Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter June 24, 2014

Ring-opening polymerisation of ɛ-caprolactone catalysed by Brønsted acids

  • Li-Hui Yao EMAIL logo , Shuang-Xi Shao , Lan Jiang , Ning Tang and Jin-Cai Wu
From the journal Chemical Papers

Abstract

Two new Brønsted acids [2,2′-ethylidene-bis (4,6-di-tert-butylphenol)] phosphoric acid (EDBPPOOH) and (3,3′,5,5′-tetra-tert-butylbiphenyl-2,2′-diol) phosphoric acid (TBPO-POOH) were synthesised and fully characterised by 1H NMR and 13C NMR spectra and mass spectra. The ringopening polymerisation (ROP) of ɛ-caprolactone (ɛ-CL) catalysed by the two Brønsted acids proceeded at 110°C without a solvent or at ambient temperature in toluene. Experimental results indicated that the two Brønsted acids were efficient catalysts for the ROP of ɛ-CL with moderate number-average molar mass (Mn) and narrow polydispersity indices (PDI). The catalytic activity of TBPO-POOH is higher than EDBP-POOH in the ROP of ɛ-CL. After benzyl alcohol was added, it was able to accelerate the polymerisation process. The polymerisation can also occur with the addition of water with a monomer/catalyst/initiator mole ratio of 100: 1: 1. The living polymerisation was ascertained by the linear relationships of the Mn vs. monomer conversion, then it was further confirmed by a second-feed experiment of a double monomer producing double Mn. A kinetic study of the relationships between monomer concentration and time revealed a first-order dependence on monomer concentration in the polymerisation. End-group analysis of 1H NMR spectra and electrospray-ionisation mass spectra suggests that the two Brønsted acids are capable of catalysing and initiating the ROP of ɛ-CL.

[1] Akiyama, T. (2007). Stronger Brønsted acids. Chemical Reviews, 107, 5744–5758. DOI: 10.1021/cr068374j. http://dx.doi.org/10.1021/cr068374j10.1021/cr068374jSearch in Google Scholar PubMed

[2] Cameron, D. J. A., & Shaver, M. P. (2011). Aliphatic polyester polymer stars: synthesis, properties and applications in biomedicine and nanotechnology. Chemical Society Reviews, 2011, 1761–1776. DOI: 10.1039/c0cs00091d. http://dx.doi.org/10.1039/c0cs00091d10.1039/C0CS00091DSearch in Google Scholar PubMed

[3] Casas, J., Persson, P. V., Iversen, T., & Córdova, A. (2004). Direct organocatalytic ring-opening polymerizations of lactones. Advanced Synthesis & Catalysis, 346, 1087–1089. DOI: 10.1002/adsc.200404082. http://dx.doi.org/10.1002/adsc.20040408210.1002/adsc.200404082Search in Google Scholar

[4] Chuma, A., Horn, H. W., Swope, W. C., Pratt, R. C., Zhang, L., Lohmeijer, B. G. G., Wade, C. G., Waymouth, R. M., Hedrick, J. L., & Rice, J. E. (2008). The reaction mechanism for the organocatalytic ring-opening polymerization of l-lactide using a guanidine-based catalyst: Hydrogen-bonded or covalently bound? Journal of the American Chemical Society, 130, 6749–6754. DOI: 10.1021/ja0764411. http://dx.doi.org/10.1021/ja076441110.1021/ja0764411Search in Google Scholar PubMed

[5] Connor, E. F., Nyce, G. W., Myers, M., Möck, A., & Hedrick, J. L. (2002). First example of N-heterocyclic carbenes as catalysts for living polymerization: Organocatalytic ring-opening polymerization of cyclic esters. Journal of the American Chemical Society, 124, 914–915. DOI: 10.1021/ja0173324. http://dx.doi.org/10.1021/ja017332410.1021/ja0173324Search in Google Scholar PubMed

