeptides: iturins and surfactins. Activity-structure relationship to design new bioactive agents, Comb. Chem. High Throughput Screen., 2003, 6, 541–556 10.2174/138620703106298716Search in Google Scholar

[17] Kowall M., Vater J., Kluge B., Stein T., Franke P., Ziessow D., Separation and characterization of surfactin isoforms produced by Bacillus subtilis OKB 105, J. Colloid. Interface Sci., 1998, 204, 1–11 http://dx.doi.org/10.1006/jcis.1998.555810.1006/jcis.1998.5558Search in Google Scholar

[18] Hue N., Serani L., Laprévote O., Structural investigation of cyclic peptidolipids from Bacillus subtilis by high energy tandem mass spectrometry, Rapid Commun. Mass Spectrom., 2001, 15, 203–209 http://dx.doi.org/10.1002/1097-0231(20010215)15:3<203::AID-RCM212>3.0.CO;2-610.1002/1097-0231(20010215)15:3<203::AID-RCM212>3.0.CO;2-6Search in Google Scholar

[19] Bonmatin J.M., Genest M., Labbé H., Ptak M., Solution three-dimensional structure of surfactin: a cyclic lipopeptide studied by 1H-NMR, distance geometry, and molecular dynamics, Biopolymers, 1994, 34, 975–986 http://dx.doi.org/10.1002/bip.36034071610.1002/bip.360340716Search in Google Scholar

[20] Bonmatin J.M., Genest M., Labbé H., Grangemard I., Peypoux F., Maget-Dana R., et al., Production, isolation and characterization of [Leu4]-and [Ile4]-surfactins from Bacillus subtilis, Lett. Peptide Sci., 1995, 2, 41–47 http://dx.doi.org/10.1007/BF0012292210.1007/BF00122922Search in Google Scholar

[21] Tsan P., Volpon L., Besson F., Lancelin J.M., Structure and dynamics of surfactin studied by NMR in micellar media, J. Am. Chem. Soc., 2007, 129, 1968–77 http://dx.doi.org/10.1021/ja066117q10.1021/ja066117qSearch in Google Scholar

[22] Peypoux F., Bonmatin J.M., Wallach J., Recent trends in the biochemistry of surfactin, Appl. Microbiol. Biotechnol., 1999, 51, 553–563 http://dx.doi.org/10.1007/s00253005143210.1007/s002530051432Search in Google Scholar

[23] Heerklotz H., Seelig J., Detergent-like action of the antibiotic peptide surfactin on lipid membranes, Biophys. J., 2001, 81, 1547–1554 10.1016/S0006-3495(01)75808-0Search in Google Scholar

[24] Bernheimer A.W., Avigad L.S., Nature and properties of a cytolytic agent produced by Bacillus subtilis, J. Gen. Microbiol., 1970, 6, 361–366 10.1099/00221287-61-3-361Search in Google Scholar

[25] Carrillo C., Teruel J.A., Aranda F.A., Ortiz A., Molecular mechanism of membrane permeabilization by the peptide antibiotic surfactin, Biochem. Biophys. Acta, 2003, 1611, 91–97 http://dx.doi.org/10.1016/S0005-2736(03)00029-410.1016/S0005-2736(03)00029-4Search in Google Scholar

[26] Maget-Dana R., Ptak M., Interactions of surfactin with membrane models, Biophys. J., 1995, 68, 1937–1943 10.1016/S0006-3495(95)80370-XSearch in Google Scholar

[27] Grau A., Gomez Fernandez J.C., Peypoux F., Ortiz A., A study on the interactions of surfactin with phospholipid vesicles, Biochim. Biophys. Acta, 1999, 1418, 307–319 http://dx.doi.org/10.1016/S0005-2736(99)00039-510.1016/S0005-2736(99)00039-5Search in Google Scholar

