Skip to main content

Advertisement

Log in

Nocturnal low-level jet over a shallow slope

  • Published:
Acta Geophysica Aims and scope Submit manuscript

Abstract

A simple theory is presented for a nocturnal low-level jet (LLJ) over a planar slope. The theory extends the classical inviscid inertial-oscillation model of LLJs to include up- and downslope motion in the boundary layer within a stably stratified environment. The particular scenario considered is typical of LLJs over the Great Plains of the United States: southerly geostrophic wind over terrain that gently slopes down toward the east. First, an initial value problem for the coupled equations of motion and thermodynamic energy is solved for air parcels suddenly freed of a frictional constraint near sunset. The solution is an oscillation that takes, on the hodograph plane, the form of an ellipse having an eastward-oriented major axis and an eccentricity that increases with increasing stratification and slope angle. Next, the notion of a tilted residual layer (TRL) is introduced and used to relate initial (sunset) air parcel buoyancy to free-atmosphere stratification and thermal structure of the boundary layer. Application of the TRL-estimated initial buoyancy in the solution of the initial value problem leads to expressions for peak jet strength and the slope angle that maximizes the jet strength. Analytical results are in reasonable qualitative agreement with observational data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, S. C. (1980), Observational characteristics of the low-level jet at Daly Waters during Project Koorin, Australian Meteor. Mag. 28, 47–56.

    Google Scholar 

  • Angevine, W.M., A.B. White, and S.K. Avery (1994), Boundary-layer depth and entrainment zone characterization with a boundary-layer profiler, Bound.-Layer Meteor. 68, 375–385, DOI: 10.1007/BF00706797.

    Article  Google Scholar 

  • Angevine, W.M., A.W. Grimsdell, S.A. McKeen, and J.M. Warnock (1998), Entrainment results from the Flatland boundary layer experiments, J. Geophys. Res. 103, 13689–13701, DOI: 10.1029/98JD01150.

    Article  Google Scholar 

  • Arritt, R.W., T.D. Rink, M. Segal, D.P. Todey, C.A. Clark, M.J. Mitchell, and K.M. Labas (1997), The Great Plains low-level jet during the warm season of 1993, Monthly Weath. Rev. 125, 2176–2192, DOI: 10.1175/1520-0493 (1997)125<2176:TGPLLJ>2.0.CO;2.

    Article  Google Scholar 

  • Arya, S.P.S. (1981), Parameterizing the height of the stable atmospheric boundary layer, J. Appl. Meteor. 20, 1192–1202.

    Article  Google Scholar 

  • Augustine, J.A., and F. Caracena (1994), Lower-tropospheric precursors to nocturnal MCS development over the central United States, Weather Forecast. 9, 116–135, DOI: 10.1175/1520-0434(1994)009<0116:LTPTNM>2.0.CO;2.

    Article  Google Scholar 

  • Banta, R.M. (2008), Stable-boundary-layer regimes from the perspective of the lowlevel jet, Acta Geophys. 56, 58–87, DOI: 10.2478/s11600-007-0049-8.

    Article  Google Scholar 

  • Banta, R.M., C.J. Senff, A.B. White, M. Trainer, R.T. McNider, R.J. Valente, S.D. Mayor, R.J. Alvarez, R.M. Hardesty, D. Parish, and F.C. Fehsenfeld (1998), Daytime buildup and nighttime transport of urban ozone in the boundary layer during a stagnation episode, J. Geophys. Res. 103, 22519–22544, DOI: 10.1029/98JD01020.

    Article  Google Scholar 

  • Banta R.M., R.K. Newsom, J.K. Lundquist, Y.L. Pichugina, R.L. Coulter, and L. Mahrt (2002), Nocturnal low-level jet characteristics over Kansas during CASES-99, Bound.-Layer Meteor. 105, 221–252, DOI: 10.1023/A:1019992330866.

    Article  Google Scholar 

  • Banta, R.M., Y.L. Pichugina, N.D. Kelley, B. Jonkman, and W.A. Brewer (2008), Doppler lidar measurements of the Great Plains low-level jet: Applications to wind energy, 14th International Symposium for the Advancement of Boundary Layer Remote Sensing, Iop Conf. Series: Earth And Env. Sci. 1, 012020, DOI: 10.1088/1755-1307/1/1/012020.