[6] Couffin, A., Delcroix, D., Martín-Vaca, B., Bourissou, D., & Navarro, C. (2013). Mild and efficient preparation of block and gradient copolymers by methanesulfonic acid catalyzed ring-opening polymerization of caprolactone and trimethylene carbonate. Macromolecules, 46, 4354–4360. DOI: 10.1021/ma400916k. http://dx.doi.org/10.1021/ma400916k10.1021/ma400916kSearch in Google Scholar

[7] Coulembier, O., Dove, A. P., Pratt, R. C., Sentman, A. C., Culkin, D. A., Mespouille, L., Dubois, P., Waymouth, R. M., & Hedrick, J. L. (2005). Latent, thermally activated organic catalysts for the on-demand living polymerization of lactide. Angewandte Chemie, 117, 5044–5048. DOI: 10.1002/ange.200500723. http://dx.doi.org/10.1002/ange.20050072310.1002/ange.200500723Search in Google Scholar

[8] Coulembier, O., Lohmeijer, B. G. G., Dove, A. P., Pratt, R. C., Mespouille, L., Culkin, D. A., Benight, S. J., Dubois, P., Waymouth, R. M., & Hedrick, J. L. (2006a). Alcohol adducts of N-heterocyclic carbenes: Latent catalysts for the thermally-controlled living polymerization of cyclic esters. Macromolecules, 39, 5617–5628. DOI: 10.1021/ma0611366. http://dx.doi.org/10.1021/ma061136610.1021/ma0611366Search in Google Scholar

[9] Coulembier, O., Mespouille, L., Hedrick, J. L., Waymouth, R. M., & Dubois, P. (2006b). Metal-free catalyzed ring-opening polymerization of β-lactones: Synthesis of ambiphilic triblock copolymers based on poly(dimethylmalic acid). Macromolecules, 39, 4001–4008. DOI: 10.1021/ma060552n. http://dx.doi.org/10.1021/ma060552n10.1021/ma060552nSearch in Google Scholar

[10] Coulembier, O., Sanders, D. P., Nelson, A., Hollenbeck, A. N., Horn, H.W., Rice, J. E., Fujiwara, M., Dubois, P., & Hedrick, J. L. (2009). Hydrogen-bonding catalysts based on fluori nated alcohol derivatives for living polymerization. Angewandte Chemie International Edition, 48, 5170–5173. DOI: 10.1002/anie.200901006. http://dx.doi.org/10.1002/anie.20090100610.1002/anie.200901006Search in Google Scholar PubMed

[11] Csihony, S., Culkin, D. A., Sentman, A. C., Dove, A. P., Waymouth, R. M., & Hedrick, J. L. (2005). Single component catalyst/initiators for the organocatalytic ring-opening polymerization of lactide. Journal of the American Chemical Society, 127, 9079–9084. DOI: 10.1021/ja050909n. http://dx.doi.org/10.1021/ja050909n10.1021/ja050909nSearch in Google Scholar PubMed

[12] Culkin, D. A., Jeong, W., Csihony, S., Gomez, E. D., Balsara, N. P., Hedrick, J. L., & Waymouth, R. M. (2007). Zwitterionic polymerization of lactide to cyclic poly(lactide) by using Nheterocyclic carbene organocatalysts. Angewandte Chemie, 119, 2681–2684. DOI: 10.1002/ange.200604740. http://dx.doi.org/10.1002/ange.20060474010.1002/ange.200604740Search in Google Scholar

[13] Dechy-Cabaret, O., Martin-Vaca, B., & Bourissou, D. (2004). Controlled ring-opening polymerization of lactide and glycolide. Chemical Reviews, 104, 6147–6176. DOI: 10.1021/cr040002s. http://dx.doi.org/10.1021/cr040002s10.1021/cr040002sSearch in Google Scholar PubMed

[14] Dondoni, A., & Massi, A. (2008). Asymmetric organocatalysis: From infancy to adolescence. Angewandte Chemie International Edition, 47, 4638–4660. DOI: 10.1002/anie.200704684. http://dx.doi.org/10.1002/anie.20070468410.1002/anie.200704684Search in Google Scholar PubMed

