Skip to main content
Log in

Scaling features of ambient noise at different levels of local seismic activity: A case study for the Oni seismic station

  • Research Article
  • Published:
Acta Geophysica Aims and scope Submit manuscript

Abstract

Investigation of dynamical features of ambient seismic noise is one of the important scientific and practical research challenges. We investigated scaling features of the ambient noises at the Oni seismic station, Georgia, using detrended fluctuation analysis method. Data from this seismic station, located in the epicentral zone of Oni M6.0, 2009, earthquake, were selected to include time periods with different levels of local seismic activity.

It was shown that the investigated ambient noise is persistent long-range correlated at calm seismic conditions in the absence of earthquakes. Fluctuation features of the analyzed ambient noises were affected by local earthquakes, while remote seismic activity caused just slight quantitative changes. Processes related to the preparation of a strong local earthquake may cause quantifiable changes in fluctuation features of ambient noises. Fluctuation features of seismic noise for periods of increased local seismic activity cease to be long-range correlated and appear to become a complicated mixture of random and correlated behaviours.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alvarez-Ramirez, J., G. Espinosa-Paredes, and A. Vazquez (2005), Detrended fluctuation analysis of the neutronic power from a nuclear reactor, Physica A 351,2–4, 227–240, DOI: 10.1016/j.physa.2004.08.087.

    Article  Google Scholar 

  • Bunde, A., J. Kropp, and H.J. Schellnhuber (eds.) (2002), The Science of Disasters: Climate Disruptions, Heart Attacks, and Market Crashes, Springer, Berlin.

    Google Scholar 

  • Caserta, A., G. Consolini, and P. De Michelis (2007), Statistical features of the seismic noise-field, Stud. Geophys. Geod. 51,2, 255–266, DOI: 10.1007/s11200-007-0013-8.

    Article  Google Scholar 

  • Chelidze, T., and T. Matcharashvili (2007), Complexity of seismic process; measuring and applications — A review, Tectonophysics 431,1–4, 49–60, DOI: 10.1016/j.tecto.2006.05.029.

    Article  Google Scholar 

  • Chelidze, T., O. Lursmanashvili, T. Matcharashvili, and M. Devidze (2006), Triggering and synchronization of stick slip: Waiting times and frequencyenergy distribution, Tectonophysics 424,3–4, 139–155, DOI: 10.1016/j.tecto.2006.03.031.

    Article  Google Scholar 

  • Correig, A.M., M. Urquizu, J. Vila, and R. Macià (2007), Microseism activity and equilibrium fluctuations. In: A. Tsonis and J. Elsner (eds.), Nonlinear Dynamics in Geosciences, Springer, Berlin, 69–85, DOI: 10.1007/978-0-387-34918-3_5.

    Chapter  Google Scholar 

  • Goltz, C. (1997), Fractal and chaotic properties of earthquakes, Lect. Notes Earth Sci. 77, 3–164, DOI: 10.1007/BFb0028315.

    Article  Google Scholar 

  • Hu, K., P.Ch. Ivanov, Z. Chen, P. Carpena, and H.E. Stanley (2001), Effect of trends on detrended fluctuation analysis, Phys. Rev. E 64,1, 011114, DOI: 10.1103/PhysRevE.64.011114.

    Article  Google Scholar 

  • Ivanov, P.Ch., A.L. Goldberger, and H.E. Stanley (2002), Fractal and multifractal approaches in physiology. In: A. Bunde, J. Kropp, and H.J. Schellnhuber (eds.), The Science of Disasters: Climate Disruptions, Heart Attacks, and Market Crashes, Springer-Verlag, Berlin, 219–257.

    Google Scholar 

  • Kanamori, H., and E.E. Brodsky (2001), The physics of earthquakes, Phys. Today 54,6, 34–40, DOI: 10.1063/1.1387590.

    Article  Google Scholar 

  • Kantelhardt, J.W., S.A. Zschiegner, E. Koscielny-Bunde, S. Havlin, A. Bunde, and H.E. Stanley (2002), Multifractal detrended fluctuation analysis of nonstationary time series, Physica A 316,1–4, 87–114, DOI: 10.1016/ S0378-4371(02)01383-3.

    Article  Google Scholar 

  • Kapiris, P.G., K.A. Eftaxias, K.D. Nomikos, J. Polygiannakis, E. Dologlou, G.T. Balasis, N.G. Bogris, A.S. Peratzakis, and V.E. Hadjicontis (2003), Evolving towards a critical point: A possible electromagnetic way in which the critical regime is reached as the rupture approaches, Nonlin. Processes Geophys. 10,6, 511–524, DOI: 10.5194/npg-10-511-2003.

