Skip to main content

Advertisement

Log in

Boundary layer characteristics and turbulent exchange mechanisms in highly complex terrain

  • Published:
Acta Geophysica Aims and scope Submit manuscript

Abstract

The Mesoscale Alpine Programme’s Riviera project investigated the turbulence structure and related exchange processes in an Alpine valley by combining a detailed experimental campaign with high-resolution numerical modelling. The present contribution reviews published material on the Riviera Valley’s boundary layer structure and discusses new material on the near-surface turbulence structure. The general conclusion of the project is that despite the large spatial variability of turbulence characteristics and the crucial influence of topography at all scales, the physical processes can accurately be understood and modelled. Nevertheless, many of the “text book characteristics” like the interaction between the valley and slope wind systems or the erosion of the nocturnal valley inversion need reconsideration, at least for small non-ideal valleys like the Riviera Valley. The project has identified new areas of research such as post-processing methods for turbulence variables in complex terrain and new approaches for the surface energy balance when advection is non-negligible. The exchange of moisture and heat between the valley atmosphere and the free troposphere is dominated by local “secondary” circulations due to the curvature of the valley axis. Because many curved valleys exist, and operational models still have rather poor resolution, parameterization of these processes may be required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andretta, M., A.P. Weigel, and M.W. Rotach (2002), Eddy correlation flux measurements in an alpine valley under different mesoscale circulations, Preprints 10th AMS Conference on Mountain Meteorology, 17–21 June 2002, Park City, UT, 109–111.

  • Beljaars, A.C.M., and P. Viterbo (1998), Role of the boundary layer in a numerical weather prediction model. In: A.A.M. Holtslag and P.G. Dunkirk (eds.), Proc. Colloquium Clear and Cloudy Boundary Layers, Amsterdam, 26–29 August 1997.

  • Bougeault, P., P. Binder, A. Buzzi, R. Dirks, R. Houze, J. Kuettner, R.B. Smith, R. Steinacker, and H. Volkert (2001), The MAP special observing period, Bull. Am. Meteorol. Soc. 82, 433–462.

    Article  Google Scholar 

  • Buzzi, M., and M.W. Rotach (2006), Gridscale parameterization of topographic effects on radiation, LM User Meeting, Langen, 6–8 March 2006.

  • Chow, F.T., A.P. Weigel, R.L. Street, M.W. Rotach, and M. Xue (2006), High-resolution large-eddy simulations of flow in a steep Alpine valley. Part I: Methodology, verification, and sensitivity experiments, J. Appl. Meteorol. Clim. 45, 63–86.

    Article  Google Scholar 

  • Chow, F.T., R.L. Street, M. Xue, and J.H. Ferziger (2005), Explicit filtering and reconstruction turbulence modeling for large-eddy simulation of neutral boundary layer flow, J. Atmos. Sci. 62, 2058–2077.

    Article  Google Scholar 

  • Clements, W.E., J.A. Archuleta, and P.H. Gudiksen (1989), Experimental design for the 1984 ASCOT field study, J. Appl. Meteorol. 28, 405–413.

    Article  Google Scholar 

  • Colette, A., F.K. Chow, and R.L. Street (2003), A numerical study of inversion-layer breakup and the effects of topographic shading in idealized valleys, J. Appl. Meteorol. 42, 1255–1272.

    Article  Google Scholar 

  • Defant, F. (1951), Local winds. In: T.F. Malone (ed.), Compendium of Meteorology, Amer. Meteor. Soc, Boston, 655–672.

    Google Scholar 

  • De Bruin, H.A.R., W.M.L. Meijninger, A.-S. Smedman and M. Magnusson (2002), Displaced-beam small aperture scintillometer test. Part I: The WINTEX data set, Bound.-Layer Meteor. 105, 129–148.

    Article  Google Scholar 

  • De Franceschi, M., and D. Zardi (2003), Evaluation of cut-off frequency and correction of filter-induced phase lag and attenuation in eddy covariance analysis of turbulence data, Bound.-Layer Meteor. 108, 289–303.

    Article  Google Scholar 

  • De Wekker, S.F.J. (2002), Structure and Morphology of the Convective Boundary Layer in Mountainous Terrain, PhD. Thesis, The University of British Columbia, 191 pp., available from the National Library of Canada (microfiches), Ottawa.