    Article  Google Scholar 

  • Bao, J.W., S.A. Michelson, P.O.G. Persson, I.V. Djalalova, and J.M. Wilczak (2008), Observed and WRF-simulated low-level winds in a high-ozone episode during the Central California Ozone Study, J. Appl. Meteor. Climatol. 47, 2372–2394, DOI: 10.1175/2008JAMC1822.1.

    Article  Google Scholar 

  • Bedard, A.J. (1982), Sources and detection of atmospheric wind shear, AIAA J. 20, 940–945, DOI: 10.2514/3.51152.

    Article  Google Scholar 

  • Beyrich, F., and A. Weil (1993), Some aspects of determining the stable boundary layer depth from sodar data, Bound.-Layer Meteor. 63, 97–116, DOI: 10. 1007/BF00705378.

    Article  Google Scholar 

  • Blackadar, A.K. (1957), Boundary layer wind maxima and their significance for the growth of nocturnal inversions, Bull. Am. Meteor. Soc. 38, 283–290.

    Google Scholar 

  • Boers, R., and E.W. Eloranta (1986), Lidar measurements of the atmospheric entrainment zone and the potential temperature jump across the top of the mixed layer, Bound.-Layer Meteor. 34, 357–375, DOI: 10.1007/ BF00120988.

    Article  Google Scholar 

  • Bonner, W.D. (1968), Climatology of the low level jet, Monthly Weath. Rev. 96, 833–850, DOI: 10.1175/1520-0493(1968)096<0833:COTLLJ>2.0.CO;2.

    Article  Google Scholar 

  • Bonner, W.D., and J. Paegle (1970), Diurnal variations in boundary layer winds over the south-central United States in summer, Monthly Weath. Rev. 98, 735–744, DOI: 10.1175/1520-0493(1970)098<0735:DVIBLW>2.3.CO;2.

    Article  Google Scholar 

  • Bonner, W.D., S. Esbensen, and R. Greenbert (1968), Kinematics of the low-level jet, J. Appl. Meteorol. 7, 339-347, DOI: 10.1175/1520-0450(1968)007<0339:KOTLLJ>2.0.CO;2.

  • Botnick, A.M., and E. Fedorovich (2008), Large eddy simulation of atmospheric convective boundary layer with realistic environmental forcings. In: J. Meyers et al. (eds.), Quality and Reliability of Large-Eddy Simulations, Springer, Berlin, 193–204.

    Chapter  Google Scholar 

  • Bourke, P.M.A. (1970), Use of weather information in the prediction of plant disease epiphytotics, Annu. Rev. Phytopathol. 8, 345–370, DOI: 10.1146/annurev.py.08.090170.002021.

    Article  Google Scholar 

  • Brook, R.R. (1985), The Koorin nocturnal low-level jet, Bound.-Layer Meteor. 32, 133–154, DOI: 10.1007/BF00120932.

    Article  Google Scholar 

  • Brotak, E.A. (2003), Low-level weather conditions preceding major wildfires, Fire Management Today 63, 67–71.

    Google Scholar 

  • Brotak, E.A., and W.E. Reifsnyder (2003), Predicting major wildland fire occurrence, Fire Management Today 63, 20–24.

    Google Scholar 

  • Buajitti, K., and A.K. Blackadar (1957), Theoretical studies of diurnal windstructure variations in the planetary boundary layer, Quart. J. Roy. Met. Soc. 83, 486–500, DOI: 10.1002/qj.49708335804.

    Article  Google Scholar 

  • Caughey, S.J. (1982), Observed characteristics of the atmospheric boundary layer, In: F.T.M. Nieuwstadt and H. van Dop (eds.), Atmospheric Turbulence and Air Pollution Modelling, D. Reidel Publishing, Dordrecht, 107–158.

    Google Scholar 

  • Caughey, S.J., and S.G. Palmer (1979), Some aspects of turbulence structure through the depth of the convective boundary layer, Quart. J. Roy. Met. Soc. 105, 811–827, DOI: 10.1002/qj.49710544606.

