Skip to main content

Advertisement

Log in

Earthquake forewarning — A multidisciplinary challenge from the ground up to space

  • Research article
  • Published:
Acta Geophysica Aims and scope Submit manuscript

Abstract

Most destructive earthquakes nucleate at between 5–7 km and about 35–40 km depth. Before earthquakes, rocks are subjected to increasing stress. Not every stress increase leads to rupture. To understand pre-earthquake phenomena we note that igneous and high-grade metamorphic rocks contain defects which, upon stressing, release defect electrons in the oxygen anion sublattice, known as positive holes. These charge carriers are highly mobile, able to flow out of stressed rocks into surrounding unstressed rocks. They form electric currents, which emit electromagnetic radiation, sometimes in pulses, sometimes sustained. The arrival of positive holes at the ground-air interface can lead to air ionization, often exclusively positive. Ionized air rising upward can lead to cloud condensation. The upward flow of positive ions can lead to instabilities in the mesosphere, to mesospheric lightning, to changes in the Total Electron Content (TEC) at the lower edge of the ionosphere, and electric field turbulences. Advances in deciphering the earthquake process can only be achieved in a broadly multidisciplinary spirit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Balk, M., M. Bose, G. Ertem, D.A. Rogoff, L.J. Rothschild, and F.T. Freund (2009), Oxidation of water to hydrogen peroxide at the rock-water interface due to stress-activated electric currents in rocks, Earth Planet. Sci. Lett. 283,1–4, 87–92, DOI: 10.1016/j.epsl.2009.03.044.

    Article  Google Scholar 

  • Batllo, F., R.C. LeRoy, K. Parvin, F. Freund, and M.M. Freund (1991), Positive holes in magnesium oxide. Correlation between magnetic, electric, and dielectric anomalies, J. Appl. Phys. 69,8, 6031–6033, DOI: 10.1063/1.347807.

    Article  Google Scholar 

  • Biagi, P.F., R. Piccolo, A. Ermini, S. Martellucci, C. Bellecci, M. Hayakawa, V. Capozzi, and S.P. Kingsley (2001), Possible earthquake precursors revealed by LF radio signals, Nat. Hazards Earth Syst. Sci. 1,1/2, 99–104, DOI: 10.5194/nhess-1-99-2001.

    Article  Google Scholar 

  • Bleier, T., C. Dunson, C. Alvarez, F. Freund, and R. Dahlgren (2010), Correlation of pre-earthquake electromagnetic signals with laboratory and field rock experiments, Nat. Hazards Earth Syst. Sci. 10,9, 1965–1975, DOI: 10.5194/nhess-10-1965-2010.

    Article  Google Scholar 

  • Bleier, T., C. Dunson, S. Roth, J. Heroud, A. Lisa, F. Freund, R. Dahlgren, R. Bamberry, and N. Bryant (2012), Ground-based and space-based electromagnetic monitoring for pre-earthquake signals. In: M. Hayakawa (ed.), The Frontier of Earthquake Prediction Studies, Nihon-senmontosho-Shuppan, Tokyo, 282–305.

    Google Scholar 

  • Błęcki, J., M. Parrot, and R. Wronowski (2010), Studies of the electromagnetic field variations in ELF frequency range registered by DEMETER over the Sichuan region prior to the 12 May 2008 earthquake, Int. J. Remote Sens. 31,13, 3615–3629, DOI: 10.1080/01431161003727754.

    Article  Google Scholar 

  • Błęcki, J., M. Parrot, and R. Wronowski (2011), Plasma turbulence in the ionosphere prior to earthquakes, some remarks on the DEMETER registrations, J. Asian Earth Sci. 41,4–5, 450–458, DOI: 10.1016/j.jseaes.2010.05.016.

    Google Scholar 

  • Boeck, W.L., O.H. Vaughan, R.J. Blakeslee, B. Vonnegut, and M. Brook (1998), The role of the space shuttle videotapes in the discovery of sprites, jets and elves, J. Atmos. Sol.-Terr. Phys. 60,7–9, 669–677, DOI: 10.1016/S1364-6826(98)00025-X.

