Skip to main content

Advertisement

Log in

Estimation of global lightning activity and observations of atmospheric electric field

  • Published:
Acta Geophysica Aims and scope Submit manuscript

Abstract

Variations in the global atmospheric electric circuit are investigated using a wide range of globally spaced instruments observing VLF (∼10 kHz) waves, ELF (∼300 Hz) waves, Schumann resonances (4–60 Hz), and the atmospheric fair weather electric field. For the ELF/VLF observations, propagation effects are accounted for in a novel approach using established monthly averages of lightning location provided by the Lightning Image Sensor (LIS) and applying known frequency specific attenuation parameters for daytime/nighttime ELF/VLF propagation. Schumann resonances are analyzed using decomposition into propagating and standing waves in the Earth-ionosphere waveguide. Derived lightning activity is compared to existing global lightning detection networks and fair weather field observations. The results suggest that characteristics of lightning discharges vary by region and may have diverse effects upon the ionospheric potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Biswas, K.R., and P.V. Hobbs (1990), Lightning over the Gulf Stream, Geophys. Res. Lett. 17, 7, 941–943, DOI: 10.1029/GL017i007p00941.

    Article  Google Scholar 

  • Boccippio, D.J., S.J. Goodman, S. Heckman (2000), Regional differences in tropical lightning distributions, J. Appl. Meteorol. 39, 12, 2231–2248, DOI: 10.1175/1520-0450(2001)040〈2231:RDITLD〉2.0.CO;2.

    Article  Google Scholar 

  • Chalmers, J.A., (1967), Atmospheric Electricity, 2nd ed., Pergamon Press, Oxford - New York, 515 pp.

    Google Scholar 

  • Chen, A.B., C.-L. Kuo, Y.-J. Lee, H.-T. Su, R.-R. Hsu, J.-L. Chern, H.U. Frey, S.B. Mende, Y. Takahashi, H. Fukunishi, Y.-S. Chang, T.-Y. Liu, and L.-C. Lee (2008), Global distributions and occurrence rates of transient luminous events, J. Geophys. Res. 113, A08306, DOI: 10.1029/2008JA013101.

    Article  Google Scholar 

  • Christian, H.J., R.J. Blakeslee, D.J. Boccippio, W.L. Boeck, D.E. Buechler, K.T. Driscoll, S.J. Goodman, J.M. Hall, W.J. Koshak, D.M. Mach, and M.F. Stewart (2003), Global frequency and distribution of lightning as observed from space by the Optical Transient Detector, J. Geophys. Res. 108, D1, 4005, DOI: 10.1029/2002JD002347.

    Article  Google Scholar 

  • Cohen, M.B., U.S. Inan, and E. Paschal (2009), Sensitive broadband ELF/VLF radio reception with the AWESOME instrument, IEEE Trans. Geosci. Remote Sens. 48, 1, 3–17, DOI: 10.1109/TGRS.2009.2028334.

    Article  Google Scholar 

  • Dowden, R.L, J.B. Brundell, and C.J. Rodger (2002), VLF lightning location by time of group arrival (TOGA) at multiple sites, J. Atmos. Sol.-Terr. Phys. 64, 7, 817–830, DOI: 10.1016/S1364-6826(02)00085-8.

    Article  Google Scholar 

  • Fukunishi, H., Y. Takahashi, M. Kubota, K. Sakanoi, U.S. Inan, and W.A. Lyons (1996), Elves: Lightning-induced transient luminous events in the lower ionosphere, Geophys. Res. Lett. 23, 16, 2157–2160, DOI: 10.1029/96GL01979.

    Article  Google Scholar 

  • Füllekrug, M., and A.C. Fraser-Smith (1996), Further evidence for a global correlation of the Earth-ionosphere cavity resonances, Geophys. Res. Lett. 23, 20, 2773–2776, DOI: 10.1029/96GL02612.

    Article  Google Scholar 

  • Füllekrug, M., A.C. Fraser-Smith, E.A. Bering, and A.A. Few (1999), On the hourly contribution of global cloud-to-ground lightning activity to the atmospheric electric field in the Antarctic during December 1992, J. Atmos. Sol.-Terr. Phys. 61, 10, 745–750, DOI: 10.1016/S1364-6826(99)00031-0.

    Article  Google Scholar 

  • Füllekrug, M., C. Price, Y. Yair, and E.R. Williams (2002), Intense oceanic lightning, Ann. Geophys. 20, 1, 133–137, DOI: 10.5194/angeo-20-133-2002.

    Article  Google Scholar 

  • Kartalev, M.D., M.J. Rycroft, M. Füllekrug, V.O. Papitashvili, and V.I. Keremidarska (2006), A possible explanation for the dominant effect of South American thunderstorms on the Carnegie curve, J. Atmos. Sol.-Terr. Phys. 68, 3–5, 457–468, DOI: 10.1016/j.jastp.2005.05.012.

    Article  Google Scholar 

  • Kubicki, M. (2008), Atmospheric electricity research at the Institute of Geophysics in the years 2006–2007, Publs. Inst. Geophys. Pol. Acad. Sc. D-72, 403, 105–110.

    Google Scholar 

  • Kubicki, M., S. Michnowski, and B. Mysłek-Laurikainen (2007), Seasonal and daily variations of atmospheric electricity parameters registered at the Geophysical Observatory at Świder (Poland) during 1965–2000, Proc. 13th Int. Confer. on Atmospheric Electricity, ICAE 2007, Beijing, 50–54.