[28] Heerklotz H., Seelig J., Leakage and lysis of lipid membranes induced by the lipopeptide surfactin, Eur. Biophys. J., 2007, 36, 305–314 http://dx.doi.org/10.1007/s00249-006-0091-510.1007/s00249-006-0091-5Search in Google Scholar

[29] Maget-Dana R., Ptak M., Interfacial properties of surfactin, J. Colloid Interface Sci., 1992, 153, 285–291 http://dx.doi.org/10.1016/0021-9797(92)90319-H10.1016/0021-9797(92)90319-HSearch in Google Scholar

[30] Osman M., Høiland H., Holmsen H., Ishigami Y., Tuning micelles of a bioactive heptapeptide biosurfactant via extrinsically induced conformational transition of surfactin assembly, J. Pept. Sci., 1998, 4, 449–458 http://dx.doi.org/10.1002/(SICI)1099-1387(199811)4:7<449::AID-PSC164>3.0.CO;2-#Search in Google Scholar

[31] Thimon L., Peypoux F., Maget-Dana R., Roux B., Michel G., Interactions of bioactive lipopeptides, iturin A and surfactin from Bacillus subtilis, Biotechnol. Appl. Biochem., 1992, 16, 144–151 Search in Google Scholar

[32] Hosono K., Suzuki H., Acylpeptides, the inhibition of cyclic adenosine 3′,5′-monophosphate phosphodiesterase. III. Inhibition of cyclic AMP phosphodiesterase, J. Antibiot., 1983, 36, 679–683 10.7164/antibiotics.36.679Search in Google Scholar

[33] Morikawa M., Hirata Y., Imanaka T., A study on the structure-function relationship of lipopeptide biosurfactants, Biochim. Biophys. Acta, 2000, 1488, 211–218 10.1016/S1388-1981(00)00124-4Search in Google Scholar

[34] Lipmann F., Gevers W., Kleinkauf H., Roskoski, R. Jr., Polypeptide synthesis on protein templates: the enzymatic synthesis of gramicidin S and tyrocidine, Adv. Enzymol. Relat. Areas Mol. Biol., 1971, 35, 1–34 http://dx.doi.org/10.1002/9780470122808.ch110.1002/9780470122808.ch1Search in Google Scholar

[35] Sieber S.A., Marahiel M.A., Learning from nature’s drug factories: nonribosomal synthesis of macrocyclic peptides, J. Bacteriol., 2003, 185, 7036–7043 http://dx.doi.org/10.1128/JB.185.24.7036-7043.200310.1128/JB.185.24.7036-7043.2003Search in Google Scholar

[36] Kluge B., Vater J., Salnikow J., Eckart K., Studies on the biosynthesis of surfactin, a lipopeptide antibiotic from Bacillus subtilis ATCC 21332, FEBS Lett., 1988, 231, 107–110 http://dx.doi.org/10.1016/0014-5793(88)80712-910.1016/0014-5793(88)80712-9Search in Google Scholar

[37] Nakano M.M., Zuber P., Molecular biology of antibiotic production in Bacillus, Biotechnology, 1990, 10, 223–240 10.3109/07388559009038209Search in Google Scholar

[38] Vater J., Stein T., Vollenbroich D., Kruft V., Wittmann-Liebold B., P. Franke, et al., The modular organization of multifunctional peptide synthetases, J. Protein Chem., 1997, 16, 557–564 http://dx.doi.org/10.1023/A:102638610025910.1023/A:1026386100259Search in Google Scholar

[39] Steller S., Sokoll A., Wilde C., Bernhard F., Franke P., Vater J., Initiation of surfactin biosynthesis and the role of the SrfD-thioesterase protein, Biochemistry, 2004, 43, 11331–11343 http://dx.doi.org/10.1021/bi049341610.1021/bi0493416Search in Google Scholar