    Article  Google Scholar 

  • Karamanos, K., D. Dakopoulos, K. Aloupis, A. Peratzakis, L. Athanasopoulou, S. Nikolopoulos, P. Kapiris, and K. Eftaxias (2006), Preseismic electromagnetic signals in terms of complexity, Phys. Rev. E 74,1, 016104, DOI: 10.1103/PhysRevE.74.016104.

    Article  Google Scholar 

  • Keilis-Borok, V.I., and A.A. Soloviev (eds.) (2003), Nonlinear Dynamics of the Lithosphere and Earthquake Prediction, Springer-Verlag, Berlin.

    Google Scholar 

  • Lapenna, V., M. Macchiato, and L. Telesca (1998), 1/f β Fluctuations and selfsimilarity in earthquake dynamics: observational evidences in southern Italy, Phys. Earth Planet. Inter. 106,1–2, 115–127, DOI: 10.1016/S0031-9201(97)00080-0.

    Article  Google Scholar 

  • Lyubushin, A. (2010), Multifractal parameters of low-frequency microseisms. In: V. de Rubeis, Z. Czechowski, and R. Teisseyre (eds.), Synchronization and Triggering: from Fracture to Earthquake Processess, GeoPlanet: Earth and Planetary Sciences, Vol. 1, Springer-Verlag, Berlin, 253–272, DOI: 10.1007/978-3-642-12300-9_15.

    Google Scholar 

  • Manshour, P., S. Saberi, M. Sahimi, J. Peinke, A.F. Pacheco, and M.R.R. Tabar (2009), Turbulencelike behavior of seismic time series, Phys. Rev. Lett. 102,1, 014101, DOI: 10.1103/PhysRevLett.102.014101.

  • Manshour, P., F. Ghasemi, T. Matsumoto, J. Gómez, M. Sahimi, J. Peinke, A.F. Pacheco, and M.R.R. Tabar (2010), Anomalous fluctuations of vertical velocity of Earth and their possible implications for earthquakes, Phys. Rev. E 82,3, 036105, DOI: 10.1103/PhysRevE.82.036105.

    Article  Google Scholar 

  • Matcharashvili, T., and T. Chelidze (2010), Nonlinear dynamics as a tool for revealing synchronization and ordering in geophysical time series: Application to caucasus seismicity. In: V. de Rubeis, Z. Czechowski, and R. Teisseyre (eds.), Synchronization and Triggering: from Fracture to Earthquake Processess, GeoPlanet: Earth and Planetary Sciences, Vol. 1, Springer, Berlin, 3–21, DOI: 10.1007/978-3-642-12300-9_1.

    Chapter  Google Scholar 

  • Matcharashvili, T., T. Chelidze, and Z. Javakhishvili (2000), Nonlinear analysis of magnitude and interevent time interval sequences for earthquakes of Caucasian region, Nonlin. Processes Geophys. 7,1/2, 9–20, DOI: 10.5194/npg-7-9-2000.

    Article  Google Scholar 

  • Padhy, S. (2004), Rescaled range fractal analysis of a seismogram for identification of signals from an earthquake, Curr. Sci. 87,5, 637–641.

    Google Scholar 

  • Peng, C.-K., S.V. Buldyrev, A.L. Goldberger, S. Havlin, M. Simons, and H.E. Stanley (1993a), Finite-size effects on long-range correlations: Implications for analyzing DNA sequences, Phys. Rev. E 47,5, 3730–3733, DOI: 10.1103/PhysRevE.47.3730.

    Article  Google Scholar 

  • Peng, C.-K., J. Mietus, J. Hausdorff, S. Havlin, H.E. Stanley, and A.L. Goldberger (1993b), Long-range anticorrelations and non-Gaussian behavior of the heartbeat, Phys. Rev. Lett. 70,9, 1343–1346, DOI: 10.1103/PhysRevLett.70.1343.

    Article  Google Scholar 

  • Peng, C.-K., S. Havlin, H.E. Stanley, and A.L. Goldberger (1995), Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series, Chaos 5,1, 82–87, DOI: 10.1063/1.166141.

    Article  Google Scholar 

  • Rodriguez, E., J.C. Echeverria, and J. Alvarez-Ramirez (2007), Detrended fluctuation analysis of heart intrabeat dynamics, Physica A 384,2, 429–438, DOI: 10.1016/j.physa.2007.05.022.

