Skip to main content
Log in

Amylase action pattern on starch polymers

  • Review
  • Cellular and Molecular Biology
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

Several decades ago, the first reports on differences in action pattern between amylases from different sources indicated that the starch polymers are not degraded in a completely random manner. We here give an overview of different action patterns of amylases on amylose and amylopectin, focusing on the so-called multiple attack action of the enzymes. Nowadays, the multiple attack action is generally an accepted concept to explain the differences in amylase action pattern. However, the pancreatic α-amylase remains one of the few enzymes known with a considerable level of multiple attack action. Despite some recent studies, the molecular mechanism of the multiple attack action is still largely unclear. Probably, the degree to which the active site architecture and binding properties allow both the reorganization (sliding) of the substrate in the active site and the stabilisation of the productive enzyme/substrate complex mainly determine the multiple attack action of amylases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BAA:

Bacillus amyloliquefaciens α-amylase

BLA:

Bacillus licheniformis α-amylase

BSuA:

Bacillus subtilis α-amylase

BStA:

Bacillus stearothermophilus maltogenic α-amylase

DMA:

degree of multiple attack

DP:

degree of polymerisation

GH:

glycoside hydrolase

MW:

molecular weight

PPA:

porcine pancreatic α-amylase

RVTS :

total level of reducing sugars

RVPS :

level of reducing polysaccharides

SBD:

starch binding domain

TAKA:

Aspergillus oryzae α-amylase

λ max :

wavelength of maximal extinction

References

  • Abdullah M., French D. & Robyt J.F. 1966. Multiple attack by α-amylases. Arch. Biochem. Biophys. 114: 595–598.

    Article  PubMed  CAS  Google Scholar 

  • Allen J.D. & Thoma J.A. 1978. Repetitive attack by Aspergillus oryzae α-amylase. Carbohyd. Res. 61: 377–385.

    Article  CAS  Google Scholar 

  • Atichokudomchai N., Jane J.L. & Hazlewood G. 2006. Reaction pattern of a novel thermostable α-amylase. Carbohydr. Polym. 64: 582–588.

    Article  CAS  Google Scholar 

  • Azhari R. & Lotan N. 1991. Enzymic hydrolysis of biopolymers via single-scission attack pathways: a unified kinetic model. J. Mater. Sci. Mater. Med. 2: 9–18.

    Article  CAS  Google Scholar 

  • Bailey J.M. & French D. 1957. The significance of multiple reactions in enzyme-polymer systems. J. Biol. Chem. 226: 1–14.

    PubMed  CAS  Google Scholar 

  • Bailey J.M. & Whelan W.J. 1957. Mechanism of carbohydrase action 3. Action pattern of β-amylase. Biochem. J. 67: 540–547.

    PubMed  CAS  Google Scholar 

  • Bailey J.M. & Whelan W.J. 1961. Physical properties of starch I. Relationship between iodine stain and chain length. J. Biol. Chem. 236: 969–972.

    PubMed  CAS  Google Scholar 

  • Banks W. & Greenwood C.T. 1977. Mathematical models for action of α-amylase on amylose. Carbohydr. Res. 57: 301–315.

    Article  PubMed  CAS  Google Scholar 

  • Banks W., Greenwood C.T. & Khan K.M. 1970. Studies on starch-degrading enzymes Part XII. The initial stages of the action on amylose of the α-amylases from B. subtilis, human saliva, malted rye, and porcine pancreas. Carbohydr. Res. 12: 79–87.

    Article  CAS  Google Scholar 

  • Banks W., Greenwood C.T. & Khan K.M. 1971. Physicochemical studies on starches 56. The interaction of linear amylose oligomers with iodine. Carbohydr. Res. 17: 25–33.

    Article  CAS  Google Scholar 

  • Bertoft E. 1989. Investigation of the fine-structure of amylopectin using α-amylase and β-amylase. Carbohydr. Res. 189: 195–207.