    Article  Google Scholar 

  • Claesson, L., A. Skelton, C. Graham, C. Dietl, M. Mörth, P. Torssander, and I. Kockum (2004), Hydrogeochemical changes before and after a major earthquake, Geology 32,8, 641–644, DOI: 10.1130/G20542.1.

    Article  Google Scholar 

  • Dea, J.Y., P.M. Hansen, and W.-M. Boerner (1997), ULF/ELF polarimetry: observations of anomalous ULF signals preceding the Northridge earthquake of January 17, 1994. In: H. Mott, and W.-M. Boerner (eds.), Proc. SPIE 3120, Wideband Interferometric Sensing and Imaging Polarimetry, 27 July 1997, San Diego, USA, DOI: 10.1117/12.300623.

    Google Scholar 

  • Derr, J.S., F. St-Laurent, F.T. Freund, and R. Thériault (2011), Earthquake lights. In: H.K. Gupta (ed.), Encyclopedia of Solid Earth Geophysics, Springer, Dordrecht, 165–167.

    Google Scholar 

  • Dunajecka, M.A., and S.A. Pulinets (2005), Atmospheric and thermal anomalies observed around the time of strong earthquakes in México, Atmósfera 18, 236–247.

    Google Scholar 

  • e-PISCO (2012), http://www.e-pisco.jp/index.html.

  • Eftaxias, K., L. Athanasopoulou, G. Balasis, M. Kalimeri, S. Nikolopoulos, and Y. Contoyiannis, J. Kopanas, G. Antonopoulos, and C. Nomicos (2009), Unfolding the procedure of characterizing recorded ultra low frequency, kHZ and MHz electromagnetic anomalies prior to the L’Aquila earthquake as pre-seismic ones — Part I, Nat. Hazards Earth Syst. Sci. 9,6, 1953–1971, DOI: 10.5194/nhess-9-1953-2009.

    Article  Google Scholar 

  • Filizzola, C., N. Pergola, C. Pietrapertosa, and V. Tramutoli (2004), Robust satellite techniques for seismically active areas monitoring: a sensitivity analysis on September 7, 1999 Athens’s earthquake, Phys. Chem. Earth 29,4–9, 517–527, DOI: 10.1016/j.pce.2003.11.019.

    Google Scholar 

  • Fraser-Smith, A.C. (1992), ULF, ELF, and VLF electromagnetic field observations during earthquakes: Search for precursors. In: S.K. Park, M.J.S. Johnston, T.R. Madden, F.D. Morgan, and H.F. Morrison (eds.), Low Frequency Electrical Precursors: Fact or Fiction?, NSF National Earthquake Hazard Reduction Program, 14–17 June 1992, Lake Arrowhead, CA, USA.

    Google Scholar 

  • Freund, F. (2002), Charge generation and propagation in igneous rocks, J. Geodyn. 33,4–5, 545–570, DOI: 10.1016/S0264-3707(02)00015-7.

    Google Scholar 

  • Freund, F.T. (2010), Toward a unified solid state theory for pre-earthquake signals, Acta Geophys. 58,5, 719–766, DOI: 10.2478/s11600-009-0066-x.

    Article  Google Scholar 

  • Freund, F., and S. Pilorz (2012), Electric currents in the Earth crust and the generation of pre-earthquake ULF signals. In: M. Hayakawa (ed.), The Frontier of Earthquake Prediction Studies, Nihon-senmontosho Shuppan, Tokyo, 800 pp.

    Google Scholar 

  • Freund, F., and H. Wengeler (1982), The infrared spectrum of OH-compensated defect sites in C-doped MgO and CaO single crystals, J. Phys. Chem. Solids 43,2, 129–145, DOI: 10.1016/0022-3697(82)90131-7.

