Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter June 1, 2006

Quantum structures for multiband photon detection

  • A. Perera EMAIL logo
From the journal Opto-Electronics Review

Abstract

The work describes multiband photon detectors based on semiconductor micro-and nano-structures. The devices considered include quantum dot, homojunction, and heterojunction structures. In the quantum dot structures, transitions are from one state to another, while free carrier absorption and internal photoemission play the dominant role in homo or heterojunction detectors. Quantum dots-in-a-well (DWELL) detectors can tailor the response wavelength by varying the size of the well. A tunnelling quantum dot infrared photodetector (T-QDIP) could operate at room temperature by blocking the dark current except in the case of resonance. Photoexcited carriers are selectively collected from InGaAs quantum dots by resonant tunnelling, while the dark current is blocked by AlGaAs/InGaAs tunnelling barriers placed in the structure. A two-colour infrared detector with photoresponse peaks at ∼6 and ∼17 μm at room temperature will be discussed. A homojunction or heterojunction interfacial workfunction internal photoemission (HIWIP or HEIWIP) infrared detector, formed by a doped emitter layer, and an intrinsic layer acting as the barrier followed by another highly doped contact layer, can detect near infrared (NIR) photons due to interband transitions and mid/far infrared (MIR/FIR) radiation due to intraband transitions. The threshold wavelength of the interband response depends on the band gap of the barrier material, and the MIR/FIR response due to intraband transitions can be tailored by adjusting the band offset between the emitter and the barrier. GaAs/AlGaAs will provide NIR and MIR/FIR dual band response, and with GaN/AlGaN structures the detection capability can be extended into the ultraviolet region. These detectors are useful in numerous applications such as environmental monitoring, medical diagnosis, battlefield-imaging, space astronomy applications, mine detection, and remote-sensing.

[1] A. Goldberg, P.N. Uppal, and M. Winn, “Detection of buried land mines using a dual-band LWIR/LWIR QWIP focal plane array”, Infrared Phys. & Technol. 44, 427 (2003). http://dx.doi.org/10.1016/S1350-4495(03)00174-910.1016/S1350-4495(03)00174-9Search in Google Scholar

[2] B. Kochman, A.D. Stiff-Roberts, S. Chakrabarti, J.D. Phillips, S. Krishna, J. Singh, and P. Bhattacharya, “Absorption, carrier lifetime, and gain in InAs-GaAs quantum-dot infrared photodetectors”, IEEE. J. Quant. Electron. 39, 459 (2003). http://dx.doi.org/10.1109/JQE.2002.80816910.1109/JQE.2002.808169Search in Google Scholar

[3] H.C. Liu, M. Gao, J. McCaffrey, Z.R. Wasilewski, and S. Fafard, “Quantum dot infrared photodetectors”, Appl. Phys. Lett. 78, 79 (2001). http://dx.doi.org/10.1063/1.133764910.1063/1.1337649Search in Google Scholar

[4] L. Jiang, S.S. Li, N.T. Yeh, J.I. Chyi, C.E. Ross, and K.S. Jones, “In0.6Ga0.4As/GaAs quantum-dot infrared photodetector with operating temperature up to 260 K”, Appl. Phys. Lett. 82, 1986–1988 (2003). http://dx.doi.org/10.1063/1.154024010.1063/1.1540240Search in Google Scholar

[5] A. Raghavan, P. Rotella, A. Stintz, B. Fuchs, S. Krishna, C. Morath, D.A. Cardimona, and S.W. Kennerly, “High-responsivity, normal-incidence long-wave infrared (λ p ∼7.2 μm) InAs/In0.15Ga0.85As dots-in-a-well detector”, Appl. Phys. Lett. 81, 1369 (2002). http://dx.doi.org/10.1063/1.149800910.1063/1.1498009Search in Google Scholar

[6] B. Aslan, H.C. Liu, M. Korkusinski, S.J. Cheng, and P. Hawrylak, “Response spectra from mid-to far-infrared, polarization behaviors, and effects of electron numbers in quantum-dot photodetectors”, Appl. Phys. Lett. 82, 639 (2003). http://dx.doi.org/10.1063/1.154072810.1063/1.1540728Search in Google Scholar

[7] Z. Ye and J.C. Campbell, “InAs quantum dot infrared photodetectors with In0.15Ga0.85As strain-relief cap layers”, J. Appl. Phys. 92, 7462–7468 (2002). http://dx.doi.org/10.1063/1.151775010.1063/1.1517750Search in Google Scholar

[8] J. Phillips, K. Kamath, and P. Bhattacharya, “Far-infrared photoconductivity in self-organized InAs quantum dots”, Appl. Phys. Lett. 72, 2020 (1998). http://dx.doi.org/10.1063/1.12125210.1063/1.121252Search in Google Scholar