    Article  CAS  Google Scholar 

  • Bijttebier A., Goesaert H. & Delcour J.A. 2007a. Temperature impacts the multiple attack action of amylases. Biomacromolecules 8: 765–772.

    Article  PubMed  CAS  Google Scholar 

  • Bijttebier A., Goesaert H. & Delcour J.A. 2007b. Action pattern of different amylases on amylose and amylopectin, p. 52. In: Janecek S. (ed.), 3rd Symposium on the Alpha-Amylase Family, Programme and Abstracts, Sep 23–27, 2007, Smolenice Castle, Slovakia, Asco Arts & Science, Bratislava.

  • Bird R. & Hopkins R. H. 1954. The action of some α-amylases on amylose. Biochem. J. 56: 86–99.

    PubMed  CAS  Google Scholar 

  • Bowles L.K. 1996. Amylolytic enzymes, pp. 105–129. In: Hebeda E.H. & Zobel H.F. (eds), Baked Goods Freshness: Technology, Evaluation and Inhibition of Staling, Marcel Dekker Inc., New York.

    Google Scholar 

  • Bozonnet S., Kim T.J., Bonsager B.C., Kramhøft B., Nielsen P.K., Bak-Jensen K.S. & Svensson B. 2003. Engineering of barley α-amylase. Biocatal. Biotransform. 21: 209–214.

    Article  CAS  Google Scholar 

  • Breyer W.A. & Matthews B.W. 2001. A structural basis for processivity. Protein Sci. 10: 1699–1711.

    Article  PubMed  CAS  Google Scholar 

  • Buléon A., Colonna P., Planchot V. & Ball S. 1998. Starch granules: structure and biosynthesis. Int. J. Biol. Macromol. 23: 85–112.

    Article  PubMed  Google Scholar 

  • Christophersen C., Otzen D.E., Norman B.E., Christensen S. & Schäfer T. 1998. Enzymatic characterisation of Novamyl, a thermostable α-amylase. Starch/Stärke 50: 39–45.

    Article  CAS  Google Scholar 

  • Coutinho P.M. & Henrissat B. 1999. Carbohydrate-active enzymes: an integrated database approach, pp 3–12. In: Gilbert H.J., Davies G., Henrissat B. & Svensson B. (eds), Recent Advances in Carbohydrate Bioengineering, The Royal Society of Chemistry, Cambridge; URL: http://www.cazy.org.

    Google Scholar 

  • Dauter Z., Dauter M., Brzozowski A.M., Christensen S., Borchert T.V., Beier L., Wilson K.S. & Davies G.J. 1999. X-ray structure of Novamyl, the five-domain “Maltogenic” α-amylase from Bacillus stearothermophilus: maltose and acarbose complexes at 1.7 Å resolution. Biochemistry 38: 8385–8392.

    Article  PubMed  CAS  Google Scholar 

  • Davies G.J., Wilson K.S. & Henrissat B. 1997. Nomenclature for sugar-binding subsites in glycosyl hydrolases. Biochem. J. 321: 557–559.

    PubMed  CAS  Google Scholar 

  • Denyer K., Waite D., Motawia S., Moller B.L. & Smith A.M. 1999. Granule-bound starch synthase I in isolated starch granules elongates malto-oligosaccharides processively. Biochem. J. 340: 183–191.

    Article  PubMed  CAS  Google Scholar 

  • Gupta R., Gigras P., Mohapatra H., Goswami V.K. & Chauhan B. 2003. Microbial α-amylases: a biotechnological perspective. Process Biochem. 38: 1599–1616.

    Article  CAS  Google Scholar 

  • Hanes C.S. 1937. The action of amylases in relation to the structure of starch and its metabolism in the plant. Parts IV–VII. New Phytol. 36: 189–282.

    Article  CAS  Google Scholar 

  • Henrissat B. 1991. A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem. J. 280: 309–316.

    PubMed  CAS  Google Scholar 

  • Henrissat B. & Davies G. 1997. Structural and sequence-based classification of glycoside hydrolases. Curr. Opin. Struct. Biol. 7: 637–644.

