Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter October 30, 2013

Mercury associated with size-fractionated urban particulate matter: three years of sampling in Prague, Czech Republic

  • Ondřej Zvěřina EMAIL logo , Pavel Coufalík , Josef Komárek , Petr Gadas and Jiřina Sysalová
From the journal Chemical Papers

Abstract

An analysis of suspended particulate matter, with an emphasis on the Hg chemical forms, is presented. Dust samples originating from an area highly affected by traffic pollution in the city of Prague (Czech Republic) were sampled over a period of three years from air-conditioner filters and fractioned by size. The samples were morphologically characterised by scanning electron microscopy. The main method used for the analysis of constituent mercury compounds was sequential extraction by leaching solutions in combination with thermal desorption. The total mercury content ranged from 0.37 mg kg−1 to 0.82 mg kg−1. It emerged that the mercury was distributed in a wide spectrum of forms, and various trends in the distribution of these forms among the different size classes were observed. The fraction leached by nitric acid (consisting of elemental and complex-bound mercury) was the main constituent of total mercury. The highest content of this fraction was observed in the finest particle size class. The heterogeneity of morphology of the material increased with the size fraction.

[1] Bartels, R. (1982). The rank version of von Neumann’s ratio test for randomness. Journal of the American Statistical Association, 77(377), 40–46. DOI: 10.1080/01621459.1982.10477764. http://dx.doi.org/10.1080/01621459.1982.1047776410.1080/01621459.1982.10477764Search in Google Scholar

[2] Bloom, N. S., Preus, E., Katon, J., & Hiltner, M. (2003). Selective extractions to assess the biogeochemically relevant fractionation of inorganic mercury in sediments and soils. Analytica Chimica Acta, 479, 233–248. DOI: 10.1016/s0003-2670(02)01550-7. http://dx.doi.org/10.1016/S0003-2670(02)01550-710.1016/S0003-2670(02)01550-7Search in Google Scholar

[3] Coufalík, P., Krásenský, P., Dosbaba, M., & Komárek, J. (2012). Sequential extraction and thermal desorption of mercury from contaminated soil and tailings from Mongolia. Central European Journal of Chemistry, 10, 1565–1573. DOI: 10.2478/s11532-012-0074-6. http://dx.doi.org/10.2478/s11532-012-0074-610.2478/s11532-012-0074-6Search in Google Scholar

[4] Keeler, G., Glinsorn, G., & Pirrone, N. (1995). Particulate mercury in the atmosphere: Its significance, transport, transformation and sources. Water, Air, and Soil Pollution, 80, 159–168. DOI: 10.1007/bf01189664. http://dx.doi.org/10.1007/BF0118966410.1007/BF01189664Search in Google Scholar

[5] Lin, C. J., & Pehkonen, S. O. (1999). The chemistry of atmospheric mercury: a review. Atmospheric Environment, 33, 2067–2079. DOI: 10.1016/s1352-2310(98)00387-2. http://dx.doi.org/10.1016/S1352-2310(98)00387-210.1016/S1352-2310(98)00387-2Search in Google Scholar

[6] Lindberg, S., Bullock, R., Ebinghaus, R., Engstrom, D., Feng, X. B., Fitzgerald, W., Pirrone, N., Prestbo, E., & Seigneur, C. (2007). A synthesis of progress and uncertainties in attributing the sources of mercury in deposition. AMBIO: A Journal of the Human Environment, 36, 19–33. DOI: 10.1579/0044-7447(2007)36[19:ASOPAU]2.0.CO;2. http://dx.doi.org/10.1579/0044-7447(2007)36[19:ASOPAU]2.0.CO;2Search in Google Scholar

[7] Mason, R. P., Fitzgerald, W. F., & Morel, F. M. M. (1994). The biogeochemical cycling of elemental mercury: Anthropogenic influences. Geochimica et Cosmochimica Acta, 58, 3191–3198. DOI: 10.1016/0016-7037(94)90046-9. http://dx.doi.org/10.1016/0016-7037(94)90046-910.1016/0016-7037(94)90046-9Search in Google Scholar

[8] Nóvoa-Muñoz, J. C., Pontevedra-Pombal, X., Martínez-Cortizas, A., & García-Rodeja Gayoso, E. (2008). Mercury accumulation in upland acid forest ecosystems nearby a coal-fired power-plant in Southwest Europe (Galicia, NW Spain). Science of the Total Environment, 394, 303–312. DOI: 10.1016/j.scitotenv.2008.01.044. http://dx.doi.org/10.1016/j.scitotenv.2008.01.04410.1016/j.scitotenv.2008.01.044Search in Google Scholar

[9] Olivieri, G., Novakovic, M., Savaskan, E., Meier, F., Baysang, G., Brockhaus, M., & Müller-Spahn, F. (2002). The effects of β-estradiol on SHSY5Y neuroblastoma cells during heavy metal induced oxidative stress, neurotoxicity and β-amyloid secretion. Neuroscience, 113, 849–855. DOI: 10.1016/s0306-4522(02)00211-7. http://dx.doi.org/10.1016/S0306-4522(02)00211-710.1016/S0306-4522(02)00211-7Search in Google Scholar