    Article  Google Scholar 

  • Rundle, J.B., D.L. Turcotte, and W. Klein (eds.) (2000), GeoComplexity and the Physics of Earthquakes, AGU Monograph 120, American Geophysical Union, Washington, DC, 284 pp.

    Google Scholar 

  • Ryabov, V.B., A.M. Correig, M. Urquizú, and A.A. Zaikin (2003), Microseism oscillations: from deterministic to noise-driven models, Chaos Soliton. Fract. 16,2, 195–210, DOI: 10.1016/S0960-0779(02)00165-0.

    Article  Google Scholar 

  • Scholz, C.H. (1990), The Mechanics of Earthquakes and Faulting, Cambridge University Press, Cambridge.

    Google Scholar 

  • SESAME (2004), Guidelines for the implementation of the H/V spectral ratio technique on ambient vibrations. Measurements, processing and interpretation, WP12 European Commission — Research General Directorate, Project No. EVG1-CT-2000-0026 SESAME, report D23.

  • Sobolev, G.A., and A.A. Lyubushin (2006), Microseismic impulses as earthquake precursors, Izv. — Phys. Solid Earth 42,9, 721–733, DOI: 10.1134/S1069351306090023.

    Article  Google Scholar 

  • Sobolev, G.A., A.A. Lyubushin, and N.A. Zakrzhevskaya (2010), Synchronizations of microseismic oscillations as the indicators of the instability of a seismically active region. In: V. de Rubeis, Z. Czechowski, and R. Teisseyre (eds.), Synchronization and Triggering: from Fracture to Earthquake Processess, GeoPlanet: Earth and Planetary Sciences, Vol. 1, Springer, Berlin, 243–252, DOI: 10.1007/978-3-642-12300-9_14.

    Chapter  Google Scholar 

  • Tabar, M.R.R., M. Sahimi, F. Ghasemi, K. Kaviani, M. Allamehzadeh, J. Peinke, M. Mokhtari, M. Vesaghi, M.D. Niry, A. Bahraminasab, S. Tabatabai, S. Fayazbakhsh, and M. Akbari (2006), Short-term prediction of mediumand large-size earthquakes based on Markov and extended self-similarity analysis of seismic data, Lect. Notes Phys. 705, 281–301, DOI: 10.1007/3-540-35375-5_11.

    Article  Google Scholar 

  • Telesca, L., and V. Lapenna (2006), Measuring multifractality in seismic sequences, Tectonophysics 423,1–4, 115–123, DOI: 10.1016/j.tecto.2006.03.023.

    Article  Google Scholar 

  • Telesca, L., V. Lapenna, and M. Macchiato (2005), Multifractal fluctuations in seismic interspike series, Physica A 354, 629–640, DOI: 10.1016/j.physa.2005.02.053.

    Article  Google Scholar 

  • Telesca, L., M. Lovallo, V. Lapenna, and M. Macchiato (2008), Space-magnitude dependent scaling behaviour in seismic interevent series revealed by detrended fluctuation analysis, Physica A 387,14, 3655–3659, DOI: 10.1016/j.physa.2008.02.035.

    Article  Google Scholar 

  • Theiler, J., S. Eubank, A. Longtin, B. Galdrikian, and J.D. Farmer (1992), Testing for nonlinearity in time series: the method of surrogate data, Physica D 58,1–4, 77–94, DOI: 10.1016/0167-2789(92)90102-S.

    Article  Google Scholar 

  • Webb, S.C. (1998), Broadband seismology and noise under the ocean, Rev. Geophys. 36,1, 105–142, DOI: 10.1029/97RG02287.

    Article  Google Scholar 

  • Yulmetyev, R., F. Gafarov, P. Hänggi, R. Nigmatullin, and S. Kayumov (2001), Possibility between earthquake and explosion seismogram differentiation by discrete stochastic non-Markov processes and local Hurst exponent analysis, Phys. Rev. E 64,6, 066132, DOI: 10.1103/PhysRevE.64.066132.

    Article  Google Scholar 

  • Yulmetyev, R., P. Hänggi, F. Gafarov, and D.G. Yulmetyeva (2003), Non-stationary time correlation in discrete complex systems: Applications in cardiology and seismology, Nonlin. Phen. Compl. Systems 6,3, 791–799.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teimuraz Matcharashvili.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matcharashvili, T., Chelidze, T., Javakhishvili, Z. et al. Scaling features of ambient noise at different levels of local seismic activity: A case study for the Oni seismic station. Acta Geophys. 60, 809–832 (2012). https://doi.org/10.2478/s11600-012-0006-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11600-012-0006-z

Key words

Navigation