    Article  Google Scholar 

  • Chandler, C., P. Cheney, P. Thomas, L. Trabaud, and D. Williams (1991), Fire in Forestry. Forest Fire Behavior and Effects, Vol. 1, Krieger Publishing Company, Malabar, FL, 441 pp.

    Google Scholar 

  • Charney, J.J, X. Bian, B.E. Potter, and W.E Heilman (2003), Low level jet impacts on fire evolution in the Mack Lake and other severe wildfires. In: 5th Symposium on Fire and Forest Meteorology, joint with 2nd Int. Wildland Fire Ecology and Fire Management Congress, Am. Meteor. Soc, Orlando, FL.

    Google Scholar 

  • Cohn, S.A., and W.M. Angevine (2000), Boundary layer height and entrainment zone thickness measured by lidars and wind-profiling radars, J. Appl. Meteorol. 39, 1233–1247, DOI: 10.1175/1520-0450(2000)039<1233:BLHAEZ>2.0.CO;2.

    Article  Google Scholar 

  • Cole, R.E., S.S. Allan, and D.W. Miller (2000), Vertical wind shear near airports as an aviation hazard. In: 9th Conference on Aviation, Range and Aerospace Meteorology, Am. Meteor. Soc., Orlando, FL. Condie, S.A. (1999), Ocean boundary mixing during Ekman layer arrest, J. Phys. Oceanogr. 29, 2993–3001, DOI: 10.1175/1520-0485(1999)029<2993:OBMDEL>2.0.CO;2.

    Google Scholar 

  • Corsmeier, U., N. Kalthoff, O. Kolle, M. Kotzian, and F. Fiedler (1997), Ozone concentration jump in the stable nocturnal boundary layer during a LLJ-event, Atmos. Environ. 31, 1977–1989, DOI: 10.1016/S1352-2310(96)00358-5.

    Article  Google Scholar 

  • Cosack, N., S. Emeis, and M. Kühn (2007), On the influence of low-level jets on energy production and loading of wind turbines. In: Wind Energy: Proceedings of the Euromech Colloquium, 325–328.

  • Cotton, W.R., M.S. Lin, R.L. McAnelly, and C.J. Tremback (1989), A composite model of mesoscale convective complexes, Monthly Weath. Rev. 117, 765–783, DOI: 10.1175/1520-0493(1989)117<0765:ACMOMC>2.0.CO;2.

    Article  Google Scholar 

  • Cushman-Roisin, B. (1994), Introduction to Geophysical Fluid Dynamics, Prentice Hall, Englewood Cliffs, NJ, 320 pp.

    Google Scholar 

  • Davies, P.A. (2000), Development and mechanisms of the nocturnal jet, Meteor. Appl. 7, 239–246, DOI: 10.1017/S1350482700001535.

    Article  Google Scholar 

  • Dentoni, M.C., G.E. Defossé, J.C. Labraga, and H.F. del Valle (2001), Atmospheric and fuel conditions related to the Puerto Madryn fire of 21 January, 1994, Meteor. Appl. 8, 361–370, DOI: 10.1017/S1350482701003127.

    Article  Google Scholar 

  • Drake, V.A. (1985), Radar observations of moths migrating in a nocturnal low-level jet, Ecol. Entomol. 10, 259–265, DOI: 10.1111/j.1365-2311.1985.tb00722.x.

    Article  Google Scholar 

  • Drake, V.A., and R.A. Farrow (1988), The influence of atmospheric structure and motions on insect migration, Annu. Rev. Entomol. 33, 183–210, DOI: 10.1146/annurev.en.33.010188.001151.

    Article  Google Scholar 

  • Eggers, A.J., R. Digumarthi, and K. Chaney (2003), Wind shear and turbulence effects on rotor fatigue and loads control, J. Sol. Energy Eng. 125, 402–409.

    Article  Google Scholar 

  • Fichtl, G.H., and D.W. Camp (1977), Sources of low-level wind shear around airports, J. Aircraft 14, 5–14.