[10] Pacyna, E. G., Pacyna, J. M., Steenhuisen, F., & Wilson, S. (2006). Global anthropogenic mercury emission inventory for 2000. Atmospheric Environment, 40, 4048–4063. DOI: 10.1016/j.atmosenv.2006.03.041. http://dx.doi.org/10.1016/j.atmosenv.2006.03.04110.1016/j.atmosenv.2006.03.041Search in Google Scholar

[11] Pacyna, E. G., Pacyna, J. M., Sundseth, K., Munthe, J., Kindbom, K., Wilson, S., Steenhuisen, F., & Maxson, P. (2010). Global emission of mercury to the atmosphere from anthropogenic sources in 2005 and projections to 2020. Atmospheric Environment, 44, 2487–2499. DOI: 10.1016/j.atmosenv.2009.06.009. http://dx.doi.org/10.1016/j.atmosenv.2009.06.00910.1016/j.atmosenv.2009.06.009Search in Google Scholar

[12] Pandey, S. K., Kim, K. H., & Brown, R. J. C (2011). Measurement techniques for mercury species in ambient air. TrAC Trends in Analytical Chemistry, 30, 899–917. DOI: 10.1016/j.trac.2011.01.017. http://dx.doi.org/10.1016/j.trac.2011.01.01710.1016/j.trac.2011.01.017Search in Google Scholar

[13] Petersen, G., Munthe, J., Pleijel, K., & Bloxam, R., & Vinod Kumar, A. (1998). A comprehensive Eulerian modeling framework for airborne mercury species: Development and testing of the Tropospheric Chemistry Module (TCM). Atmospheric Environment, 32, 829–843. DOI: 10.1016/s1352-2310(97)00049-6. http://dx.doi.org/10.1016/S1352-2310(97)00049-610.1016/S1352-2310(97)00049-6Search in Google Scholar

[14] Pirrone, N., & Mason, R. (Eds.) (2009). Mercury fate and transport in the global atmosphere. Dordrecht, The Netherlands: Springer. DOI: 10.1007/978-0-387-93958-2. 10.1007/978-0-387-93958-2Search in Google Scholar

[15] Pleijel, K., & Munthe, J. (1995). Modelling the atmospheric mercury cycle-chemistry in fog droplets. Atmospheric Environment, 29, 1441–1457. DOI: 10.1016/1352-2310(94)00323-d. http://dx.doi.org/10.1016/1352-2310(95)00226-O10.1016/1352-2310(94)00323-DSearch in Google Scholar

[16] Schroeder, W. H., & Munthe, J. (1998). Atmospheric mercury-An overview. Atmospheric Environment, 32, 809–822. DOI: 10.1016/s1352-2310(97)00293-8. http://dx.doi.org/10.1016/S1352-2310(97)00293-810.1016/S1352-2310(97)00293-8Search in Google Scholar

[17] Seigneur, C., Abeck, H., Chia, G., Reinhard, M., Bloom, N. S., Prestbo, E., & Saxena, P. (1998). Mercury adsorption to elemental carbon (soot) particles and atmospheric particulate matter. Atmospheric Environment, 32, 2649–2657. DOI: 10.1016/s1352-2310(97)00415-9. http://dx.doi.org/10.1016/S1352-2310(97)00415-910.1016/S1352-2310(97)00415-9Search in Google Scholar

[18] Sysalová, J., Sýkorová, I., Havelcová, M., Száková, J., Trejtnarová, H., & Kotlík, B. (2012). Toxicologically important trace elements and organic compounds investigated in sizefractionated urban particulate matter collected near the Prague highway. Science of the Total Environment, 437, 127–136. DOI: 10.1016/j.scitotenv.2012.07.030. http://dx.doi.org/10.1016/j.scitotenv.2012.07.03010.1016/j.scitotenv.2012.07.030Search in Google Scholar

[19] Wängberg, I., Munthe, J., Pirrone, N., Iverfeldt, Å., Bahlman, E., Costa, P., Ebinghaus, R., Feng, X., Ferrara, R., Gårdfeldt, K., Kock, H., Lanzillotta, E., Mamane, Y., Mas, F., Melamed, E., Osnat, Y., Prestbo, E., Sommar, J., Schmolke, S., Spain, G., Sprovieri, F., & Tuncel, G. (2001). Atmospheric mercury distribution in Northern Europe and in the Mediterranean region. Atmospheric Environment, 35, 3019–3025. DOI: 10.1016/s1352-2310(01)00105-4. http://dx.doi.org/10.1016/S1352-2310(01)00105-410.1016/S1352-2310(01)00105-4Search in Google Scholar

[20] Zahir, F., Rizwi, S. J., Haq, S. K., & Khan, R. H. (2005). Low dose mercury toxicity and human health. Environmental Toxicology and Pharmacology, 20, 351–360. DOI: 10.1016/j.etap.2005.03.007. http://dx.doi.org/10.1016/j.etap.2005.03.00710.1016/j.etap.2005.03.007Search in Google Scholar PubMed

[21] Zvěřina, O., Červenka, R., Komárek, J., & Sysalová, J. (2013). Mercury characterisation in urban particulate matter. Chemical Papers, 67, 186–193. DOI: 10.2478/s11696-012-0259-7. http://dx.doi.org/10.2478/s11696-012-0259-710.2478/s11696-012-0259-7Search in Google Scholar

Published Online: 2013-10-30
Published in Print: 2014-2-1

© 2013 Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 21.5.2024 from https://www.degruyter.com/document/doi/10.2478/s11696-013-0436-3/html
Scroll to top button