    Article  Google Scholar 

  • Freund, F., M.M. Masuda, and M.M. Freund (1991), Highly mobile oxygen holetype charge carriers in fused silica, J. Mater. Res. 6,8, 1619–1622, DOI: 10.1557/JMR.1991.1619.

    Article  Google Scholar 

  • Freund, F.T., A. Takeuchi, and B.W.S. Lau (2006), Electric currents streaming out of stressed igneous rocks — A step towards understanding pre-earthquake low frequency EM emissions, Phys. Chem. Earth 31,4–9, 389–396, DOI: 10.1016/j.pce.2006.02.027.

    Google Scholar 

  • Freund, F.T., A. Takeuchi, B.W.S. Lau, A. Al-Manaseer, C.C. Fu, N.A. Bryant, and D. Ouzounov (2007), Stimulated infrared emission from rocks: assessing a stress indicator, eEarth 2,1, 7–16, DOI: 10.5194/ee-2-7-2007.

    Article  Google Scholar 

  • Freund, F.T., I.G. Kulahci, G. Cyr, J. Ling, M. Winnick, J. Tregloan-Reed, and M.M. Freund (2009), Air ionization at rock surfaces and pre-earthquake signals, J. Atmos. Sol.-Terr. Phys. 71,17–18, 1824–1834, DOI: 10.1016/j.jastp.2009.07.013.

    Article  Google Scholar 

  • Freund, M.M., F. Freund, and F. Batllo (1989), Highly mobile oxygen holes in magnesium oxide, Phys. Rev. Lett. 63,19, 2096–2099, DOI: 10.1103/PhysRevLett.63.2096.

    Article  Google Scholar 

  • Fukuchi, T. (1996), A mechanism of the formation of E’ and peroxy centers in natural deformed quartz, Appl. Radiat. Isotopes 47,11–12, 1509–1521, DOI: 10.1016/S0969-8043(96)00144-3.

    Article  Google Scholar 

  • Gish, O.H., and G.R. Wait (1950), Thunderstorms and the Earth’s general electrification, J. Geophys. Res. 55,4, 473–484, DOI: 10.1029/JZ055i004p00473.

    Article  Google Scholar 

  • GoŁkowski, M., M. Cohen, and M. Kubicki (2009), Global lightning activity and the atmospheric electric field. In: IHY Workshop on Advancing VLF through the Global AWESOME Network, Tunis.

    Google Scholar 

  • Grant, R.A., T. Halliday, W.P. Balderer, F. Leuenberger, M. Newcomer, G. Cyr, and F.T. Freund (2011), Ground water chemistry changes before major earthquakes and possible effects on animals, Int. J. Environ. Res. Public Health 8,6, 1936–1956, DOI: 10.3390/ijerph8061936.

    Article  Google Scholar 

  • Gringel, W., J.M. Rosen, and D.J. Hofmann (1986), Electrical structure from 0 to 30 kilometers. In: The Earth’s Electrical Environment, Studies in Geophysics, National Academy Press, Washington, D.C., 166–182.

    Google Scholar 

  • Griscom, D.L. (1990), Electron spin resonance. In: D.R. Uhlmann and N.J. Kreidl (eds.), Glass Science and Technology, Vol. 4, Advances in Structural Analysis, 151–251, DOI: 10.1016/B978-0-12-706707-0.50010-4.

    Google Scholar 

  • Guo, G., and B. Wang (2008), Cloud anomaly before Iran earthquake, Int. J. Remote Sens. 29,7, 1921–1928, DOI: 10.1080/01431160701373762.

    Article  Google Scholar 

  • Harrison, R.G., and A.J. Bennett (2007), Cosmic ray and air conductivity profiles retrieved from early twentieth century balloon soundings of the lower troposphere, J. Atmos. Sol.-Terr. Phys. 69,4–5, 515–527, DOI: 10.1016/j.jastp.2006.09.008.

    Article  Google Scholar 

  • Harrison, R.G., K.L. Aplin, and M.J. Rycroft (2010), Atmospheric electricity coupling between earthquake regions and the ionosphere, J. Atmos. Sol.-Terr. Phys. 72,5-6, 376–381, DOI: 10.1016/j.jastp.2009.12.004.