[15] Dove, A. P., Pratt, R. C., Lohmeijer, B. G. G., Waymouth, R. M., & Hedrick, J. L. (2005). Thiourea-based bifunctional organocatalysts: Supramolecular recognition for living polymerization. Journal of the American Chemical Society, 127, 13798–13799. DOI: 10.1021/ja0543346. http://dx.doi.org/10.1021/ja054334610.1021/ja0543346Search in Google Scholar PubMed

[16] Dove, A. P., Pratt, R. C., Lohmeijer, B. G. G., Culkin, D. A., Hagberg, E. C., Nyce, G. W., Waymouth, R. M., & Hedrick, J. L. (2006). N-Heterocyclic carbenes: Effective organic catalyst for living polymerisation. Polymer, 47, 4018–4025. DOI: 10.1016/j.polymer.2006.02.037. http://dx.doi.org/10.1016/j.polymer.2006.02.03710.1016/j.polymer.2006.02.037Search in Google Scholar

[17] du Boullay, O. T., Marchal, E., Martin-Vaca, B., Cossío, F. P., & Bourissou, D. (2006). An activated equivalent of lactide toward organocatalytic ring-opening polymerization. Journal of the American Chemical Society, 128, 16442–16443. DOI: 10.1021/ja067046y. http://dx.doi.org/10.1021/ja067046y10.1021/ja067046ySearch in Google Scholar PubMed

[18] Gazeau-Bureau, S., Delcroix, D., Martín-Vaca, B., Bourissou, D., Navarro, C., & Magnet, S. (2008). Organo-catalyzed ROP of ɛ-caprolactone: Methanesulfonic acid competes with tri-fluoromethanesulfonic acid. Macromolecules, 41, 3782–3784. DOI: 10.1021/ma800626q. http://dx.doi.org/10.1021/ma800626q10.1021/ma800626qSearch in Google Scholar

[19] Jeong, W. H., Hedrick, J. L., & Waymouth, R. M. (2007). Organic spirocyclic initiators for the ring expansion polymerization of β-lactones. Journal of the American Chemical Society, 129, 8414–8415. DOI: 10.1021/ja072037q. http://dx.doi.org/10.1021/ja072037q10.1021/ja072037qSearch in Google Scholar PubMed

[20] Jeong, W. H., Shin, E. J., Culkin, D. A., Hedrick, J. L., & Waymouth, R. M. (2009). Zwitterionic polymerization: A kinetic strategy for the controlled synthesis of cyclic polylactide. Journal of the American Chemical Society, 131, 4884–4891. DOI: 10.1021/ja809617v. http://dx.doi.org/10.1021/ja809617v10.1021/ja809617vSearch in Google Scholar PubMed

[21] Kamber, N. E., Jeong, W. H., Waymouth, R. M., Pratt, R. C., Lohmeijer, B. G. G., & Hedrick, J. L. (2007). Organocatalytic ring-opening polymerization. Chemical Reviews, 107, 5813–5840. DOI: 10.1021/cr068415b. http://dx.doi.org/10.1021/cr068415b10.1021/cr068415bSearch in Google Scholar PubMed

[22] Kamber, N. E., Jeong, W. G., Gonzalez, S., Hedrick, J. L., & Waymouth, R. M. (2009). N-Heterocyclic carbenes for the organocatalytic ring-opening polymerization of ɛ-caprolactone. Macromolecules, 42, 1634–1639. DOI: 10.1021/ma802618h. http://dx.doi.org/10.1021/ma802618h10.1021/ma802618hSearch in Google Scholar

[23] Kumari, A., Yadav, S. K., & Yadav, S. C. (2010). Biodegradable polymeric nanoparticles based drug delivery systems. Colloids and Surfaces B: Biointerfaces, 75, 1–18. DOI: 10.1016/j.colsurfb.2009.09.001. http://dx.doi.org/10.1016/j.colsurfb.2009.09.00110.1016/j.colsurfb.2009.09.001Search in Google Scholar

[24] Liu, J. Y., & Liu, L. J. (2004). Ring opening polymerization of ɛ-caprolactone initiated by natural amino acids. Macromolecules, 37, 2674–2676. DOI: 10.1021/ma0348066. http://dx.doi.org/10.1021/ma034806610.1021/ma0348066Search in Google Scholar