[9] S. Maimon, E. Finkman, and G. Bahir, “Intersublevel transitions in InAs/GaAs quantum dots infrared photodetectors”, Appl. Phys. Lett. 73, 2003 (1998). http://dx.doi.org/10.1063/1.12234910.1063/1.122349Search in Google Scholar

[10] D. Pan, E. Towe, and S. Kennerly, “Normal-incidence intersubband (In,Ga)As/GaAs quantum dot infrared photodetectors”, Appl. Phys. Lett. 73, 1937 (1998). http://dx.doi.org/10.1063/1.12232810.1063/1.122328Search in Google Scholar

[11] S. Krishna, S. Raghavan, G. von Winckel, A. Stintz, G. Ariyawansa, S.G. Matsik, and A.G.U. Perera, “Three-colour (λ p1 ∼3.8 μm, λ p2 ∼ 8.5 μm, and λ p3 ∼23.2 μm) InAs/InGaAs quantum-dots-in-a-well detector”, Appl. Phys. Lett. 83, 2745–2747 (2003). http://dx.doi.org/10.1063/1.161583810.1063/1.1615838Search in Google Scholar

[12] G. Ariyawansa, A.G.U. Perera, G.S. Raghavan, G. von Winckel, A. Stintz, and S. Krishna, “Effect of well width on three colour quantum dots-in-a-well infrared detectors”, IEEE Photon. Technol. Lett. 17, 1064 (2005). http://dx.doi.org/10.1109/LPT.2005.84675310.1109/LPT.2005.846753Search in Google Scholar

[13] B.F. Levine, “Quantum-well infrared photodetectors”, J. Appl. Phys., 74, R1–R81 (1993). http://dx.doi.org/10.1063/1.35425210.1063/1.354252Search in Google Scholar

[14] A. Amtout, S. Raghavan, P. Rotella, G. v. Winckel, A. Stintz, and S. Krishna, “Theoretical modeling and experimental characterization of InAs/InGaAs quantum dots in a well detector”, J. Appl. Phys. 96, 3782–3786 (2004). http://dx.doi.org/10.1063/1.178761810.1063/1.1787618Search in Google Scholar

[15] S.V. Bandara, S.D. Gunapala, J.K. Liu, E.M. Luong, J.M. Mumolo, W. Hong, D.K. Sengupta, and M.J. McKelvey, “10–16 μm broad band quantum well infrared photodetector”, Appl. Phys. Lett. 72, 2427 (1998). http://dx.doi.org/10.1063/1.12137510.1063/1.121375Search in Google Scholar

[16] A.G.U. Perera, W.Z. Shen, S.G. Matsik, H.C. Liu, M. Buchanan, and W.J. Schaff, “GaAs/AlGaAs quantum well photodetectors with a cutoff wavelength at 28 μm”, Appl. Phys. Lett. 72, 1596–1598 (1998). http://dx.doi.org/10.1063/1.12112610.1063/1.121126Search in Google Scholar

[17] P. Bhattacharya, X.H. Su, S. Chakrabarti, G. Ariyawansa, and A.G.U. Perera, “Characteristics of a tunnelling quantum dot infrared photodetector operating at room temperature”, Appl. Phys. Lett. 86, 191106 (2005). Search in Google Scholar

[18] J. Urayama, T.B. Norris, J. Singh, and P. Bhattacharya, “Observation of phonon bottleneck in quantum dot electronic relaxation”, Phys. Rev. Lett. 86, 4930 (2001). http://dx.doi.org/10.1103/PhysRevLett.86.493010.1103/PhysRevLett.86.4930Search in Google Scholar PubMed

[19] E. Kim, A. Madhukar, Z. Ye, and J.C. Campbell, “High detectivity InAs quantum dot infrared photodetectors”, Appl. Phys. Lett. 84, 3277 (2004). http://dx.doi.org/10.1063/1.171925910.1063/1.1719259Search in Google Scholar

[20] H. Jiang and J. Singh, “Strain distribution and electronic spectra of InAs/GaAs self-assembled dots: An eight-band study”, Phys. Rev. B56, 4696–4701 (1997). Search in Google Scholar

[21] W.Z. Shen, A.G.U. Perera, H.C. Liu, M. Buchanan, and W.J. Schaff, “Bias effects in high performance GaAs homojunction far-infrared detectors”, Appl. Phys. Lett. 71, 2677–2679 (1997). http://dx.doi.org/10.1063/1.12017610.1063/1.120176Search in Google Scholar

[22] D.G. Esaev, M.B.M. Rinzan, S.G. Matsik, and A.G.U. Perera, “Design and optimization of GaAs/AlGaAs heterojunction infrared detectors”, J. Appl. Phys. 96, 4588–4597 (2004). http://dx.doi.org/10.1063/1.178634210.1063/1.1786342Search in Google Scholar