    Article  Google Scholar 

  • Galvin, J.F.P. (1999), Forecasting for hot-air balloons and airships in the Midlands of England, Meteor. Appl. 6, 351–362, 10.1017/S1350482799001292.

    Article  Google Scholar 

  • Garrett, C. (1991), Marginal mixing theories, Atmos. Ocean 29, 313–339.

    Google Scholar 

  • Garrett, C., P. MacCready, and P. Rhines (1993), Boundary mixing and arrested Ekman layers: rotating stratified flow near a sloping boundary, Ann. Rev. Fluid Mech. 25, 291–323.

    Article  Google Scholar 

  • Grisogono, B., and J. Oerlemans (2001), Katabatic flow: Analytic solution for gradually varying eddy diffusivities, J. Atmos. Sci. 58, 3349–3354, DOI: 10.1175/1520-0469(2001)058<3349:KFASFG>2.0.CO;2.

    Article  Google Scholar 

  • Gutman, L.N., and Malbakhov, V.M. (1964), On the theory of katabatic winds of Antarctic, Met. Issled. 9, 150–155 (in Russian).

    Google Scholar 

  • Hardesty, R.M., C.J. Senff, R.M. Banta, W.A. Brewer, R.J. Alvarez, L.S. Darby, and R.D. Marchbanks (2001), Lidar applications in regional air quality studies. In: Geoscience and Remote Sensing Symposium, 2001. IGARSS '01. IEEE 2001 International 3, 1029–1031.

    Google Scholar 

  • Higgins, R.W., Y. Yao, E.S. Yaresh, J.E. Janowiak, and K.C. Mo (1997), Influence of the Great Plains low-level jet on summertime precipitation and moisture transport over the central United States, J. Climate 10, 481–507.

    Article  Google Scholar 

  • Hoecker, W.H. (1963), Three southerly low-level jet systems delineated by the Weather Bureau special pibal network of 1961, Monthly Weath. Rev. 91, 573–582, DOI: 10.1175/1520-0493(1963)091<0573:TSLJSD>2.3.CO;2.

    Article  Google Scholar 

  • Holton, J.R. (1967), The diurnal boundary layer wind oscillation above sloping terrain, Tellus 19, 199–205.

    Google Scholar 

  • Hoxit, L.R. (1975), Diurnal variations in planetary boundary-layer winds over land, Bound.-Layer Meteor. 8, 21–38, DOI: 10.1007/BF02579391.

    Article  Google Scholar 

  • Hyun, Y.-K., K.-E. Kim, and K.-J. Ha (2005), A comparison of methods to estimate the height of stable boundary layer over a temperate grassland, Agr. Forest Meteorol. 132, 132–142, DOI: 10.1016/j.agrformet.2005.03.010.

    Article  Google Scholar 

  • Izumi, Y., and M.L. Barad (1963), Wind and temperature variations during development of a low-level jet, J. Appl. Meteorol. 2, 668–673, DOI: 10.1175/1520-0450(1963)002<0668:WATVDD>2.0.CO;2.

    Article  Google Scholar 

  • Jiang, X., N.C. Lau, I.M. Held, and J.J. Ploshay (2007), Mechanisms of the Great Plains low-level jet as simulated in an AGCM, J. Atmos. Sci. 64, 532–547, DOI: 10.1175/JAS3847.1.

    Article  Google Scholar 

  • Johnson, S.J. (1995), Insect migration in North America: synoptic-scale transport in a highly seasonal environment. In: V.A. Drake and A.G. Gatehouse (eds.), Insect Migration: Tracking Resources through Space and Time, University Press, Cambridge, 31–66.

    Google Scholar 

  • Kaimal, J.C., J.C. Wyngaard, D.A. Haugen, O.R. Coté, Y. Izumi, S.J. Caughey, and C.J. Readings (1976), Turbulence structure in the convective boundary layer. J. Atmos. Sci. 33, 2152–2169, DOI: 10.1175/1520-0469(1976)033<2152:TSITCB>2.0.CO;2.