  • Kułak, A., J. Młynarczyk, S. Zięba, S. Micek, and Z. Nieckarz (2006), Studies of ELF propagation in the spherical shell cavity using a field decomposition method based on asymmetry of Schumann resonance curves, J. Geophys. Res. 111, A10304, DOI: 10.1029/2005JA01142.

    Article  Google Scholar 

  • Lay, E.H., R.H. Holzworth, C.J. Rodger, J.N. Thomas, O. Pinto Jr., and R.L. Dowden (2004), WWLL global lightning detection system: Regional validation study in Brazil, Geophys. Res. Lett. 31, L03102, DOI: 10.1029/2003GL018882.

    Article  Google Scholar 

  • Michnowski, S. (1998), Solar wind influences on atmospheric electricity variables in polar regions, J. Geophys. Res. 103, D12, 13939–13948, DOI: 10.1029/98JD01312.

    Article  Google Scholar 

  • Nieckarz, Z., A. Kułak, S. Zięba, M. Kubicki, S. Michnowski, and P. Barański (2009), Comparison of global storm activity rate calculated from Schumann resonance background components to electric field intensity E0Z, Atmos. Res. 91, 2–4, 184–187, DOI: 10.1016/j.atmosres.2008.06.006.

    Article  Google Scholar 

  • Pasko, V.P., U.S. Inan, and T.F. Bell (1997), Sprites as evidence of vertical gravity wave structures above mesoscale thunderstorms, Geophys. Res. Lett. 24, 14, 1735–1738, DOI: 10.1029/97GL01607.

    Article  Google Scholar 

  • Rodger, C.J., J.B. Brundell, and R.L. Dowden (2005), Location accuracy of VLF World-Wide Lightning Location (WWLL) network: Post-algorithm upgrade, Ann. Geophys. 23, 2, 277–290, DOI: 10.5194/angeo-23-277-2005.

    Article  Google Scholar 

  • Rodger, C.J., S. Werner, J.B. Brundell, E.H. Lay, N.R. Thomson, R.H. Holzworth, and R.L. Dowden (2006), Detection efficiency of the VLF World-Wide Lightning Location Network (WWLLN): Initial case study, Ann. Geophys. 24, 12, 3197–3214, DOI: 10.5194/angeo-24-3197-2006.

    Article  Google Scholar 

  • Rycroft, M.J., S. Israelsson, and C. Price (2000), The global atmospheric electric circuit, solar activity and climate change, J. Atmos. Sol.-Terr. Phys. 62, 17–18, 1563–1576, DOI: 10.1016/S1364-6826(00)00112-7.

    Article  Google Scholar 

  • Rycroft, M.J., A. Odzimek, N.F. Arnold, M. Füllekrug, A. Kułak, and T. Neubert (2007), New model simulations of the global atmospheric electric circuit driven by thunderstorms and electrified shower clouds: The roles of lightning and sprites, J. Atmos. Sol.-Terr. Phys. 69, 17–18, 2485–2509, DOI: 10.1016/j.jastp.2007.09.004.

    Article  Google Scholar 

  • Scherrer, D., M.B. Cohen, T. Hoeksema, U.S. Inan, R. Mitchell, and P. Scherrer (2008), Distributing space weather monitoring instruments and educational materials worldwide for IHY 2007: The AWESOME and SID project, Adv. Space Res. 42, 11, 1777–1785, DOI: 10.1016/j.asr.2007.12.013.

    Article  Google Scholar 

  • Tinsley, B.A., and L. Zhou (2006), Initial results of a global circuit model with variable stratospheric and tropospheric aerosols, J. Geophys. Res. 11, D16205, DOI: 10.1029/2005JD006988.

    Article  Google Scholar 

  • Troshichev, O.A., A. Frank-Kamenetsky, G. Burns, M. Füllekrug, A. Rodger, and V. Morozov (2004), The relationship between variations of the atmospheric electric field in the southern polar region and thunderstorm activity, Adv. Space Res. 34, 8, 1801–1805, DOI: 10.1016/j.asr.2003.07.063.

    Article  Google Scholar 

  • Wait, J.R. (1981), Lectures on Wave Propagation Theory, Pergamon Press, New York.

    Google Scholar 

  • Watt, A.D. (1967), VLF Radio Engineering, Pergamon Press, New York.

    Google Scholar 

  • Whipple, F.J.W., and F.J. Scrase (1936), Point discharge in the electric field of the earth, Geophysical Memoirs of London VII 68, 1–20.

    Google Scholar 

  • Williams, E.R. (2009), The global electric circuit: A review, Atmos. Res. 91, 2–4, 140–152, DOI: 10.1016/j.atmosres.2008.05.018.

    Article  Google Scholar 

  • Williams, E.R., and G. Sátori (2004), Lightning, thermodynamic and hydrological comparison of the two tropical continental chimneys, J. Atmos. Sol.-Terr. Phys. 66, 13–14, 1213–1231, DOI: 10.1016/j.jastp.2004.05.015.

    Article  Google Scholar 

  • Wilson, C.T.R. (1921), Investigations on lightning discharges and on the electric field of thunderstorms, Philos. Trans. Roy. Soc. Lond. A 221, 73–115.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marek Kubicki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gołkowski, M., Kubicki, M., Cohen, M. et al. Estimation of global lightning activity and observations of atmospheric electric field. Acta Geophys. 59, 183–204 (2011). https://doi.org/10.2478/s11600-010-0035-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11600-010-0035-4

Key words

Navigation