Skip to main content

Advertisement

Log in

FEM × DEM modelling of cohesive granular materials: Numerical homogenisation and multi-scale simulations

  • Published:
Acta Geophysica Aims and scope Submit manuscript

Abstract

The article presents a multi-scale modelling approach of cohesive granular materials, its numerical implementation and its results. At microscopic level, Discrete Element Method (DEM) is used to model dense grains packing. At the macroscopic level, the numerical solution is obtained by a Finite Element Method (FEM). In order to bridge the micro- and macro-scales, the concept of Representative Elementary Volume (REV) is applied, in which the average REV stress and the consistent tangent operators are obtained in each macroscopic integration point as the results of DEM’s simulation. In this way, the numerical constitutive law is determined through the detailed modelling of the microstructure, taking into account the nature of granular materials. We first elaborate the principle of the computation homogenisation (FEM × DEM), then demonstrate the features of our multiscale computation in terms of a biaxial compression test. Macroscopic strain location is observed and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atman, A.P.F., P. Claudin, and G. Combe (2009), Departure from elasticity in granular layers: Investigation of a crossover overload force, Comput. Phys. Commun. 180,4, 612–615, DOI: 10.1016/j.cpc.2008.12.017.

    Article  Google Scholar 

  • Bésuelle, P., J. Desrues, and S. Raynaud (2000), Experimental characterization of the localisation phenomenon inside a Vosges sandstone in a triaxial cell, Int. J. Rock Mech. Min. Sci. 37,8, 1223–1237, DOI: 10.1016/S1365-1609(00)00057-5.

    Article  Google Scholar 

  • Bésuelle, P., R. Chambon, and F. Collin (2006), Switching deformation modes in postlocalization solutions with a quasibrittle material, J. Mech. Mat. Struct. 1,7, 1115–1134, DOI: 10.2140/jomms.2006.1.1115.

    Article  Google Scholar 

  • Calvetti, F., G. Combe, and J. Lanier (1997), Experimental micromechanical analysis of a 2D granular material: relation between structure evolution and loading path, Mech. Cohes.-Frict. Mat. 2,2, 121–163, DOI: 10.1002/(SICI)1099-1484(199704)2:2〈121::AID-CFM27〉3.0.CO;2-2.

    Google Scholar 

  • Chambon, R., D. Caillerie, and N. El Hassan (1998), One dimensional localization studied with a second grade model, Europ. J. Mech. A 17,4, 637–656, DOI: 10.1016/S0997-7538(99)80026-6.

    Article  Google Scholar 

  • Charlier, R. (1987), Approche unifiée de quelques problèmes non linéaires de mécanique des milieux continus par la méthode des éléments finis, Ph.D. Thesis, University of Liège, France.

    Google Scholar 

  • Chevalier, B., P. Villard, and G. Combe (2011), Investigation of load-transfer mechanisms in geotechnical earth structures with thin fill platforms reinforced by rigid inclusions, Int. J. Geomech. 11,3, 239–250, DOI: 10.1061/(ASCE)GM.1943-5622.0000083.

    Article  Google Scholar 

  • Combe, G., and J.-N. Roux (2003), Discrete numerical simulation, a quasistatic deformation and the origin of strain in granular materials. In: Proc. 3rd Int. Symp. Deformation Characteristics of Geomaterials, Lyon, France, 1070–1078.

    Google Scholar 

  • Cundall, P.A., and O.D.L. Strack (1979), A discrete numerical model for granular assemblies, Geotechnique 29,1, 47–65, DOI: 10.1680/geot.1979.29.1.47.

    Article  Google Scholar 

  • de Borst, R., and O.M. Heeres (2002), A unified approach to the implicit integration of standard, non-standard and viscous plasticity models, Int. J. Numer. Anal. Meth. Geomech. 26,11, 1059–1070, DOI: 10.1002/nag.234.

    Article  Google Scholar 

  • Desrues, J. (1984), Strain localization in granular materials, Ph.D. Thesis, USMG and INPG, Grenoble, France (in French).

    Google Scholar 

  • Desrues, J., and R. Chambon (2002), Shear band analysis and shear moduli calibration, Int. J. Solids Struct. 39,13–14, 3757–3776, DOI: 10.1016/S0020-7683(02)00177-4.

    Article  Google Scholar 

  • Desrues, J., and G. Viggiani (2004), Strain localization in sand: an overview of the experimental results obtained in Grenoble using stereophotogrammetry, Int. J. Numer. Anal. Meth. Geomech. 28,4, 279–321, DOI: 10.1002/nag.338.

    Article  Google Scholar 

  • Feyel, F. (2003), A multilevel finite element method (FE2) to describe the response of highly non-linear structures using generalized continua, Comput. Method. Appl. Mech. Eng. 192,28–30, 3233–3244, DOI: 10.1016/S0045-7825(03)00348-7.