[40] Conti E., Stachelhaus T., Marahiel M.A, Brick P., Structural basis for the activation of phenylalanine in the non-ribosomal biosynthesis of gramicidin S, EMBO J., 1997, 16, 4174–4183 http://dx.doi.org/10.1093/emboj/16.14.417410.1093/emboj/16.14.4174Search in Google Scholar

[41] Dieckmann R., Lee Y.O., van Liempt H., von Dohren H., Kleinkauf H., Expression of an active adenylate-forming domain of peptide synthetases corresponding to acyl-CoA-synthetases, FEBS Lett., 1995, 357, 212–216 http://dx.doi.org/10.1016/0014-5793(94)01342-X10.1016/0014-5793(94)01342-XSearch in Google Scholar

[42] Weber T., Baumgartner R., Renner C., Marahiel M.A., Holak T.A., Solution structure of PCP, a prototype for the peptidyl carrier domains of modular peptide synthetases, Structure, 2000, 8, 407–418 http://dx.doi.org/10.1016/S0969-2126(00)00120-910.1016/S0969-2126(00)00120-9Search in Google Scholar

[43] Keating T.A., Marshall C.G., Walsh C.T., Keating A.E., The structure of VibH represents nonribosomal peptide synthetase condensation, cyclization and epimerization domains, Nat. Struct. Biol., 2002, 9, 522–526 10.1038/nsb810Search in Google Scholar PubMed

[44] Belshaw P.J., Walsh C.T., Stachelhaus T., Aminoacyl-CoAs as probes of condensation domain selectivity in nonribosomal peptide synthesis, Science, 1999, 284, 486–489 http://dx.doi.org/10.1126/science.284.5413.48610.1126/science.284.5413.486Search in Google Scholar

[45] Schwarzer D., Mootz H.D., Linne U., Marahiel M.A., Regeneration of misprimed nonribosomal peptide synthetases by type II thioesterases, Proc. Natl. Acad. Sci. U.S.A., 2002, 99, 14083–14088 http://dx.doi.org/10.1073/pnas.21238219910.1073/pnas.212382199Search in Google Scholar

[46] Bruner S.D., Weber T., Kohli R.M., Schwarzer D., Marahiel M.A., Walsh C.T., et al., Structural basis for the cyclization of the lipopeptide antibiotic surfactin by the thioesterase domain SrfTE, Structure, 2002, 10, 301–310 http://dx.doi.org/10.1016/S0969-2126(02)00716-510.1016/S0969-2126(02)00716-5Search in Google Scholar

[47] Tseng C.C., Bruner S.D., Kohli R.M., Marahiel M.A., Walsh C.T., Siber S.A., Characterization of the surfactin synthetase C-terminal thioesterase domain as a cyclic depsipeptide synthese, Biochemistry, 2002, 41, 13350–13359 http://dx.doi.org/10.1021/bi026592a10.1021/bi026592aSearch in Google Scholar

[48] Linne U., Marahiel M.A., Control of directionality in nonribosomal peptide synthesis: role of the condensation domain in preventing misinitiation and timing of epimerization, Biochemistry, 2000, 39, 10439–10447 http://dx.doi.org/10.1021/bi000768w10.1021/bi000768wSearch in Google Scholar

[49] Tsuge K., Ohata Y., Shoda M., Gene yerP, involved in surfactin self-resistance in Bacillus subtilis, Antimicrob. Agents Chemother., 2001, 45, 3566–3573 http://dx.doi.org/10.1128/AAC.45.12.3566-3573.200110.1128/AAC.45.12.3566-3573.2001Search in Google Scholar

[50] Guenzi E., Galli G., Grgurina I., Pace E., Ferranti P., Grandi G., Coordinate transcription and physical linkage of domains in surfactin synthetase are not essential for proper assembly and ctivity of the multienzyme copmlex, J. Biol. Chem., 1998, 273, 14403–14410 http://dx.doi.org/10.1074/jbc.273.23.1440310.1074/jbc.273.23.14403Search in Google Scholar