    Article  Google Scholar 

  • Kaplan, M.L., Y.-L. Lin, J.J. Charney, K.D. Pfeiffer, D.B. Ensley, D.S. DeCroix and R.P. Weglarz (2000), A terminal area PBL prediction system at Dallas-Fort Worth and its application in simulating diurnal PBL jets, Bull. Am. Meteor. Soc. 81, 2179–2204, DOI: 10.1175/1520-0477(2000)081<2179:ATAPPS>2.3.CO;2.

    Article  Google Scholar 

  • Lau, S.Y., and S.T. Chan (2003), A cresent-shaped low-level jet as observed by a Doppler radar, Weather 58, 287–290, DOI: 10.1256/wea.234.02.

    Article  Google Scholar 

  • Lettau, H.H., and B. Davidson (eds.), (1957), Exploring the Atmosphere's First Mile, Vols. I and II, Pergamon Press, New York, 578 pp.

    Google Scholar 

  • Lundquist, J.K. (2003), Intermittent and elliptical inertial oscillations in the atmospheric boundary layer, J. Atmos. Sci. 60, 2661–2673, DOI: 10.1175/1520-0469(2003)060<2661:IAEIOI>2.0.CO;2.

    Article  Google Scholar 

  • MacCready, P., and P.B. Rhines (1991), Buoyant inhibition of Ekman transport on a slope and its effect on stratified spin-up, J. Fluid Mech. 223, 631–661, DOI: 10.1017/S0022112091001581.

    Article  Google Scholar 

  • MacCready, P., and P.B. Rhines (1993), Slippery bottom boundary layers on a slope, J. Phys. Oceanogr. 23, 5–22, DOI: 10.1175/1520-0485(1993)023<0005:SBBLOA>2.0.CO;2.

    Article  Google Scholar 

  • Maddox, R.A. (1980), Mesoscale convective complexes, Bull. Am. Meteor. Soc. 61, 1374–1387, DOI: 10.1175/1520-0477(1980)061<1374:MCC>2.0.CO;2.

    Article  Google Scholar 

  • Mahrt, L., J.C. André, and R.C. Heald (1982), On the depth of the nocturnal boundary layer, J. Appl. Meteorol. 21, 90–92, DOI: 10.1175/1520-0450(1982)021<0090:OTDOTN>2.0.CO;2.

    Article  Google Scholar 

  • Mahrt, L. (1999), Stratified atmospheric boundary layers, Bound.-Layer Meteor. 90, 375–396, DOI: 10.1023/A:1001765727956.

    Article  Google Scholar 

  • Mamrosh, R.D., T.S. Daniels, and W.R. Moninger (2006), Aviation applications of TAMDAR aircraft data reports. In: 12th Conf. on Aviation, Range and Aerospace Meteor., Am. Meteor. Soc., Atlanta, GA.

    Google Scholar 

  • McCracken, G.F., E.H. Gillam, J.K. Westbrook, Y.-F. Lee, M.L. Jensen, and B.B. Balsley (2008), Brazilian free-tailed bats (Tadarida brasiliensis: Molossidae, Chiroptera) at high altitude: links to migratory insect populations, Integr. Comp. Biol. 48, 107–118, DOI: 10.1093/icb/icn033.

    Article  Google Scholar 

  • McNider, R.T. (1982), A note on velocity fluctuations in drainage flows, J. Atmos. Sci. 39, 1658–1660, DOI: 10.1175/1520-0469(1982)039<1658:ANOVFI>2.0.CO;2.

    Article  Google Scholar 

  • McNider, R.T., and R.A. Pielke (1981), Diurnal boundary-layer development over sloping terrain, J. Atmos. Sci. 38, 2198–2212, DOI: 10.1175/1520-0469 (1981)038<2198:DBLDOS>2.0.CO;2.

    Article  Google Scholar 

  • Means, L.L. (1954), A study of the mean southerly wind-maximum in low levels associated with a period of summer precipitation in the middle west, Bull. Am. Meteor. Soc. 35, 166–170.

    Google Scholar 

  • Membery, D.A. (1983), Low level wind profiles during the Gulf Shamal, Weather 38, 18–24.

    Google Scholar 

  • Milionis, A.E., and T.D. Davies (2002), Associations between atmospheric temperature inversions and vertical wind profiles: a preliminary assessment, Meteor. Appl. 9, 223–228, DOI: 10.1017/S1350482702002074.