    Article  Google Scholar 

  • Feyel, F., and J.-L. Chaboche (2000), FE 2 multiscale approach for modelling the elastoviscoplastic behaviour of long fibre SiC/Ti composite materials, Comput. Meth. Appl. Mech. Eng. 183,3–4, 309–330, DOI: 10.1016/S0045-7825(99)00224-8.

    Article  Google Scholar 

  • Gilabert, F.A., J.-N. Roux, and A. Castellanos (2007), Computer simulation of model cohesive powders: Influence of assembling procedure and contact laws on low consolidation states, Phys. Rev. E 75,1, 011303, 1–26, DOI: 10.1103/Phys-RevE.75.011303.

    Article  Google Scholar 

  • Kouznetsova, V., W.A.M. Brekelmans, and F.P.T. Baaijens (2001), An approach to micro-macro modelling of heterogeneous materials, Comput. Mech. 27,1, 37–48, DOI: 10.1007/s004660000212.

    Article  Google Scholar 

  • Kouznetsova, V., M.D.G. Geers, and W.A.M. Brekelmans (2002), Multi-scale constitutive modelling of heterogeneous materials with a gradient-enhanced computational homogenization scheme, Int. J. Numer. Method. Eng. 54,8, 1235–1260, DOI: 10.1002/nme.541.

    Article  Google Scholar 

  • Lanier, J. (2001), Mécanique des Milieux Granulaires, Hermes Sci. Publs., 366 pp.

    Google Scholar 

  • Matsushima, T., R. Chambon, and D. Caillerie (2002), Large strain finite element analysis of a local second gradient model: application to localization, Int. J. Numer. Method. Eng. 54,4, 499–521, DOI: 10.1002/nme.433.

    Article  Google Scholar 

  • Meier, H.A., P. Steinmann, and E. Kuhl (2008), Towards multiscale computation of confined granular media, Tech. Mech. 28,1, 32–42.

    Google Scholar 

  • Miehe, C., and J. Dettmar (2004), A framework for micro-macro transitions in periodic particle aggregates of granular materials — contact forces, stresses and tangent operators, Comput. Method. Appl. Mech. Eng. 193,3–5, 225–256, DOI: 10.1016/j.cma.2003.10.004.

    Article  Google Scholar 

  • Miehe, C., J. Dettmar, and D. Zäh (2010), Homogenization and two-scale simulations of granular materials for different microstructural constraints, Int. J. Numer. Method. Eng. 83,8–9, 1206–1236, DOI: 10.1002/nme.2875.

    Article  Google Scholar 

  • Nguyen, T.K., G. Combe, D. Caillerie, and J. Desrues (2013), Modeling of a cohesive granular materials by a multi-scale approach, AIP Conf. Proc. 1542, 1194–1198, DOI: 10.1063/1.4812151.

    Article  Google Scholar 

  • Pérez-Foguet, A., A. Rodríguez-Ferran, and A. Huerta (2000), Numerical differentiation for non-trivial consistent tangent matrices: an application to the MRSLade model, Int. J. Numer. Method. Eng. 48,2, 159–184, DOI: 10.1002/(SICI)1097-0207(20000520)48:2〈159::AID-NME871〉3.0.CO;2-Y.

    Article  Google Scholar 

  • Radjai, F., and F. Dubois (eds.) (2011), Discrete Numerical Modeling of Granular Materials, John Wiley & Sons, 496 pp.

    Google Scholar 

  • Richefeu, V., G. Combe, and G. Viggiani (2012), An experimental assessment of displacement fluctuations in a 2D granular material subjected to shear, Geotech. Lett. 2, 113–118, DOI: 10.1680/geolett.12.00029.

    Article  Google Scholar 

  • Szarf, K., G. Combe, and P. Villard (2011), Polygons vs. clumps of discs: A numerical study of the influence of grain shape on the mechanical behaviour of granular materials, Powder Technol. 208,2, 279–288, DOI: 10.1016/j.powtec.2010.08.017.

    Article  Google Scholar 

  • Weber, J. (1966), Recherches concernant les contraintes intergranulaires dans les milieux pulvérulents, Bull. Liaison des Ponts et Chaussées 20, 1–20.

    Google Scholar 

  • Ypma, T.J. (1995), Historical development of the Newton-Raphson method, SIAM Rev. 37,4, 531–551, DOI: 10.1137/1037125.

    Article  Google Scholar 

  • Zienkiewicz, O.C. (1979), La Méthode des Éléments Finis: Traduit de “the Finite Element Method”, 3rd ed., McGraw-Hill Inc., Paris (in French).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trung Kien Nguyen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, T.K., Combe, G., Caillerie, D. et al. FEM × DEM modelling of cohesive granular materials: Numerical homogenisation and multi-scale simulations. Acta Geophys. 62, 1109–1126 (2014). https://doi.org/10.2478/s11600-014-0228-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11600-014-0228-3

Key words

Navigation