[51] Hamoen L.W., Venema G., Kuipers O.P., Controlling competence in Bacillus subtilis: shared use of regulators, Microbiology, 2003, 149, 9–17 http://dx.doi.org/10.1099/mic.0.26003-010.1099/mic.0.26003-0Search in Google Scholar

[52] Nakano M.M., Corbell N., Besson J., Zuber P., Isolation and charcterization of sfp: a gene that functions in the production of the lipopeptide biosurfactant, surfactin, in Bacillus subtilis, J. Bacteriol., 1992, 182, 3274–3277 http://dx.doi.org/10.1128/JB.182.11.3274-3277.200010.1128/JB.182.11.3274-3277.2000Search in Google Scholar

[53] Lambalot R.H., Gehring A.M., Flugel R.S., Zuber P., LaCelle M., Marahiel M.A., et al., A new enzyme superfamily — the phosphopantetheinyl transferases, Chem Biol., 1996, 3, 923–936 http://dx.doi.org/10.1016/S1074-5521(96)90181-710.1016/S1074-5521(96)90181-7Search in Google Scholar

[54] Sheppard J.D., Jumarie C., Cooper D.G., Laprade R., Ionic channels induced by surfactin in planar lipid bilayer membranes, Biochim. Biophys. Acta, 1991, 26, 13–23 10.1016/0005-2736(91)90406-XSearch in Google Scholar

[55] Kim K., Jung S.Y., Lee D.K., Jung J.K., Park J.K., Kim D.K., et al., Suppression of inflammatory responses by surfactin, a selective inhibitor of platelet cytosolic phospholipase A2, Biochem. Pharmacol., 1998, 55, 975–985 http://dx.doi.org/10.1016/S0006-2952(97)00613-810.1016/S0006-2952(97)00613-8Search in Google Scholar

[56] Kracht M., Rokos H., Ozel M., Kowall M., Pauli G., Vater J., Antiviral and hemolytic activities of surfactin isoforms and their methyl ester derivatives, J. Antibiot., 1999, 52, 613–619. 10.7164/antibiotics.52.613Search in Google Scholar

[57] Kameda Y., Oira S., Matsui K., Kanatomo S., Hase T., Antitumor activity of Bacillus natto. V. Isolation and characterization of surfactin in the culture medium of Bacillus natto KMD 2311, Chem. Pharm. Bull., 1974, 22, 938–944 10.1248/cpb.22.938Search in Google Scholar

[58] Barry A.L., Fuchs P.C., Brown S.D., Evaluation of daptomycin susceptibility testing by Etest and the effect of different batches of media, J. Antimicrob. Chemother., 2001, 48, 557–561 http://dx.doi.org/10.1093/jac/48.1.12110.1093/jac/48.1.121Search in Google Scholar

[59] Rotondi K.S., Gierasch L.M., A well-defined amphipathic conformation for the calcium-free cyclic lipopeptide antibiotic, daptomycin, in aqueous solution, Biopolymers, 2005, 80, 374–385 http://dx.doi.org/10.1002/bip.2023810.1002/bip.20238Search in Google Scholar

[60] Goldberg J., Cyclic peptide antibiotics; selfassembly required, Trends Microbiol., 2001, 9, 412 http://dx.doi.org/10.1016/S0966-842X(01)02180-110.1016/S0966-842X(01)02180-1Search in Google Scholar

[61] Wright J.R., Pulmonary surfactant: a front line of lung host defense, J. Clin. Invest., 2003, 111, 1453–1455 10.1172/JCI200318650Search in Google Scholar

[62] Singh P., Cameotra S.S., Potential applications of microbial surfactants in biomedical sciences, Trends Biotechnol., 2004, 22, 142–146 http://dx.doi.org/10.1016/j.tibtech.2004.01.01010.1016/j.tibtech.2004.01.010Search in Google Scholar PubMed

