Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter December 1, 2006

Linear and nonlinear properties of photonic crystal fibers filled with nematic liquid crystals

  • K. Brzdąkiewicz EMAIL logo , U. Laudyn , M. Karpierz , T. Woliński and J. Wójcik
From the journal Opto-Electronics Review

Abstract

We investigate linear and nonlinear light propagation in the photonic crystal fibers infiltrated with nematic liquid crystals. Such a photonic structure, with periodic modulation of refractive index, which could be additionally controlled by the temperature and by the optical power, allows for the study of discrete optical phenomena. Our theoretical investigations, carried out with the near infrared wavelength of 830 nm, for both focusing and defocusing Kerr-type nonlinearity, show the possibility of the transverse light localization, which can result in the discrete soliton generation. In addition, we present the preliminary experimental results on the linear light propagation in the photonic crystal fiber with the glycerin-water solution and 6CHBT nematics, as the guest materials.

[1] T. Larsen, A. Bjarklev, D.S. Hermann, and J. Broeng, “Optical devices based on liquid crystal photonic bandgap fibers”, Opt. Express 11, 2589 (2003). http://dx.doi.org/10.1364/OE.11.00258910.1364/OE.11.002589Search in Google Scholar

[2] T.T. Alkeskjold, J. Lægsgaard, A. Bjarklev, D.S. Hermann, J. Broeng, J. Li, and S.T. Wu, “All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers”, Opt. Express 12, 5857 (2004). http://dx.doi.org/10.1364/OPEX.12.00585710.1364/OPEX.12.005857Search in Google Scholar PubMed

[3] T.R. Woliński, K. Szaniawska, K. Bondarczuk, P. Lesiak, A.W. Domański, R. Dąbrowski, E. Nowinowski-Kruszelnicki, and J. Wójcik, “Propagation properties of the photonic crystal fibers filled with nematic liquid crystals”, Opto-Electron. Rev. 13, 177 (2005). Search in Google Scholar

[4] I.C. Khoo and S.T. Wu, Optics and Nonlinear Optics of Liquid Crystals, World Scientific Publ., Singapore, 1997; F. Simoni, Nonlinear Optical Properties of Liquid Crystals, World Scientific Publ., London 1997; P.J. Collings and M. Hird, Introductions to Liquid Crystals — Chemistry and Physics, Taylor & Francis, London 1997. Search in Google Scholar

[5] T.R. Woliński, A. Szymańska, T. Nasiłowski, M.A. Karpierz, A. Kujawski, and R. Dąbrowski, “Propagation effects in liquid crystal-core optical fiber waveguides”, Mol. Cryst. Liq. Cryst. 321, 113 (1998). Search in Google Scholar

[6] F. Lederer, S. Darmanyan, and A. Kobyakov, “Discrete solitons”, in Spatial Solitons, edited by S. Trillo and W. Torruellas, Willey, New York, 2002. 10.1007/978-3-540-44582-1_10Search in Google Scholar

[7] F. Lederer and Y. Silberberg, “Discrete solitons”, Opt. Photon. News 2, 49 (2002); D.N. Christodoulides, F. Lederer, and Y. Silberberg, “Discretizing light behaviour in linear and nonlinear waveguide lattices”, Nature 424, 817 (2003). Search in Google Scholar

[8] H.S. Eisenberg, Y. Silberberg, R. Morandotti, A.R. Boyd, and J.S. Aitchison, “Discrete spatial optical solitons in waveguide arrays”, Phys. Rev. Lett. 81, 3383 (1998); “Diffraction management”, Phys. Rev. Lett. 85, 1863 (2000). http://dx.doi.org/10.1103/PhysRevLett.81.3383Search in Google Scholar

[9] T. Pertsch, U. Peschel, F. Lederer, J. Burghoff, M. Will, S. Nolte, and A. Tunnermann, “Discrete diffraction in two-dimensional arrays of coupled waveguides in silica”, Opt. Lett. 29, 468 (2004). http://dx.doi.org/10.1364/OL.29.00046810.1364/OL.29.000468Search in Google Scholar PubMed

[10] J.W. Fleisher, M. Segev, N.K. Efremidis, and D.N. Christodoulides, “Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices”, Nature 422, 147 (2003). http://dx.doi.org/10.1038/nature0145210.1038/nature01452Search in Google Scholar PubMed

[11] R. Iwanow, R. Schiek, G.I. Stegeman, T. Pertsch, F. Lederer, Y. Min, and W. Sohler, “Observation of discrete quadratic solitons”, Phys. Rev. Lett. 93, 113902 (2004). Search in Google Scholar

[12] A. Fratalocchi, G. Assanto, K.A. Brzdąkiewicz, and M.A. Karpierz, “Discrete light propagation and self-trapping in liquid crystals”, Opt. Express 13, 1808 (2005). http://dx.doi.org/10.1364/OPEX.13.00180810.1364/OPEX.13.001808Search in Google Scholar

[13] E.J. Bochove, P.K. Cheo, and G.G. King, “Self-organization in a multicore fiber laser array”, Opt. Lett. 28, 1200 (2003). Search in Google Scholar

[14] T. Pertsch, U. Peschel, J. Kobelke, K. Schuster, H. Bartel, S. Nolte, A. Tunnermann, and F. Lederer, “Nonlinearity and disorder in fiber arrays”, Phys. Rev. Lett. 93, 053901 (2004). Search in Google Scholar

[15] J. Li, S. Gauza, and S.T. Wu, “Temperature effect on liquid crystal refractive indices”, J. Appl. Physics 96, 19 (2004). http://dx.doi.org/10.1063/1.175703410.1063/1.1757034Search in Google Scholar

[16] R. Biswas, C.T. Chan, C.M. Soukoulis, M. Sigalas, and K.M. Ho, in Photonic Band Gap Materials, edited by C.M. Soukoulis, Kluwer Academic Publishers, Amsterdam, 1996. 10.1007/978-94-009-1665-4_2Search in Google Scholar

[17] E. Yabłonovitch, “Photonic band-gap structures”, J. Opt. Soc. Am. B10, 283 (1993). 10.1364/JOSAB.10.000283Search in Google Scholar

[18] L.F. Hoyt, “New table of the refractive index of pure glycerol at 20°C”, Ind. Eng. Chem. 26, 329 (1934). http://dx.doi.org/10.1021/ie50291a02310.1021/ie50291a023Search in Google Scholar

Published Online: 2006-12-1
Published in Print: 2006-12-1

© 2006 SEP, Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 22.5.2024 from https://www.degruyter.com/document/doi/10.2478/s11772-006-0038-5/html
Scroll to top button