    Article  Google Scholar 

  • Hayakawa, M., Y. Kasahara, T. Nakamura, Y. Hobara, A. Rozhnoi, M. Solovieva, and O.A. Molchanov (2010), On the correlation between ionospheric perturbations as detected by subionospheric VLF/LF signals and earthquakes as characterized by seismic intensity, J. Atmos. Sol.-Terr. Phys. 72,13, 982–987, DOI: 10.1016/j.jastp.2010.05.009.

    Article  Google Scholar 

  • Hayakawa, M., Y. Kasahara, T. Endoh, Y. Hobara, and S. Asai (2012), The observation of Doppler shifts of subionospheric LF signal in possible association with earthquakes, J. Geophys. Res. 117,A9, A09304, DOI: 10.1029/2012JA017752.

    Article  Google Scholar 

  • Hedge, A., and E. Eleftherakis (1982), Air ionization: An evaluation of its physiological and psychological effects, Ann. Occup. Hyg. 25,4, 409–419, DOI: 10.1093/annhyg/25.4.409.

    Article  Google Scholar 

  • Hollerman, W.A., B.L. Lau, R.J. Moore, C.A. Malespin, N.P. Bergeron, F.T. Freund, and P.J. Wasilewski (2006), Electric currents in granite and gabbro generated by impacts up to 1 km/s. In: American Geophysical Union, Fall Meeting 2006, Abstract #T31A-0419, AGU, San Francisco, USA.

    Google Scholar 

  • Hoppel, W.A., R.V. Anderson, and J.C. Willet (1986), Atmospheric electricity in the planetary boundary layer. In: The Earth’s Electrical Environment, Studies in Geophysics, National Academy Press, Washington, D.C., 149–165.

    Google Scholar 

  • İnan, S., T. Akgül, C. Seyis, R. Saatçılar, S. Baykut, S. Ergintav, and M. Baş (2008), Geochemical monitoring in the Marmara region (NW Turkey): A search for precursors of seismic activity, J. Geophys. Res. 113,B3, B03401, DOI: 10.1029/2007JB005206.

    Article  Google Scholar 

  • İnan, S., K. Ertekin, C. Seyis, Ş. Şimşek, F. Kulak, A. Dikbaş, O. Tan, S. Ergintav, R. Çakmak, A. Yörük, M. Çergel, H. Yakan, H. Karakuş, R. Saatçilar, Z. Akçiğ, Y. Iravul, and B. Tüzel (2010), Multi-disciplinary earthquake researches in Western Turkey: Hints to select sites to study eochemical transients associated to seismicity, Acta Geophys. 58,5, 767–813, DOI: 10.2478/s11600-010-0016-7.

    Article  Google Scholar 

  • İnan, S., W.P. Balderer, F. Leuenberger-West, H. Yakan, A. UOzvan, and F.T. Freund (2012), Springwater chemical anomalies prior to the Mw = 7.2 Van earthquake (Turkey), Geochem. J. 46, e11–e16.

    Google Scholar 

  • Jhuang, H.-K., Y.-Y. Ho, Y. Kakinami, J.-Y. Liu, K.-I. Oyama, M. Parrot, K. Hattori, M. Nishihashi, and D. Zhang (2010), Seismo-ionospheric anomalies of the GPS-TEC appear before the 1 2 May 2008 magnitude 8.0 Wenchuan earthquake, Int. J. Remote Sens. 31,13, 3579–3587, DOI: 10.1080/01431161003727796.

    Article  Google Scholar 

  • Kafatos, M., D. Ouzounov, S. Pulinets, K. Hattori, J.-Y. Liu, M. Parrot, and P. Taylor (2010), Multi sensor approach of validating atmospheric signals associated with major earthquakes. In: EGU General Assembly, 2–7 May 2010, Vienna, Austria, 14184.