[63] Yoneyama H., Katsumata R., Antibiotic resistance in bacteria and its future for novel antibiotic development, Biosci. Biotechnol. Biochem., 2006, 70, 1060–1075 http://dx.doi.org/10.1271/bbb.70.106010.1271/bbb.70.1060Search in Google Scholar PubMed

[64] Hadley C., Overcoming resistance, EMBO Rep., 2004, 5, 550–552 http://dx.doi.org/10.1038/sj.embor.740018110.1038/sj.embor.7400181Search in Google Scholar PubMed PubMed Central

[65] McHenney M.A., Baltz R.H., Gene transfer and transposition mutagenesis in Streptomyces roseosporus: mapping of insertions that influence daptomycin or pigment production, Microbiology, 1996, 142, 2363–2373 10.1099/00221287-142-9-2363Search in Google Scholar PubMed

[66] Tally F.P., De Bruin M.F., Development of daptomycin for gram-positive infections, J. Antimicrob. Chemother., 2000, 46, 523–526 http://dx.doi.org/10.1093/jac/46.4.52310.1093/jac/46.4.523Search in Google Scholar PubMed

[67] Hwang M.H., Lim J.H., Yun H.I., Rhee M.H., Cho J.Y., Hsu W.H., et al., Surfactin C inhibits the lipopolysaccharide-induced transcription of interleukin-1beta and inducible nitric oxide synthase and nitric oxide production in murine RAW 264.7 cells, Biotechnol. Lett., 2005, 27, 1605–1608 http://dx.doi.org/10.1007/s10529-005-2515-110.1007/s10529-005-2515-1Search in Google Scholar PubMed

[68] Hwang Y.H., Park B.K., Lim J.H., Kim M.S., Park S.C., Hwang M.H., et al., Lipopolysaccharide-binding and neutralizing activities of surfactin C in experimental models of septic shock, Eur. J. Pharmacol., 2007, 556, 166–171 http://dx.doi.org/10.1016/j.ejphar.2006.10.03110.1016/j.ejphar.2006.10.031Search in Google Scholar PubMed

[69] Takahashi T., Ohno O., Ikeda Y., Sawa R., Homma Y., Igarashi M., et al., Inhibition of lipopolysaccharide activity by a bacterial cyclic lipopeptide surfactin, J. Antibiot., 2006, 59, 35–43 http://dx.doi.org/10.1038/ja.2006.610.1038/ja.2006.6Search in Google Scholar PubMed

[70] Vollenbroich D., Pauli G., Ozel M., Vater J., Antimycoplasma properties and application in cell culture of surfactin, a lipopeptide antibiotic from Bacillus subtilis, Appl. Environ. Microbiol., 1997, 63, 44–49 10.1128/aem.63.1.44-49.1997Search in Google Scholar PubMed PubMed Central

[71] Fassi Fehri L., Wroblewski H., Blanchard A., Activities of antimicrobial peptides and synergy with enrofloxacin against Mycoplasma pulmonis, Antimicrob. Agents Chemother., 2007, 51, 468–74 http://dx.doi.org/10.1128/AAC.01030-0610.1128/AAC.01030-06Search in Google Scholar PubMed PubMed Central

[72] Rodrigues L., Banat I.M., Teixeira J., Oliveira R., Biosurfactants: potential applications in medicine, J. Antimicrob. Chemother., 2006, 57, 609–618 http://dx.doi.org/10.1093/jac/dkl02410.1093/jac/dkl024Search in Google Scholar PubMed

[73] Morikawa M., Beneficial biofilm formation by industrial bacteria Bacillus subtilis and related species, J. Biosci. Bioeng., 2006, 101, 1–8 http://dx.doi.org/10.1263/jbb.101.110.1263/jbb.101.1Search in Google Scholar PubMed

[74] Mireles 2nd J.R., Toguchi A., Harshey R.M., Salmonella enterica serovar typhimurium swarming mutants with altered biofilm-forming abilities: surfactin inhibits biofilm formation, J. Bacteriol., 2001, 183, 5848–5854 http://dx.doi.org/10.1128/JB.183.20.5848-5854.200110.1128/JB.183.20.5848-5854.2001Search in Google Scholar