[23] H.C. Liu, P.H. Wilson, M. Lamm, A.G. Steele, Z.R. Wasilewski, J. Li, M. Buchanan, and J.G. Simmonsa, “Low dark current dual band infrared photodetector using thin AlAs barriers and G-X mixed intersubband transition in GaAs quantum wells”, Appl. Phys. Lett. 64, 475 (1994). http://dx.doi.org/10.1063/1.11113410.1063/1.111134Search in Google Scholar

[24] H.C. Liu, C.Y. Song, A. Shen, M. Gao, Z.R. Wasilewski, and M. Buchanan, “GaAs/AlGaAs quantum-well photodetector for visible and middle infrared dual-band detection”, Appl. Phys. Lett. 77, 2437 (2000). http://dx.doi.org/10.1063/1.131823210.1063/1.1318232Search in Google Scholar

[25] M.P. Touse, G. Karunasiri, K.R. Lantz, H. Li, and T. Mei, “Near-and mid-infrared detection using GaAs/InxGa1xAs/InyGa1yAs multiple step quantum wells”, Appl. Phys. Lett. 86, 093501-1 (2005). Search in Google Scholar

[26] K.K. Choi, B.F. Levine, C.G. Bethea, J. Walker, and R.J. Malik, “Infrared photoelectron tunnelling spectroscopy of strongly coupled quantum wells”, Phys. Rev. B39, 8029 (1989). 10.1103/PhysRevB.39.8029Search in Google Scholar PubMed

[27] S. Chakrabarti, X.H. Su, P. Bhattacharya, G. Ariyawansa, and A.G.U. Perera, “Characteristics of a multicolour InGaAs-GaAs quantum-dot infrared photodetector”, IEEE Photon. Technol. Lett. 17, 178–180 (2005). http://dx.doi.org/10.1109/LPT.2004.83829510.1109/LPT.2004.838295Search in Google Scholar

[28] D.G. Esaev, M.B.M. Rinzan, S.G. Matsik, A.G.U. Perera, H.C. Liu, B.N. Zvonkov, V.I. Gavrilenko, and A.A. Belyanin, “High performance single emitter homojunction interfacial work function far infrared detectors”, J. Appl. Phys. 95, 512–519 (2004). http://dx.doi.org/10.1063/1.163255310.1063/1.1632553Search in Google Scholar

[29] S. Adachi, “Refractive indices of III–V compounds: Key properties of InGaAsP relevant to device design”, J. Appl. Phys. 53, 5863 (1982). http://dx.doi.org/10.1063/1.33142510.1063/1.331425Search in Google Scholar

[30] M.D. Sturge, “Optical absorption of gallium arsenide between 0.6 and 2.75 eV”, Phys. Rev. 127, 768 (1962). http://dx.doi.org/10.1103/PhysRev.127.76810.1103/PhysRev.127.768Search in Google Scholar

[31] G. Ariyawansa, M.B.M. Rinzan, D.G. Esaev, S.G. Matsik, G. Hastings, A.G.U. Perera, H.C. Liu, B.N. Zvonkov, and V.I. Gavrilenko, “Near-and far-infrared p-GaAs dual-band detector”, Appl. Phys. Lett. 86, 143510–143513 (2005). http://dx.doi.org/10.1063/1.189924210.1063/1.1899242Search in Google Scholar

[32] F. Binet, J.Y. Duboz, E. Rosencher, F. Scholz, and V. Harle, “Mechanisms of recombination in GaN photodetectors”, Appl. Phys. Lett. 69, 1202 (1996). http://dx.doi.org/10.1063/1.11741110.1063/1.117411Search in Google Scholar

[33] S.K. Zhang, W.B. Wang, I. Shtau, F. Yun, L. He, H. Morkoc, X. Zhou, M. Tamargo, R.R. Alfano, “Backilluminated GaN/AlGaN heterojunction ultraviolet photodetector with high internal gain”, Appl. Phys. Lett. 81, 4862 (2002). http://dx.doi.org/10.1063/1.152616610.1063/1.1526166Search in Google Scholar

[34] E. Monroy, F. Omnes, and F. Calle, “Wide-bandgap semi-conductor ultraviolet photodetectors”, Semicond. Sci. Technol. 18, R33–R51 (2003). http://dx.doi.org/10.1088/0268-1242/18/4/20110.1088/0268-1242/18/4/201Search in Google Scholar

[35] S.G. Matsik, M.B.M. Rinzan, D.G. Esaev, A.G.U. Perera, H.C. Liu, and M. Buchanan, “20 μm cutoff heterojunction interfacial work function internal photoemission detectors”, Appl. Phys. Lett. 84, 3435–3437 (2004). http://dx.doi.org/10.1063/1.163438610.1063/1.1634386Search in Google Scholar

Published Online: 2006-6-1
Published in Print: 2006-6-1

© 2006 SEP, Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 1.5.2024 from https://www.degruyter.com/document/doi/10.2478/s11772-006-0013-1/html
Scroll to top button