[25] Lohmeijer, B. G. G., Pratt, R. C., Leibfarth, F., Logan, J. W., Long, D. A., Dove, A. P., Nederberg, F., Choi, J. S., Wade, C., Waymouth, R. M., & Hedrick, J. L. (2006). Guanidine and amidine organocatalysts for ring-opening polymerization of cyclic esters. Macromolecules, 39, 8574–8583. DOI: 10.1021/ma0619381. http://dx.doi.org/10.1021/ma061938110.1021/ma0619381Search in Google Scholar

[26] Makiguchi, K., Satoh, T., & Kakuchi, T. (2011). Diphenyl phosphate as an efficient cationic organocatalyst for controlled/living ring-opening polymerization of δ-valerolactone and ɛ-caprolactone. Macromolecules, 44, 1999–2005. DOI: 10.1021/ma200043x. http://dx.doi.org/10.1021/ma200043x10.1021/ma200043xSearch in Google Scholar

[27] Myers, M., Connor, E. F., Glauser, T., Möck, A., Nyce, G., & Hedrick, J. L. (2002). Phosphines: Nucleophilic organic catalysts for the controlled ring-opening polymerization of lactides. Journal of Polymer Science Part A: Polymer Chemistry, 40, 844–851. DOI: 10.1002/pola.10168. http://dx.doi.org/10.1002/pola.1016810.1002/pola.10168Search in Google Scholar

[28] Nederberg, F., Connor, E. F., Möller, M., Glauser, T., & Hedrick, J. L. (2001). New paradigms for organic catalysts: The first organocatalytic living polymerization. Angewandte Chemie International Edition, 40, 2712–2715. DOI: 10.1002/1521-3773(20010716)40:14<2712::aid-anie2712>3.0.co;2-z. http://dx.doi.org/10.1002/1521-3773(20010716)40:14<2712::AID-ANIE2712>3.0.CO;2-Z10.1002/1521-3773(20010716)40:14<2712::AID-ANIE2712>3.0.CO;2-ZSearch in Google Scholar

[29] Nyce, G. W., Glauser, T., Connor, E. F., Möck, A., Waymouth, R. M., & Hedrick, J. L. (2003). In-situ generation of carbenes: A general and versatile platform for organocatalytic living polymerization. Journal of the American Chemical Society, 125, 3046–3056. DOI: 10.1021/ja021084+. http://dx.doi.org/10.1021/ja021084+10.1021/ja021084+Search in Google Scholar

[30] Persson, P. V., Casas, J., Iversen, T., & Córdova, A. (2006). Direct organocatalytic chemoselective synthesis of a dendrimerlike star polyester. Macromolecules, 39, 2819–2822. DOI: 10.1021/ma0521710. http://dx.doi.org/10.1021/ma052171010.1021/ma0521710Search in Google Scholar

[31] Pratt, R. C., Lohmeijer, B. G. G., Long, D. A., Waymouth, R. M., & Hedrick, J. L. (2006a). Triazabicyclodecene: A simple bifunctional organocatalyst for acyl transfer and ring-opening polymerization of cyclic esters. Journal of the American Chemical Society, 128, 4556–4557. DOI: 10.1021/ja060662+. http://dx.doi.org/10.1021/ja060662+10.1021/ja060662+Search in Google Scholar

[32] Pratt, R. C., Lohmeijer, B. G. G., Long, D. A., Pontus Lundberg, P. N., Dove, A. P., Li, H. B., Wade, C. G., Waymouth, R. M., & Hedrick, J. L. (2006b). Exploration, optimization, and application of supramolecular thiourea-amine catalysts for the synthesis of lactide (co)polymers. Macromolecules, 39, 7863–7871. DOI: 10.1021/ma061607o. http://dx.doi.org/10.1021/ma061607o10.1021/ma061607oSearch in Google Scholar

