Skip to main content
Log in

Statistical optimization of α-amylase production by Bacillus brevis MTCC 7521 in solid-state fermentation using cassava bagasse

  • Section Cellular and Molecular Biology
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

Production of α-amylase under solid-state fermentation by Bacillus brevis MTCC 7521 has been investigated using cassava bagasse as the substrate, one of the major solid wastes released during extraction of starch from cassava (Manihot esculenta). Response surface methodology was used to evaluate the effect of the main variables, i.e. incubation period (36 h), moisture holding capacity (60%), pH (7.0) and temperature (60°C) on enzyme production by applying a full factorial central composite design. The maximum hydrolysis of soluble starch (85%) and cassava starch (75%) was obtained with the application of 4 mL (≈ 14,752 units) of B. brevis crude enzyme after 5 h of incubation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ANOVA:

analysis of variances

CCD:

central composite design

MHC:

moisture holding capacity

RSM:

response surface methodology

SmF:

submerged fermentation

SSF:

solid-state fermentation

References

  • Abdel-Fattah Y. 2002. Optimization of thermostable lipase production from a thermophilic Geobacillus sp. using Box-Behnken experimental design. Biotechnol. Lett. 24: 1217–1222.

    Article  CAS  Google Scholar 

  • Adebiyi C.A.B. & Akinyanju J.A. 1998. Thermophilic amylase producers from the soil. Nig. J. Sci. Technol. 11: 30–38.

    Google Scholar 

  • Anto H., Trivedi U. & Patel K. 2006. α-Amylase production by Bacillus cereus MTCC 1305 using solid state fermentation. Food Technol. Biotechnol. 44: 241–245.

    CAS  Google Scholar 

  • Boyaci I.H. 2005. A new approach of determination of enzyme kinetic constants using response surface methodology. Biochem. Eng. J. 25: 55–62.

    Article  CAS  Google Scholar 

  • Carvalho J.C.M., Vitolo M., Sato S. & Aquarone E. 2003. Ethanol production by Saccharomyces cerevisiae grown in sugarcane blackstrap molasses through a feed batch process: optimization by response surface methodology. Appl. Biochem. Biotechnol. 110: 151–164.

    Article  PubMed  CAS  Google Scholar 

  • Edison S., Anantharaman M. & Srinivas T. 2006. Status of cassava in India — an overall view. Technical Bulletin Series 46, Central Tuber Crops Research Institute, Thiruvanathapuram, India, 172 pp.

    Google Scholar 

  • Gangadharan D., Sivaramakrishnan S., Nampoothiri K.M. & Pandey A. 2006. Solid culturing of Bacillus amyloliquifaciens for α-amylase production. Food Technol. Biotechnol. 44: 269–274.

    CAS  Google Scholar 

  • Gupta R., Gigras P., Mohapatra H., Goswami V. K. & Chauhan B. 2003. Microbial α-amylases: a biotechnological perspective. Process Biochem. 38: 1599–1616.

    Article  CAS  Google Scholar 

  • Haki G.D. & Rakshit S.K. 2003. Developments in industrially important thermostable enzymes. Bioresource Technol. 89: 17–34.

    Article  CAS  Google Scholar 

  • Haq I.U., Rani S., Ashraf H. & Qadeer M.A. 2002. Biosynthesis of α-amylases by chemically treated mutant of Bacillus subtilis. Pakistan J. Biol. Sci. 2: 73–75.

    Google Scholar 

  • He G.Q., Kong Q. & Ding L.X. 2004. Response surface methodology for optimizing the fermentation medium of Clostridium butyricum. Lett. Appl. Microbiol. 39: 363–368.

    Article  PubMed  CAS  Google Scholar 

  • John R.P., Nampoothiri K.M. & Pandey A. 2006. Solid state fermentation for L-lactic acid production from agro wastes using Lactobacillus delbrueckii. Process Biochem. 41: 759–763.

    Article  CAS  Google Scholar 

  • Jyothi A.N., Sasikiran K., Nambisan B. & Balagopalan C. 2005. Optimization of glutamic acid production from starch factory residue using Brevibacterium divaricatum. Process Biochem. 40: 3576–3579.