    Article  Google Scholar 

  • Mitchell, M.K., R.W. Arritt, and K. Labas (1995), An hourly climatology of the summertime Great Plains low-level jet using wind profiler observations, Weather Forecast. 10, 576–591, DOI: 10.1175/1520-0434(1995)010<0576:ACOTWS>2.0.CO;2.

    Article  Google Scholar 

  • Neyland, L.J. (1956), Change without notice, Flying Safety 14, 16–20.

    Google Scholar 

  • NWS (2007), Southeast US high fire danger weather patterns, National Weather Service Forecast Office, Jackson MS, http://www.srh.noaa.gov/jan/ SEUSFire.php

    Google Scholar 

  • Pan, Z., M. Segal, and R.W. Arritt (2004), Role of topography in forcing low-level jets in the central United States during the 1993 flood-altered terrain simulations, Monthly Weath. Rev. 132, 396–403, DOI: 10.1175/1520-0493(2004)132<0396:ROTIFL>2.0.CO;2.

    Article  Google Scholar 

  • Parish, T.R., A.R. Rodi, and R.D. Clark (1988), A case study of the summertime Great Plains low level jet, Monthly Weath. Rev. 116, 94–105, DOI: 10.1175/1520-0493(1988)116<0094:ACSOTS>2.0.CO;2.

    Article  Google Scholar 

  • Pitchford, K.L., and J. London (1962), The low-level jet as related to nocturnal thunderstorms over the Midwest United States, J. Appl. Meteorol. 1, 43–47, DOI: 10.1175/1520-0450(1962)001<0043:TLLJAR>2.0.CO;2.

    Article  Google Scholar 

  • Prandtl, L. (1942), Führer durch die Strömungslehre, Vieweg und Sohn, Braunschweig, 382 pp. (in German).

    Google Scholar 

  • Ramsden, D. (1995), Response of an oceanic bottom boundary layer on a slope to interior flow. Part I: Time-independent interior flow, J. Phys. Oceanogr. 25, 1672–1687, DOI: 10.1175/1520-0485(1995)025<1672:ROAOBB>2.0.CO;2.

    Article  Google Scholar 

  • Rao, K.S., and H.F. Snodgrass (1981), A nonstationary nocturnal drainage flow model, Bound.-Layer Meteor. 20, 309–320, DOI: 10.1007/BF00121375

    Article  Google Scholar 

  • Rayment, R., and C.J. Readings (1974), A case study of the structure and energetics of an inversion, Quart. J. Roy. Met. Soc. 100, 221–233, DOI: 10.1002/qj.49710042409.

    Article  Google Scholar 

  • Readings, C.J., E. Golton, and K.A. Browning (1973), Fine-scale structure and mixing within an inversion, Bound.-Layer Meteor. 4, 275–287, DOI: 10.1007/BF02265238.

    Article  Google Scholar 

  • Seaman, N.L., and S.A. Michelson (2000), Mesoscale meteorological structure of a high-ozone episode during the 1995 NARSTO-northeast study, J. Appl. Meteorol. 39, 384–398, DOI: 10.1175/1520-0450(2000)039<0384: MMSOAH>2.0.CO;2.

    Article  Google Scholar 

  • Shapiro, A., and E. Fedorovich (2008), Coriolis effects in homogeneous and inhomogeneous katabatic flows, Quart. J. Roy. Met. Soc. 134, 353–370, DOI: 10.1002/qj.217.

    Article  Google Scholar 

  • Singh, M.P., R.T. McNider, and J.T. Lin (1993), An analytical study of diurnal wind-structure variations in the boundary layer and the low-level nocturnal jet, Bound.-Layer Meteor. 63, 397–423, DOI: 10.1007/BF00705360.

    Article  Google Scholar 

  • Sisterson, D.L., and P. Frenzen (1978), Nocturnal boundary-layer wind maxima and the problem of wind power assessment, Environ. Sci. Technol. 12, 218–221, DOI: 10.1021/es60138a014.

    Article  Google Scholar 

  • Slinn, W.G.N. (1982), Estimates for the long-range transport of air pollution, Water, Air Soil Poll. 18, 45–64, DOI: 10.1007/BF02419402.