    Google Scholar 

  • Kamsali, N., S.D. Pawar, P. Murugavel, and V. Gopalakrishnan (2011), Estimation of small ion concentration near the Earth’s surface, J. Atmos. Sol.-Terr. Phys. 73,16, 2345–2351, DOI: 10.1016/j.jastp.2011.07.011.

    Article  Google Scholar 

  • Kathrein, H., and F. Freund (1983), Electrical conductivity of magnesium oxide single crystal below 1200 K, J. Phys. Chem. Solids 44,3, 177–186, DOI: 10.1016/0022-3697(83)90052-5.

    Article  Google Scholar 

  • King, B.V., and F. Freund (1984), Surface charges and subsurface space-charge distribution in magnesium oxides containing dissolved traces of water, Phys. Rev. B 29,10, 5814–5824, DOI: 10.1103/PhysRevB.29.5814.

    Article  Google Scholar 

  • Krueger, A.P., and E.J. Reed (1976), Biological impact of small air ions, Science 193,4259, 1209–1213, DOI: 10.1126/science.959834.

    Article  Google Scholar 

  • Krueger, A.P., P.C. Andriese, and S. Kotaka (1968), Small air ions: Their effect on blood levels of serotonin in terms of modern physical theory, Int. J. Biometeorol. 12,3, 225–239, DOI: 10.1007/BF01553423.

    Article  Google Scholar 

  • Kubicki, M. (2011), Global lightning activity and the atmospheric electric field. In: U. Inan (ed.), The Stanford AWESOME Global Collaborative.

    Google Scholar 

  • Kuo, C.L. (2012), The middle atmosphere: Discharge phenomena. In: R. Ghadawala (ed.), Advances in Spacecraft Systems and Orbit Determination, InTech, Shanghai.

    Google Scholar 

  • Kuo, C.L., J.D. Huba, G. Joyce, and L.C. Lee (2011), Ionosphere plasma bubbles and density variations induced by pre-earthquake rock currents and associated surface charges, J. Geophys. Res. 116,A10, A10317, DOI: 10.1029/2011JA016628.

    Article  Google Scholar 

  • Linde-Gas Co. (1995), Material Safety Data Sheet: Compressed Air; www.orcbs.msu.edu/msds/LINDE_MSDS/pdf/002.pdf.

    Google Scholar 

  • Liu, J.Y., Y.J. Chuo, S.J. Shan, Y.B. Tsai, Y.I. Chen, S.A. Pulinets, and S.B. Yu (2004), Pre-earthquake ionospheric anomalies registered by continuous GPS TEC measurements, Ann. Geophys. 22,5, 1585–1593, DOI: 10.5194/angeo-22-1585-2004.

    Article  Google Scholar 

  • Liu, J.Y., C.H. Chen, Y.I. Chen, W.H. Yang, K.I. Oyama, and K.W. Kuo (2010), A statistical study of ionospheric earthquake precursors monitored by using equatorial ionization anomaly of GPS TEC in Taiwan during 2001–2007, J. Asian Earth Sci. 39,1–2, 76–80, DOI: 10.1016/j.jseaes.2010.02.012.

    Article  Google Scholar 

  • Liu, J.Y.,H. Le, Y.I. Chen, C.H. Chen, L. Liu, W. Wan, Y.Z. Su, Y.Y. Sun, C.H. Lin, and M.Q. Chen (2011), Observations and simulations of seismoionospheric GPS total electron content anomalies before the 12 January 2010 M7 Haiti earthquake, J. Geophys. Res. 116,A4, A04302, DOI: 10.1029/2010JA015704.

    Article  Google Scholar 

  • Liu, Y.Z., and Y. Liu (1997), The factors and mechanisms of the electromagnetics of rock fracturing, Acta Seismol. Sinica 19,4, 418–425.

    Google Scholar 

  • Marfunin, A.S. (1979), Spectroscopy, Luminescence, and Radiation Centers in Minerals, Springer Verlag, Berlin.