    Article  PubMed  CAS  Google Scholar 

  • Hizukuri S. 1986. Polymodal distribution of the chain lengths of amylopectin and its significance. Carbohydr. Res. 147: 342–347.

    Article  CAS  Google Scholar 

  • Hizukuri S. 1996. Starch: analytical aspects, pp. 347–429. In: Eliasson A.C. (ed.), Carbohydrates in Food, Marcel Dekker, New York.

    Google Scholar 

  • Hizukuri S., Takeda Y. & Yasuda M. 1981. Multi-branched nature of amylose and the action of debranching enzymes. Carbohydr. Res. 94: 205–213.

    Article  CAS  Google Scholar 

  • Hoseney R.C. 1994. Starch, pp. 29–64. In: Principles of Cereal Science and Technology, American Association of Cereal Chemists, St. Paul, MN.

    Google Scholar 

  • Hutny J. & Ugorski M. 1981. Kinetics of hog pancreas α-amylase, development of the multiple attack model. Arch. Biochem. Biophys. 206: 29–42.

    Article  PubMed  CAS  Google Scholar 

  • Iefuji H., Chino M., Kato M. & Iimura Y. 1996. Raw-starchdigesting and thermostable α-amylase from the yeast Cryptococcus sp. S-2: purification, characterization, cloning and sequencing. Biochem. J. 318: 989–996.

    PubMed  CAS  Google Scholar 

  • Ishikawa K., Matsui I., Honda K., Kobayashi S. & Nakatani H. 1991. The pH dependence of the action pattern in porcine pancreatic α-amylase catalyzed reaction for maltooligosaccharide substrates. Arch. Biochem. Biophys. 289: 124–129.

    Article  PubMed  CAS  Google Scholar 

  • Ishikawa K., Nakatani H., Katsuya Y. & Fukazawa C. 2007. Kinetic and structural analysis of enzyme sliding on a substrate: multiple attack in β-amylase. Biochemistry 46: 792–798.

    Article  PubMed  CAS  Google Scholar 

  • Jane J., Chen Y.Y., Lee L.F., McPherson A.E., Wong K.S., Radosavljevic M. & Kasemsuwan T. 1999. Effects of amylopectin branch chain length and amylose content on the gelatinization and pasting properties of starch. Cereal Chem. 76: 629–637.

    Article  CAS  Google Scholar 

  • Janecek S. & Sevick J. 1999. The evolution of starch-binding domain. FEBS Lett. 456: 119–125.

    Article  PubMed  CAS  Google Scholar 

  • Jespersen H.M., MacGregor E.A., Sierks M.R. & Svensson B. 1991. Comparison of the domain-level organization of starch hydrolases and related enzymes. Biochem. J. 280: 51–55.

    PubMed  CAS  Google Scholar 

  • Juge N., Nohr J., Le Gal-Coeffet M.F., Kramhøft B., Furniss C.S.M., Planchot V., Archer D.B., Williamson G. & Svensson B. 2006. The activity of barley α-amylase on starch granules is enhanced by fusion of a starch binding domain from Aspergillus niger glucoamylase. Biochim. Biophys. Acta 1764: 275–284.

    PubMed  CAS  Google Scholar 

  • Kandra L., Gyemant G., Farkas E. & Liptak A. 1997. Action pattern of porcine pancreatic α-amylase on three different series of β-maltooligosaccharide glycosides. Carbohydr. Res. 298: 237–242.

    Article  PubMed  CAS  Google Scholar 

  • Kelman Z., Hurwitz J. & O’Donnell M. 1998. Processivity of DNA polymerases: two mechanisms, one goal. Structure 6: 121–125.

    Article  PubMed  CAS  Google Scholar 

  • Klein B. & Foreman J.A. 1980. Amylolysis of a chromogenic substrate, Cibachron Blue F3GA-amylose: kinetics and mechanism. Clin. Chem. 26: 250–253.