    Article  Google Scholar 

  • Smith, T.B., D.L. Blumenthal, J.A. Anderson, and A.H. Vanderpol (1978), Transport of SO2 in power plant plumes: day and night, Atmos. Environ. 12, 605–611.

    Article  Google Scholar 

  • Song, J., K. Liao, R.L. Coulter, and B.M. Lesht (2005), Climatology of the low-level jet at the Southern Great Plains Atmospheric Boundary Layer Experiments site, J. Appl. Meteorol. 44, 1593–1606, 10.1175/JAM2294.1.

    Article  Google Scholar 

  • Sorbjan, Z. (1989), Structure of the Atmospheric Boundary Layer, Prentice Hall, Englewood Cliffs, NJ, 317 pp.

    Google Scholar 

  • Stensrud, D.J., M.H. Jain, K.W. Howard, and R.A. Maddox (1990), Operational systems for observing the lower atmosphere: importance of data sampling and archival procedures, J. Atmos. Oceanic Technol. 7, 930–937.

    Article  Google Scholar 

  • Stensrud, D.J. (1996), Importance of low-level jets to climate: A review, J. Climate 9, 1698–1711, DOI: 10.1175/1520-0442(1996)009<1698:IOLLJT>2.0.CO;2.

    Article  Google Scholar 

  • Stommel, H. (1958), The Gulf Stream: A Physical and Dynamical Description, University of California Press, Berkeley, CA, 202 pp.

    Google Scholar 

  • Storm, B., J. Dudhia, S. Basu, A. Swift, and I. Giammanco (2009), Evaluation of the Weather Research and Forecasting model on forecasting low-level jets: implications for wind energy, Wind Energy 12, 81–90, DOI: 10.1002/we.288.

    Article  Google Scholar 

  • Stull, R.B. (1988), An Introduction to Boundary Layer Meteorology, Kluwer Academic Publishers, Dordrecht, 666 pp.

    Google Scholar 

  • Thorpe, S.A. (1987), Current and temperature variability on the continental slope, Phil. Trans. Roy. Soc. Lond. A 323, 471–517, DOI: 10.1098/rsta.1987.0100.

    Article  Google Scholar 

  • Thorpe, A.J., and T.H. Guymer (1977), The nocturnal jet, Quart. J. Roy. Met. Soc. 103, 633–653, DOI: 10.1002/qj.49710343809.

    Article  Google Scholar 

  • Ting, M., and H. Wang (2006), The role of the North American topography on the maintenance of the Great Plains summer low-level jet, J. Atmos. Sci. 63, 1056–1068, DOI: 10.1175/JAS3664.1.

    Article  Google Scholar 

  • Tuttle, J.D., and C.A. Davis (2006), Corridors of warm season precipitation in the central United States, Monthly Weath. Rev. 134, 2297–2317, DOI: 10.1175/MWR3188.1.

    Article  Google Scholar 

  • Wallace, J. (1975), Diurnal variations in precipitation and thunderstorm frequency over the conterminous United States, Monthly Weath. Rev. 103, 406–419, DOI: 10.1175/1520-0493(1975)103<0406:DVIPAT>2.0.CO;2.

    Article  Google Scholar 

  • Walters, C.K., and J.A. Winkler (2001), Airflow configurations of warm season southerly low-level wind maxima in the Great Plains. Part I: Spatial and temporal characteristics and relationship to convection, Weather Forecast. 16, 513–530, DOI: 10.1175/1520-0434(2001)016<0513:ACOWSS>2.0.CO;2.

    Article  Google Scholar 

  • Walters, C.K., J.A. Winkler, R.P. Shadbolt, J. van Ravensway, and G.D. Bierly (2008), A long-term climatology of southerly and northerly low-level jets for the central United States, Annals Assoc. Amer. Geog. 98, 521–552, DOi: 10.1080/00045600802046387.

    Article  Google Scholar 

  • Warren, A., A. Chappell, M.C. Todd, C. Bristow, N. Drake, S. Engelstaedter, V. Martins, S. M'bainayel, and R. Washington (2007), Dust-raising in the dustiest place on earth, Geomorph. 92, 25–37, DOI: 10.1016/j.geomorph. 2007.02.007.