  • De Wekker, S.F.J., D.G. Steyn, J.D. Fast, M.W. Rotach, and S. Zhong (2005), The performance of RAMS in representing the convective boundary layer structure in a very steep valley, Environ. Fluid Mech. 5, 35–62.

    Article  Google Scholar 

  • Doran, J.C., J.D. Fast, and J. Horel (2002), The VTMX 2000 campaign, Bull. Am. Meteor. Soc. 83, 537–551.

    Article  Google Scholar 

  • Grubisiç, V., L. Armi, J.P. Kuettner, S.J. Haimov, L. Oolman, R.R. Damiani, and B.J. Billings (2006), Atmospheric rotors: Aircraft in situ and cloud radar measurements in T-REX, Preprints AMS 12th Mountain Meteorology Conference, Santa Fe, Amer. Meteor. Soc.

  • Hasager, C.B., and N.O. Jensen (1999), Surface-flux aggregation in heterogeneous terrain, Quart. J. Roy. Meteor. Soc. 125, 2075–2102.

    Article  Google Scholar 

  • Henne, S., M. Furger, S. Nyeki, M. Steinbacher, B. Neininger, S.F.J. De Wekker, J. Dommen, N. Spichtinger, A. Stohl, and A.S.H. Prévôt (2004), Quantification of topographic venting of boundary layer air to the free troposphere, Atmos. Chem. Phys. 4, 497–509.

    Article  Google Scholar 

  • Holtslag, A.A.M., and F.T.M. Nieuwstadt (1986), Scaling the Atmospheric Boundary Layer, Bound-Layer Meteor. 36, 201–209.

    Article  Google Scholar 

  • Jackson, P.S., and J.R.C. Hunt (1975), Turbulent wind low over a low hill, Quart. J. Roy. Meteor. Soc. 101, 929–955.

    Article  Google Scholar 

  • Kadygrov, E., V. Kadygrov, E. Miller, H. Weber, and M.W. Rotach (2001), The thermal structure of the atmospheric boundary layer in an Alpine valley: Results of continuous remote sensing measurements and comparison with radio sonde data. In: W.L. Smith and Yu.M. Timofeyev (eds.), IRS 2000: Current Problems in Atmospheric Radiation, A. Deepak Publishing, Hampton, Virginia, 1097–1101.

    Google Scholar 

  • Kaimal, J.C., J.C. Wyngaard, Y. Izumi, and O.R. Coté (1972), Spectral characteristics of surface layer turbulence, Quart. J. Roy. Meteor. Soc. 98, 563–589.

    Article  Google Scholar 

  • Kolmogorov, A.N. (1941), The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers, Doklady ANSSSR 30, 301–304 (in Russian).

    Google Scholar 

  • Lee, X., and X. Hu (2002), Forest-Air fluxes of carbon, water and energy over non-flat terrain, Bound.-Layer Meteor. 103, 277–301.

    Article  Google Scholar 

  • Mahrt, L. (1982), Momentum balance of gravity flows, J. Atmos. Sci. 39, 2701–2711.

    Article  Google Scholar 

  • Matzinger, N., M. Andretta, E. van Gorsel, R. Vogt, A. Ohmura, and M.W. Rotach (2003), Surface radiation budget in an alpine valley, Quart. J. Roy. Meteor. Soc. 129, 877–895.

    Article  Google Scholar 

  • McMillen, R.T. (1988), An eddy correlation technique with extended applicability to non-simple terrain, Bound.-Layer Meteor. 43, 231–245, DOI: 10.1007/BF00128405.

    Article  Google Scholar 

  • Moore, C.J. (1986) Frequency response correction for eddy correlation systems, Bound.-Layer Meteor. 37, 17–35.

    Article  Google Scholar 

  • Monin, A., and A.M. Obukhov (1954), Basic laws of turbulent mixing in the ground layer of the atmosphere, Trudy Akad. Nauk SSSR 151, 163–187 (in Russian).

    Google Scholar 

  • Muller, M.D., and D. Scherer (2005), A grid-and subgrid-scale radiation parameterization of topographic effects for mesoscale weather forecast models, Mon. Weather Rev. 133, 6, 1431–1442.