    Book  Google Scholar 

  • Martens, R., H. Gentsch, and F. Freund (1976), Hydrogen release during the thermal decomposition of magnesium hydroxide to magnesium oxide, J. Catalysis 44,3, 366–372, DOI: 10.1016/0021-9517(76)90413-9.

    Article  Google Scholar 

  • Masci, F. (2011), On the seismogenic increase of the ratio of the ULF geomagnetic field components, Phys. Earth Planet. In. 187,1–2, 19–32, DOI: 10.1016/j.pepi.2011.05.001.

    Article  Google Scholar 

  • Molchanov, O.A., and M. Hayakawa (1998), On the generation mechanism of ULF seimogenic electromagnetic emissions, Phys. Earth Planet. In. 105,3–4, 201–210, DOI: 10.1016/S0031-9201(97)00091-5.

    Article  Google Scholar 

  • Morton, L.L. (1988), Headaches prior to earthquakes, Int. J. Biometeorol. 32,2, 147–148, DOI: 10.1007/BF01044909.

    Article  Google Scholar 

  • Moura, C.L., A.C. Artur, D.M. Bonotto, S. Guedes, and C.D. Martinelli (2011), Natural radioactivity and radon exhalation rate in Brazilian igneous rocks, Appl. Radiat. Isotopes 69,7, 1094–1099, DOI: 10.1016/j.apradiso.2011.03.004.

    Article  Google Scholar 

  • Nagaraja, K., B.S.N. Prasad, M.S. Madhava, M.S. Chandrashekara, L. Paramesh, J. Sannappa, S.D. Pawar, P. Murugavel, and A.K. Kamra (2003), Radon and its short-lived progeny: variations near the ground, Radiat. Meas. 36,1–6, 413–417, DOI: 10.1016/S1350-4487(03)00162-8.

    Article  Google Scholar 

  • Namgaladze, A.A., O.V. Zolotov, M.I. Karpov, and Y.V. Romanovskaya (2012), Manifestations of the earthquake preparations in the ionosphere total electron content variations, Nat. Sci. 4,11, 848–855, DOI: 10.4236/ns.2012.411113.

    Google Scholar 

  • Ohta, K., K. Umeda, N. Watanabe, and M. Hayakawa (2001), ULF/ELF emissions observed in Japan, possibly associated with the Chi-Chi earthquake in Taiwan, Nat. Hazards Earth Syst. Sci. 1,1/2, 37–42, DOI: 10.5194/nhess-1-37-2001.

    Article  Google Scholar 

  • Omori, Y., H. Nagahama, Y. Kawada, Y. Yasuoka, T. Ishikawa, S. Tokonami, and M. Shinogi (2009), Preseismic alteration of atmospheric electric conditions due to anomalous radon emanation, Phys. Chem. Earth 34,6–7, 435–440, DOI: 10.1016/j.pce.2008.08.001.

    Google Scholar 

  • Ondoh, T. (2003), Anomalous sporadic-E layers observed before M 7.2 Hyogo-ken Nanbu earthquake; Terrestrial gas emanation model, Adv. Polar Upper Atmos. Res. 17, 96–108.

    Google Scholar 

  • Ouzounov, D., N. Bryant, T. Logan, S. Pulinets, and P. Taylor (2006), Satellite thermal IR phenomena associated with some of the major earthquakes in 1999–2003, Phys. Chem. Earth 31,4–9, 154–163, DOI: 10.1016/j.pce.2006.02.036.

    Google Scholar 

  • Ouzounov, D., D. Liu, K. Chunli, G. Cervone, M. Kafatos, and P. Taylor (2007), Outgoing long wave radiation variability from IR satellite data prior to major earthquakes, Tectonophysics 431,1–4, 211–220, DOI: 10.1016/j.tecto.2006.05.042.

    Article  Google Scholar 

  • Ouzounov, D., S. Pulinets, A. Romanov, A. Romanov, K. Tsybulya, D. Davidenko, M. Kafatos, and P. Taylor (2011), Atmosphere-ionosphere response to the M9 Tohoku earthquake revealed by joined satellite and ground observations. Preliminary results, arXiv.org, arXiv:1105.2841.