    Article  Google Scholar 

  • Washington, R., M.C. Todd, S. Engelstaedter, S. M'bainayel, and F. Mitchell (2006), Dust and the low-level circulation over the BodTlT Depression, Chad: Observations from BoDEx 2005, J. Geophys. Res. 111, D03201, DOI: 10.1029 /2005JD006502.

    Article  Google Scholar 

  • Westbrook, J.K., and S.A. Isard (1999), Atmospheric scales of biotic dispersal, Agr. Forest Meteorol., 97, 263–274, DOI: 10.1016/S0168-1923(99)00071-4.

    Article  Google Scholar 

  • Wexler, H. (1961), A boundary layer interpretation of the low-level jet, Tellus 13, 368–378.

    Article  Google Scholar 

  • Whiteman, C.D., X. Bian, and S. Zhong (1997), Low-level jet climatology from enhanced rawinsonde observations at a site in the southern Great Plains, J. Appl. Meteorol. 36, 1363–1376, 10.1175/1520-0450(1997)036<1363:LLJCFE>2.0.CO;2.

    Article  Google Scholar 

  • Wilkerson, W.D. (1991), Dust and sand forecasting in Iraq and adjoining countries, Air Weather Service Technical Note AWS/TN-01/001, Scott Air Force Base, IL, 65 pp.

    Google Scholar 

  • Wilson, W.E. (1978), Sulfates in the atmosphere: a progress report on Project MISTT, Atmos. Environ. 12, 537–547.

    Article  Google Scholar 

  • WMO, (2007), Aviation Hazards, Education and Training Programme, ETR-20. WMO/TD-No. 1390, Secretariat of the World Meteorological Organization, Geneva, Switzerland, 53 pp.

    Google Scholar 

  • Wolf, W.W, J.K. Westbrook, J. Raulston, S.D. Pair, and S.E. Hobbs (1990), Recent airborne radar observations of migrant pests in the United States, Phil. Trans. Roy. Soc. Lond. B 328, 619–630, DOI: 10.1098/rstb.1990.0132.

    Article  Google Scholar 

  • Wood, C.R., J.W. Chapman, D.R. Reynolds, J.F. Barlow, A.D. Smith, and I.P. Woiwod (2006), The influence of the atmospheric boundary layer on nocturnal layers of noctuids and other moths migrating over southern Britain, Int. J. Biometeorol. 50, 193–204, DOI: 10.1007/s00484-005-0014-7.

    Article  Google Scholar 

  • Wu, Y., and S. Raman (1998), The summertime Great Plains low level jet and the effect of its origin on moisture transport, Bound.-Layer Meteor. 88, 445–466, DOI: 10.1023/A:1001518302649.

    Article  Google Scholar 

  • Zhong, S., J.D. Fast, and X. Bian (1996), A case study of the Great Plains low-level jet using wind profiler network data and a high-resolution mesoscale model, Monthly Weath. Rev. 124, 785–806, DOI: 10.1175/1520-0493(1996)124<0785:ACSOTG>2.0.CO;2.

    Article  Google Scholar 

  • Zhu, M., E.B. Radcliffe, D.W. Ragsdale, I.V. MacRae, and M.W. Seeley (2006), Low-level jet streams associated with spring aphid migration and current season spread of potato viruses in the U.S. northern Great Plains, Agr. Forest Meteorol. 138, 192–202, DOI: 10.1016/j.agrformet.2006.05.001.

    Article  Google Scholar 

  • Zilitinkevich, S.S. (1975), Resistance laws and prediction equations for the depth of the planetary boundary layer, J. Atmos. Sci. 32, 741–752, DOI: 10.1175/1520-0469(1975)032<0741:RLAPEF>2.0.CO;2.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan Shapiro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shapiro, A., Fedorovich, E. Nocturnal low-level jet over a shallow slope. Acta Geophys. 57, 950–980 (2009). https://doi.org/10.2478/s11600-009-0026-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11600-009-0026-5

Key words

Navigation