    Article  Google Scholar 

  • Neininger, B., W. Fuchs, M. Bäumle, A. Volz-Thomas, A.H.S. Prevot, and J. Dommen (2001), A small aircraft for more than just ozone: Metair’s Dimona after ten years of evolving developments, Proc. 11 th Symp. Meteorol. Observations and Instrumentation, Albuquerque, NM, 14–19 January 2001, 123–128.

  • Nieuwstadt, F.T.M. (1984), Turbulence structure of the stable nocturnal boundary layer, J. Atmos. Sci. 35, 2202–2216.

    Article  Google Scholar 

  • Noppel, H., and F. Fiedler (2002), Mesoscale heat transport over complex terrain by slope winds — A conceptual model and numerical simulations, Bound.-Layer Meteor. 104, 73–97.

    Article  Google Scholar 

  • Ohba, R., T. Hara, S. Nakamura, Y. Ohya, and T. Uchida (2002), Gas diffusion over an isolated hill under neutral, stable and unstable conditions, Atmos. Environ. 36, 5697–5707.

    Article  Google Scholar 

  • Panofsky, H.A., and J.A. Dutton (1984), Atmospheric Turbulence, John Wiley and Sons, New York, 397 pp.

    Google Scholar 

  • Princevac, M., J.C.R. Hunt, and H.J.S. Fernando (2007), Steady katabatic winds over long slopes in wide valleys, J. Atmos. Sci. (in press).

  • Randall, D.A. (2001), Representing the turbulent boundary layer in global atmospheric models, EGS, XXVI General Assembly, Nice, France, 26–30 March 2001.

  • Raupach, M.R., R.A. Antonia, and S. Rajagopalan (1991), Rough-wall turbulent boundary layers, Appl. Mech. Rev. 44, 1–25.

    Article  Google Scholar 

  • Raupach, M.R., J.J. Finnigan, and Y. Brunet (1996), Coherent eddies and turbulence in vegetation canopies: the mixing-layer analogy, Bound.-Layer Meteor. 78, 351–382.

    Article  Google Scholar 

  • Rotach, M.W., and D. Zardi (2007), On the boundary layer structure over highly complex terrain: key findings from map, Quart. J. Roy. Meteor. Soc. 133, 625, 937–948.

    Article  Google Scholar 

  • Rotach, M.W., P. Calanca, P. Graziani, J. Gurtz, D.G. Steyn, R. Vogt, M. Andretta, A. Christen, S. Cieslik, R. Connolly, S.F.J. De Wekker, S. Galmarini, E.N. Kadygrov, V. Kadygrov, E. Miller, B. Neininger, M. Rucker, E. van Gorsel, H. Weber, A. Weiss, and M. Zappa (2004), Turbulence structure and exchange processes in an Alpine Valley: The Riviera project, Bull. Am. Meteor. Soc. 85, 9, 1367–1385.

    Article  Google Scholar 

  • Rotach, M.W., R. Vogt; C. Bernhofer, E. Batchvarova, A. Christen, A. Clappier, B. Feddersen, S.-E. Gryning, H. Mayer, V. Mitev, T.R. Oke, E. Parlow, H. Richner, M. Roth, Y.-A. Roulet, D. Ruffieux, J. Salmond, M. Schatzmann, and J.A. Voogt (2005), BUBBLE — an Urban Boundary Layer Meteorology Project, Theor. Appl. Climatol. 81 (3–4), 231–261, DOI: 10.1007/s00704-004-0117-9.

    Article  Google Scholar 

  • Schotanus, P., F.T.M. Nieuwstadt, and H.A.R. De Bruin (1983), Temperature measurement with a sonic anemometer and its application to heat and moisture fluxes, Bound.-Layer Meteor. 26, 81–93.

    Article  Google Scholar 

  • Savelyev, S.A., and P.A. Taylor (2005), Internal boundary layers: I. Height formulae for neutral and diabatic flows, Bound.-Layer Meteor. 115, 1–25.

    Article  Google Scholar 

  • Taylor, P.A., and H.W. Teunissen (1987), The Askervein project: overview and background data, Bound.-Layer Meteor. 39, 15–39.