[75] Vollenbroich D., Ozel M., Vater J., Kamp R.M., Pauli G., Mechanism of inactivation of enveloped viruses by the biosurfactant surfactin from Bacillus subtilis, Biologicals, 1997, 25, 289–297 http://dx.doi.org/10.1006/biol.1997.009910.1006/biol.1997.0099Search in Google Scholar

[76] Kim S.Y., Kim J.Y., Kim S.H., Bae H.J., Yi H., Yoon S.H., et al., Surfactin from Bacillus subtilis displays anti-proliferative effect via apoptosis induction, cell cycle arrest and survival signaling suppression, FEBS Lett., 2007, 581, 865–871 http://dx.doi.org/10.1016/j.febslet.2007.01.05910.1016/j.febslet.2007.01.059Search in Google Scholar

[77] Kikuchi T., Hasumi K., Enhancement of plasminogen activation by surfactin C: augmentation of fibrinolysis in vitro and in vivo, Biochim. Biophys. Acta, 2002, 29, 234–245 10.1016/S0167-4838(02)00221-2Search in Google Scholar

[78] Kikuchi T., Hasumi K., Enhancement of reciprocal activation of prourokinase and plasminogen by the bacterial lipopeptide surfactins and iturin Cs, J. Antibiot., 2003, 56, 34–37 10.7164/antibiotics.56.34Search in Google Scholar PubMed

[79] Lim J.H., Park B.K., Kim M.S., Hwang M.H., Rhee M.H., Park S.C., et al., The anti-thrombotic activity of surfactins, J. Vet. Sci., 2005, 6, 353–355 10.4142/jvs.2005.6.4.353Search in Google Scholar

[80] Kim S.D., Park S.K., Cho J.Y., Park H.J., Lim J.H., Yun H.I., et al., Surfactin C inhibits platelet aggregation, J. Pharm. Pharmacol., 2006, 58, 867–870 http://dx.doi.org/10.1211/jpp.58.6.001810.1211/jpp.58.6.0018Search in Google Scholar PubMed

[81] Dehghan-Noudeh G., Housaindokht M., Fazly Bazzaz B.S., Isolation, characterization, and investigation of surface and hemolytic activities of a lipopeptide biosurfactant produced by Bacillus subtilis ATCC 6633, J. Microbiol., 2005, 43, 272–276 Search in Google Scholar

[82] Symmank H., Franke P., Saenger W., Bernhard F., Modification of biologically active peptides: production of a novel lipohexapeptide after engineering of Bacillus subtilis surfactin synthetase, Protein Eng., 2002, 15, 913–921 http://dx.doi.org/10.1093/protein/15.11.91310.1093/protein/15.11.913Search in Google Scholar PubMed

[83] Dufour S., Deleu M., Nott K., Wathelet B., Thonart P., Paquot M., Hemolytic activity of new linear surfactin analogs in relation to their physicochemical properties, Biochim. Biophys. Acta, 2005, 1726, 87–95 10.1016/j.bbagen.2005.06.015Search in Google Scholar PubMed

[84] Bouffioux O., Berquand A., Eeman M., Paquot M., Dufrêne Y.F., Brasseur R., et al., Molecular organization of surfactin-phospholipid monolayers: effect of phospholipid chain length and polar head, Biochim. Biophys. Acta, 2007, 1768, 1758–1768 http://dx.doi.org/10.1016/j.bbamem.2007.04.01510.1016/j.bbamem.2007.04.015Search in Google Scholar PubMed

Published Online: 2008-4-9
Published in Print: 2008-6-1

© 2008 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 12.5.2024 from https://www.degruyter.com/document/doi/10.2478/s11536-008-0002-5/html
Scroll to top button