    Google Scholar 

  • Pasko, V.P. (2006), Theoretical modeling of sprites and jets. In: M. Füllekrug, E.A. Mareev, and M.J. Rycroft (eds.), Sprites, Elves and Intense Lightning Discharges, Springer, Berlin, 253–311, DOI: 10.1007/1-4020-4629-4_12.

    Google Scholar 

  • Pérez, N.M., P.A. Hernández, G. Igarashi, I. Trujillo, S. Nakai, H. Sumino, and H. Wakita (2008), Searching and detecting earthquake geochemical precursors in CO2-rich groundwaters from Galicia, Spain, Geochem. J. 42,1, 75–83, DOI: 10.2343/geochemj.42.75.

    Article  Google Scholar 

  • Pulinets, S.A. (2007), Natural radioactivity, earthquakes, and the ionosphere, Eos Trans. Am. Geophys. Union 88,20, 217–218, DOI: 10.1029/2007EO200001.

    Article  Google Scholar 

  • Pulinets, S., and D. Ouzounov (2011), Lithosphere-Atmosphere-Ionosphere Coupling (LAIC) model — An unified concept for earthquake precursors validation, J. Asian Earth Sci. 41,4–5, 371–382, DOI: 10.1016/j.jseaes.2010.03.005.

    Article  Google Scholar 

  • Pulinets, S.A., A. Leyva Contreras, G. Bisiacchi-Giraldi, and L. Ciraolo (2005), Total electron content variations in the ionosphere before the Colima, Mexico, earthquake of 21 January 2003, Geofis. Int. 44,4, 369–377.

    Google Scholar 

  • Qin, K., L.X. Wu, A. De Santis, and G. Cianchini (2012), Preliminary analysis of surface temperature anomalies that preceded the two major Emilia 2012 earthquakes (Italy), Ann. Geophys. 55,4, 823–828, DOI: 10.4401/ag-6123.

    Google Scholar 

  • Ricci, D., G. Pacchioni, M.A. Szymanski, A.L. Shluger, and A.M. Stoneham (2001), Modeling disorder in amorphous silica with embedded clusters: The peroxy bridge defect center, Phys. Rev. B 64,22, 224101–224108, DOI: 10.1103/PhysRevB.64.224104.

    Article  Google Scholar 

  • Roberts, L., and F. Freund (2012), Coupling between Earth surface and ionosphere before earthquakes air ionization at the ground-to-air interface as major driving mechanism. In: T. Nagao (ed.), EMSEV 2012 Workshop, 1–4 October 2012, Gotemba, Japan.

    Google Scholar 

  • Rycroft, M.J., S. Israelsson, and C. Price (2000), The global atmospheric electric circuit, solar activity and climate change, J. Atmos. Sol.-Terr. Phys. 62,17–18, 1563–1576, DOI: 10.1016/S1364-6826(00)00112-7.

    Article  Google Scholar 

  • Rycroft, M.J., A. Odzimek, N.F. Arnold, M. Füllekrug, A. KuŁak, and T. Neubert (2007), New model simulations of the global atmospheric electric circuit driven by thunderstorms and electrified shower clouds: The roles of lightning and sprites, J. Atmos. Sol.-Terr. Phys. 69,17-18, 2485–2509, DOI: 10.1016/j.jastp.2007.09.004.

    Article  Google Scholar 

  • Rycroft, M.J., R.G. Harrison, K.A. Nicoll, and E.A. Mareev (2008), An overview of Earth’s global electric circuit and atmospheric conductivity, Space Sci. Rev. 137,1–4, 83–105, DOI: 10.1007/s11214-008-9368-6.

    Article  Google Scholar 

  • Sapkota, B.K., and N.C. Varshneya (1990), On the global atmospheric electrical circuit, J. Atmos. Terr. Phys. 52,1, 1–20, DOI: 10.1016/0021-9169(90)90110-9.