    Article  Google Scholar 

  • Van Dijk, A., W. Kohsiek, and H.A.R. DeBruin (2003), Oxygen sensitivity of krypton and Lyman-alpha hygrometers, J. Atmos. Oceanic Tech. 20, 143–151.

    Article  Google Scholar 

  • Van Gorsel, E., A. Christen, C. Feigenwinter, E. Parlow, and R. Vogt (2002), Daytime turbulence statistics above a steep forested slope, Bound.-Layer Meteor. 109, 311–329.

    Article  Google Scholar 

  • Webb, E.K., G.I. Pearman, and R. Leuning (1980), Correction of flux measurements for density effects due to heat and water vapour transfer, Quart. J. Roy. Meteor. Soc. 106, 85–100.

    Article  Google Scholar 

  • Weigel, A.P., and M.W. Rotach (2004), Flow structure and turbulence characteristics of the daytime atmosphere in a steep and narrow Alpine valley, Quart. J. Roy. Meteor. Soc. 130, 2605–2627.

    Article  Google Scholar 

  • Weigel, A.P., F.T. Chow, M.W. Rotach, R.L. Street, and M. Xue (2006), High-resolution large-eddy simulations of flow in a steep Alpine valley. Part II: Flow structure and heat budgets, J. Appl. Meteorol. Clim. 45, 87–107.

    Article  Google Scholar 

  • Weigel, A.P., F.K. Chow and M.W. Rotach (2007a), On the nature of turbulent kinetic energy in a steep and narrow Alpine valley, Bound.-Layer Meteor. 123, 1, 177–199, DOI: 10.1007/s10546-006-9142-9.

    Article  Google Scholar 

  • Weigel, A.P., F.K. Chow, and M.W. Rotach (2007b), The effect of mountainous topography on moisture exchange between the “surface” and the free atmosphere, Bound.-Layer Meteor. 125, 2, 227–244, DOI: 10.1007/s10546-006-9120-2.

    Article  Google Scholar 

  • Weiss, A. (2002), Determination of stratification and turbulence of the atmospheric surface layer for different types of terrain by optical scintillometry, PhD Thesis, Swiss Federal Institute of Technology, Dissertation #14514, available from: www.ethbib.ethz.ch/(e-collection), 157 pp.

  • Weiss, A., M. Hennes and M.W. Rotach (2001), Derivation of refractive index-and temperature gradients from optical scintillometry for the correction of atmospheric induced problems in highly precise geodetic measurements, Surv. Geophys. 22, 589–596.

    Article  Google Scholar 

  • Willis, G.E., and J.W. Deardorff (1974), A laboratory model of the unstable planetary boundary layer, J. Atmos. Sci. 31, 1297–1307.

    Article  Google Scholar 

  • Whiteman, C.D. (1982), Breakup of temperature inversions in deep mountain valleys: Part I. Observations, J. Appl. Meteor. 21, 270–289.

    Article  Google Scholar 

  • Whiteman, C.D. (2000), Mountain Meteorology. Fundamentals and Applications, Oxford University Press, NewYork-Oxford.

    Google Scholar 

  • Whiteman, C.D., S.W. Hoch, M. Hanhnenberger, and S. Zhong (2007), METCRAX 2006 — First results from the Meteor Crater experiment, Preprints 29 th Int. Conf. Alpine Meteor., Chambery, France, 4–8 June 2007, 93–97.

  • Wilczak, J.M., S.P. Oncley, and S.A. Stage (1999), Sonic anemometer tilt correction algorithms, Bound.-Layer Meteor. 99, 127–150.

    Article  Google Scholar 

  • Zappa, M., and J. Gurtz (2003), Simulation of soil moisture and evapotranspiration in a soil profile during the 1999 MAP-Riviera Campaign, Hydrol. Earth Syst. Sc. 7, 903–919.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathias W. Rotach.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rotach, M.W., Andretta, M., Calanca, P. et al. Boundary layer characteristics and turbulent exchange mechanisms in highly complex terrain. Acta Geophys. 56, 194–219 (2008). https://doi.org/10.2478/s11600-007-0043-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11600-007-0043-1

Key words

Navigation