    Article  CAS  Google Scholar 

  • Kar S. & Ray R.C. 2008. Statistical optimization of α-amylase production by Streptomyces erumpens MTCC 7317 cells in calcium alginate beads using response surface methodology. Polish J. Microbiol. 57: 49–57.

    CAS  Google Scholar 

  • Kar S., Swain M.R. & Ray R.C. 2008. Statistical optimization of α-amylase production with immobilized cells of Streptomyces erumpens MTCC 7317 in Luffa cylindrica L. sponge discs. Appl. Biochem. Biotechnol. 152: 177–188.

    Article  PubMed  Google Scholar 

  • Mohanty S.K., Behera S., Swain M.R. & Ray R.C. 2009. Bioethanol production from mahula (Madhuca latifolia L.) flowers by solid-state fermentation. Appl. Energy 86: 640–644.

    Article  CAS  Google Scholar 

  • Nigam P. & Singh D. 1995. Enzyme and microbial systems involved in starch processing. Enzyme Microb. Technol. 17: 770–778.

    Article  CAS  Google Scholar 

  • Pandey A., Nigam P., Soccol C.R., Soccol V.T., Singh D. & Mohan R. 2000a. Advances in microbial amylase. Biotechnol. Appl. Biochem. 31: 135–152.

    Article  PubMed  CAS  Google Scholar 

  • Pandey A., Soccol C.R. & Mitchell W. 2000b. New development in solid state fermentation: I. Bioprocess and products. Process Biochem. 35: 1153–1169.

    Article  CAS  Google Scholar 

  • Ray R.C., Kar S., Nayak S. & Swain M.R. 2008a. Extracellular α-amylase production by Bacillus brevis MTCC 7521. Food Biotechnol. 22: 234–246.

    Article  CAS  Google Scholar 

  • Ray R.C., Mohapatra S., Panda S. & Kar S. 2008b. Solid substrate fermentation of cassava fibrous residue for production of α-amylase, lactic acid and ethanol. J. Environ. Biol. 29: 111–115.

    PubMed  CAS  Google Scholar 

  • Ray R.C., Sahoo A.K., Asana K. & Tomita F. 2006. Microbial processing of agricultural residues for production of food, feed and food-additives, pp. 511–552. In: Ray R.C. (ed.), Microbial Biotechnology in Agriculture and Aquaculture, Vol. 1, Enfield, New Hampshire, Science Publishers, Inc., USA.

    Google Scholar 

  • Sivaramakrishnan S., Gangadharan D., Nampoothiri K.M., Soccol C.R.& Pandey A. 2006. α-Amylase from microbial sources — an overview on recent developments. Food Technol. Biotechnol. 44: 173–184.

    CAS  Google Scholar 

  • Soni S.K., Kaur A. & Gupta J.K. 2003. A solid state fermentation based bacterial α-amylase and fungal glucoamylase system and its suitability for the hydrolysis of wheat starch. Process Biochem. 39: 185–192.

    Article  CAS  Google Scholar 

  • Sriroth K., Chollakup R., Choineerant S., Piyachomkwan K. & Oates C.G. 2000. Processing of cassava wastes for improved biomass utilization. Bioresource Technol. 71: 63–70.

    Article  CAS  Google Scholar 

  • Tonkova A. 2006. Microbial starch converting enzymes of the α-amylase family, pp. 421–472. In: Ray R.C. & Wards O.P. (eds), Microbial Biotechnology in Horticulture, Vol. 1, Science Publishers, New Hampshire, USA.

    Google Scholar 

  • Vieille C. & Zeikus G.J. 2001. Hypothermophilic enzymes: sources, uses and molecular mechanisms for thermostability. Microbiol. Mol. Biol. Rev. 65: 1–43.

    Article  PubMed  CAS  Google Scholar 

  • Xiong C., Shouwen C., Ming S. & Ziniu Y. 2005. Medium optimization by response surface methodology for poly-Y-glutamic acid production using dairy manure as the basis of a solid substrate. Appl. Microbiol. Biotechnol. 69: 390–396.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramesh C. Ray.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ray, R.C., Kar, S. Statistical optimization of α-amylase production by Bacillus brevis MTCC 7521 in solid-state fermentation using cassava bagasse. Biologia 64, 864–870 (2009). https://doi.org/10.2478/s11756-009-0160-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-009-0160-1

Key words

Navigation