    PubMed  CAS  Google Scholar 

  • Kragh K.M. 2002. Amylases in baking, pp. 221–226. In: Courtin C.M., Veraverbeke W.S. & Delcour J.A. (eds), Recent Advances in Enzymes in Grain Processing, Laboratory of Food Chemistry, K.U. Leuven, Leuven.

    Google Scholar 

  • Kramhøft B., Bak-Jensen K.S., Mori H., Juge N., Nohr J. & Svensson B. 2005. Involvement of individual subsites and secondary substrate binding sites in multiple attack on amylose by barley α-amylase. Biochemistry 44: 1824–1832.

    Article  PubMed  CAS  Google Scholar 

  • Kramhøft B. & Svensson B. 1998. Effect of temperature and Ca2+ on the degree of multiple attack exhibited by mesophilic and thermophilic α-amylases pp. 343–347. In: Ballasteros A., Plou F.J., Iborra J.L. & Halling P.J. (eds), Progress in Biotechnology 15, Stability and Stabilization of Biocatalysts, Elsevier, Amsterdam.

    Google Scholar 

  • Kuriki T. & Imanaka T. 1999. The concept of the α-amylase family: structural similarity and common catalytic mechanism. J. Biosci. Bioeng. 87: 557–565.

    Article  PubMed  CAS  Google Scholar 

  • Leman P., Goesaert H., Vandeputte G.E., Lagrain B. & Delcour J.A. 2005. Maltogenic amylase had a non-typical impact on the molecular and rheological properties of starch. Carbohydr. Polym. 62: 205–213.

    Article  CAS  Google Scholar 

  • MacGregor E.A. 1993. Relationships between structure and activity in the α-amylase family of starch-metabolizing enzymes. Starch/Stärke 45: 232–237.

    Article  CAS  Google Scholar 

  • Manners D.J. 1979. The enzymatic degradation of starches, pp. 5–91. In: Blanshard J.M.V. & Mitchell J.R. (eds), Polysaccharides in Food, Butterworths, London.

    Google Scholar 

  • Marchal L.M., van de Laar A.M.J., Goetheer E., Schimmelpennink E.B., Bergsma J., Beeftink H.H. & Tramper J. 1999. Effect of temperature on the saccharide composition obtained after α-amylolysis of starch. Biotechnol. Bioeng. 63: 344–355.

    Article  PubMed  CAS  Google Scholar 

  • Mazur A.K. & Nakatani H. 1993. Multiple attack mechanism in the porcine pancreatic α-amylase hydrolysis of amylose and amylopectin. Arch. Biochem. Biophys. 306: 29–38.

    Article  PubMed  CAS  Google Scholar 

  • Mukerjea R., Slocum G., Mukerjea R. & Robyt J.F. 2006. Significant differences in the activities of α-amylases in the absence and presence of polyethylene glycol assayed on eight starches solubilized by two methods. Carbohydr. Res. 341: 2049–2054.

    Article  PubMed  CAS  Google Scholar 

  • Nakatani H. 1996. Monte Carlo simulation of multiple attack mechanism of α-amylase. Biopolymers 39: 665–669.

    Article  PubMed  CAS  Google Scholar 

  • Norouzian D., Akbarzadeh A., Scharer J.M. & Young M.M. 2006. Fungal glucoamylases. Biotechnol. Adv. 24: 80–85.

    Article  PubMed  CAS  Google Scholar 

  • Outtrup H. & Norman B.E. 1984. Properties and application of a thermostable maltogenic amylase produced by a strain of Bacillus modified by recombinant-DNA techniques. Starch/Stärke 36: 405–411.

    Article  CAS  Google Scholar 

  • Pazur J.H. & Ando T. 1960. The hydrolysis of glucosyl oligosaccharides with α-D-(1,4) and α-D-(1,6) bonds by fungal amyloglucosidase. J. Biol. Chem. 235: 297–302.

    PubMed  CAS  Google Scholar 

  • Qian M.X., Haser R. & Payan F. 1995. Carbohydrate binding sites in a pancreatic α-amylase-substrate complex, derived from X-ray structure analysis at 2.1 Å resolution. Protein Sci. 4: 747–755.