    Article  Google Scholar 

  • Saraf, A.K., V. Rawat, P. Banerjee, S. Choudhury, S.K. Panda, S. Dasgupta, and J.D. Das (2008), Satellite detection of earthquake thermal infrared precursors in Iran, Nat. Hazards 47,1, 119–135, DOI: 10.1007/s11069-007-9201-7.

    Article  Google Scholar 

  • Saraf, A.K., V. Rawat, J. Das, M. Zia, and K. Sharma (2012), Satellite detection of thermal precursors of Yamnotri, Ravar and Dalbandin earthquakes, Nat. Hazards 61,2, 861–872, DOI: 10.1007/s11069-011-9922-5.

    Article  Google Scholar 

  • Shitov, A.V. (2010), Health of people living in a seismically active region. In: I. Florinsky (ed.), Man and the Geosphere, Nova Science Publishers, Inc., New York, 185–214.

    Google Scholar 

  • Shluger, A.L., E.N. Heifets, J.D. Gale, and C.R.A. Catlow (1992), Theoretical simulation of localized holes in MgO, J. Phys. — Condens. Mat. 4,26, 5711–5722, DOI: 10.1088/0953-8984/4/26/005.

    Article  Google Scholar 

  • Singh, A.K., D. Siingh, R.P. Singh, and S. Mishra (2011), Electrodynamical coupling of Earth’s atmosphere and ionosphere: An overview, Int. J. Geophys. 2011,971313, DOI: 10.1155/2011/971302.

    Google Scholar 

  • Sorokin, V.M., V.M. Chmyrev, and A.K. Yaschenko (2005), Theoretical model of DC electric field formation in the ionosphere stimulated by seismic activity, J. Atmos. Sol.-Terr. Phys. 67,14, 1259–1268, DOI: 10.1016/j.jastp.2005.07.013.

    Article  Google Scholar 

  • Thomas, J.N., J.J. Love, and M.J.S. Johnston (2009), On the reported magnetic precursor of the 1989 Loma Prieta earthquake, Phys. Earth Planet. In. 173,3–4, 207–215, DOI: 10.1016/j.pepi.2008.11.014.

    Article  Google Scholar 

  • Tramutoli, V., V. Cuomo, C. Filizzola, N. Pergola, and C. Pietrapertosa (2005), Assessing the potential of thermal infrared satellite surveys for monitoring seismically active areas: The case of Kocaeli (İzmit) earthquake, August 17, 1999, Remote Sens. Environ. 96,3–4, 409–426, DOI: 10.1016/j.rse.2005.04.006.

    Article  Google Scholar 

  • Tronin, A.A. (1996), Satellite thermal survey — a new tool for the study of seismoactive regions, Int. J. Remote Sens. 17,8, 1439–1455, DOI: 10.1080/01431169608948716.

    Article  Google Scholar 

  • Vallianatos, F., and D. Triantis (2008), Scaling in pressure stimulated currents related with rock fracture, Physica A 387,19–20, 4940–4946, DOI: 10.1016/j.physa.2008.03.028.

    Article  Google Scholar 

  • Walker, S.N., M.A. Balikhin, O.A. Pokhotelov, and M. Parrott (2012), DEMETER ULF observations of turbulence during the period before large earthquakes. In: EGU General Assembly, 22–27 April 2012, Vienna, Austria, 5827.

    Google Scholar 

  • Yoshida, S., and T. Ogawa (2004), Electromagnetic emissions from dry and wet granite associated with acoustic emissions, J. Geophys. Res. 109, B9, DOI: 10.1029/2004JB003092.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Friedemann Freund.

Additional information

Dedicated to the memory of Minoru M. Freund

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freund, F. Earthquake forewarning — A multidisciplinary challenge from the ground up to space. Acta Geophys. 61, 775–807 (2013). https://doi.org/10.2478/s11600-013-0130-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11600-013-0130-4

Key words

Navigation