[33] Rexin, O., & Mülhaupt, R. (2002). Anionic ring-opening polymerization of propylene oxide in the presence of phosphonium catalysts. Journal of Polymer Science Part A: Polymer Chemistry, 40, 864–873. DOI: 10.1002/pola.10163. http://dx.doi.org/10.1002/pola.1016310.1002/pola.10163Search in Google Scholar

[34] Save, M., Schappacher, M., & Soum, A. (2002). Controlled ring-opening polymerization of lactones and lactides initiated by lanthanum isopropoxide, 1. General aspects and kinetics. Macromolecular Chemistry and Physics, 203, 889–899. DOI: 10.1002/1521-3935(20020401)203:5/6〈889::aid-macp889〉3.0.co;2-o. http://dx.doi.org/10.1002/1521-3935(20020401)203:5/6<889::AID-MACP889>3.0.CO;2-O10.1002/1521-3935(20020401)203:5/6<889::AID-MACP889>3.0.CO;2-OSearch in Google Scholar

[35] Shibasaki, Y., Sanada, H., Yokoi, M., Sanda, F., & Endo, T. (2000). Activated monomer cationic polymerization of lactones and the application to well-defined block copolymer synthesis with seven-membered cyclic carbonate. Macromolecules, 33, 4316–4320. DOI: 10.1021/ma992138b. http://dx.doi.org/10.1021/ma992138b10.1021/ma992138bSearch in Google Scholar

[36] van der Vlugt, J. I., Hewat, A. C., Neto, S., Sablong, R., Mills, A. M., Lutz, M., Spek, A. L., Müler, C., & Vogt, D. (2004). Sterically demanding diphosphonite ligands-synthesis and application in nickel-catalyzed isomerization of 2-methyl-3-butenenitrile. Advanced Synthesis & Catalysis, 346, 993–1003. DOI: 10.1002/adsc.200303240. http://dx.doi.org/10.1002/adsc.20030324010.1002/adsc.200303240Search in Google Scholar

[37] Verkade, J. M. M., van Hemert, L. J. C., Quaedflieg, P. J. L. M., & Rutjes, F. P. J. T. (2008). Organocatalysed asymmetric Mannich reactions. Chemical Society Reviews, 37, 29–41. DOI: 10.1039/b713885g. http://dx.doi.org/10.1039/b713885g10.1039/B713885GSearch in Google Scholar

[38] Williams, C. K. (2007). Synthesis of functionalized biodegradable polyesters. Chemical Society Reviews, 2007, 1573–1580. DOI: 10.1039/b614342n. http://dx.doi.org/10.1039/b614342n10.1039/b614342nSearch in Google Scholar

[39] Wu, J. C., Yu, T. L., Chen, C. T., & Lin, C. C. (2006). Recent developments in main group metal complexes catalyzed/initiated polymerization of lactides and related cyclic esters. Coordination Chemistry Reviews, 250, 602–626. DOI: 10.1016/j.ccr.2005.07.010. http://dx.doi.org/10.1016/j.ccr.2005.07.01010.1016/j.ccr.2005.07.010Search in Google Scholar

[40] Zhang, L., Nederberg, F., Pratt, R. C., Waymouth, R. M., Hedrick, J. L., & Wade, C. G. (2007). Phosphazene bases: A new category of organocatalysts for the living ring-opening polymerization of cyclic esters. Macromolecules, 40, 4154–4158. DOI: 10.1021/ma070316s. http://dx.doi.org/10.1021/ma070316s10.1021/ma070316sSearch in Google Scholar

[41] Zhou, X., & Hong, L. Z. (2013). Controlled ring-opening polymerization of cyclic esters with phosphoric acid as catalysts. Colloid and Polymer Science, 291, 2155–2162. DOI: 10.1007/s00396-013-2950-9. http://dx.doi.org/10.1007/s00396-013-2950-910.1007/s00396-013-2950-9Search in Google Scholar

Published Online: 2014-6-24
Published in Print: 2014-10-1

© 2014 Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 21.5.2024 from https://www.degruyter.com/document/doi/10.2478/s11696-014-0585-z/html
Scroll to top button