    PubMed  CAS  Google Scholar 

  • Robyt J.F. & French D. 1963. Action pattern and specificity of an amylase from Bacillus subtilis. Arch. Biochem. Biophys. 100: 451–467.

    Article  PubMed  CAS  Google Scholar 

  • Robyt J.F. & French D. 1967. Multiple attack hypothesis of α-amylase action: action of porcine pancreatic, human salivary, and Aspergillus oryzae α-amylases. Arch. Biochem. Biophys. 122: 8–16.

    Article  PubMed  CAS  Google Scholar 

  • Robyt J.F. & French D. 1970. Multiple attack and polarity of action of porcine pancreatic α-amylase. Arch. Biochem. Biophys. 138: 662–670.

    Article  PubMed  CAS  Google Scholar 

  • Sauer J., Sigurskjold B.W., Christensen U., Frandsen T.P., Mirgorodskaya E., Harrison M., Roepstorff P. & Svensson B. 2000. Glucoamylase: structure/function relationships, and protein engineering. Biochim. Biophys. Acta 1543: 275–293.

    PubMed  CAS  Google Scholar 

  • Singh N., Singh J., Kaur L., Sodhi N.S. & Gill B.S. 2003. Morphological, thermal and rheological properties of starches from different botanical sources. Food Chem. 81: 219–231.

    Article  CAS  Google Scholar 

  • Song Y. & Jane J. 2000. Characterization of barley starches of waxy, normal and high amylose varieties. Carbohydr. Polym. 41: 365–377.

    Article  CAS  Google Scholar 

  • Stam M.R., Danchin E.G.J., Rancurel C., Coutinho P.M. & Henrissat B. 2006. Dividing the large glycoside hydrolase family 13 into subfamilies: towards improved functional annotations of α-amylase-related proteins. Protein Eng. Des. Sel. 19: 555–562.

    Article  PubMed  CAS  Google Scholar 

  • Svensson B., Jensen M.T., Mori H., Bak-Jensen K.S., Bonsager B., Nielsen P.K., Kramhøft B., Praetorius-Ibba M., Nohr J., Juge N., Greffe L., Williamson G. & Driguez H. 2002. Fascinating facets of function and structure of amylolytic enzymes of glycoside hydrolase family 13. Biologia 57(Suppl. 11): 5–19.

    CAS  Google Scholar 

  • Swanson M.A. 1948. Studies on the structure of polysaccharides II. Degradation of polysaccharides by enzymes. J. Biol. Chem. 172: 805–814.

    PubMed  CAS  Google Scholar 

  • Thoma J.A. 1976. Models for depolymerizing enzymes — criteria for discrimination of models. Carbohydr. Res. 48: 85–103.

    Article  PubMed  CAS  Google Scholar 

  • van der Maarel M.J.E.C., van der Veen B., Uitdehaag J.C.M., Leemhuis H. & Dijkhuizen L. 2002. Properties and applications of starch-converting enzymes of the α-amylase family. J. Biotechnol. 94: 137–155.

    Article  PubMed  Google Scholar 

  • van Pouderoyen G., Snijder H.J., Benen J.A.E. & Dijkstra B.W. 2003. Structural insights into the processivity of endopoly-galacturonase I from Aspergillus niger. FEBS Lett. 554: 462–466.

    Article  PubMed  CAS  Google Scholar 

  • Withers S.G. & Aebersold R. 1995. Approaches to labeling and identification of active site residues in glycosidases. Protein Sci. 4: 361–372.

    Article  PubMed  CAS  Google Scholar 

  • Zobel H.F. 1988. Molecules to granules: a comprehensive review. Starch/Stärke 40: 1–7.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Annabel Bijttebier or Hans Goesaert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bijttebier, A., Goesaert, H. & Delcour, J.A. Amylase action pattern on starch polymers. Biologia 63, 989–999 (2008). https://doi.org/10.2478/s11756-008-0169-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-008-0169-x

Key words

Navigation