Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter June 1, 2007

Polycrystalline lead selenide: the resurgence of an old infrared detector

  • G. Vergara EMAIL logo , M. Montojo , M. Torquemada , M. Rodrigo , F. Sánchez , L. Gómez , R. Almazán , M. Verdú , P. Rodríguez , V. Villamayor , M. Álvarez , J. Diezhandino , J. Plaza and I. Catalán
From the journal Opto-Electronics Review

Abstract

The existing technology for uncooled MWIR photon detectors based on polycrystalline lead salts is stigmatized for being a 50-year-old technology. It has been traditionally relegated to single-element detectors and relatively small linear arrays due to the limitations imposed by its standard manufacture process based on a chemical bath deposition technique (CBD) developed more than 40 years ago. Recently, an innovative method for processing detectors, based on a vapour phase deposition (VPD) technique, has allowed manufacturing the first 2D array of polycrystalline PbSe with good electro optical characteristics. The new method of processing PbSe is an all silicon technology and it is compatible with standard CMOS circuitry. In addition to its affordability, VPD PbSe constitutes a perfect candidate to fill the existing gap in the photonic and uncooled IR imaging detectors sensitive to the MWIR photons. The perspectives opened are numerous and very important, converting the old PbSe detector in a serious alternative to others uncooled technologies in the low cost IR detection market. The number of potential applications is huge, some of them with high commercial impact such as personal IR imagers, enhanced vision systems for automotive applications and other not less important in the security/defence domain such as sensors for active protection systems (APS) or low cost seekers.

Despite the fact, unanimously accepted, that uncooled will dominate the majority of the future IR detection applications, today, thermal detectors are the unique plausible alternative. There is plenty of room for photonic uncooled and complementary alternatives are needed. This work allocates polycrystalline PbSe in the current panorama of the uncooled IR detectors, underlining its potentiality in two areas of interest, i.e., very low cost imaging IR detectors and MWIR fast uncooled detectors for security and defence applications. The new method of processing again converts PbSe into an emerging technology.

[1] R.L. Petritz, “Theory of photoconductivity in semiconductor films”, Phys. Rev. 104, 1508–1516 (1956). http://dx.doi.org/10.1103/PhysRev.104.150810.1103/PhysRev.104.1508Search in Google Scholar

[2] Y. Yasuoka and M. Wada, “Thermally stimulated current of vacuum deposited PbSe films”, Jpn. J. Appl. Phys. 13, 1797–1803 (1974). http://dx.doi.org/10.1143/JJAP.13.179710.1143/JJAP.13.1797Search in Google Scholar

[3] F. Briones, D. Golmayo, and C. Ortíz, “The role of oxygen in the sensitization of photoconductive PbSe films”, Thin Solid Films 78, 385–395 (1981). http://dx.doi.org/10.1016/0040-6090(81)90042-010.1016/0040-6090(81)90042-0Search in Google Scholar

[4] J.N. Humphrey and W.W. Scanlon, “Photoconductivity in lead selenide. Experimental”, Phys. Rev. 105, 469–475 (1957). http://dx.doi.org/10.1103/PhysRev.105.46910.1103/PhysRev.105.469Search in Google Scholar

[5] J.N. Humphrey and R.L. Petritz, “Photoconductivity of lead selenide: Theory of the mechanism of sensitization”, Phys. Rev. 105, 1736–1740 (1957). http://dx.doi.org/10.1103/PhysRev.105.173610.1103/PhysRev.105.1736Search in Google Scholar

[6] Y. Yasuoka and M. Wada, “Photoconductivity of PbSe films”, Jpn. J. Appl. Phys. 9, 452–457 (1970). http://dx.doi.org/10.1143/JJAP.9.45210.1143/JJAP.9.452Search in Google Scholar

[7] H. Gobrecht, S. Seeck, and M. Hofmann, “Influence of light on the mobility in thin films of polycrystalline PbSe”, J. Phys. Chem. Solids 29, 627–631 (1968). http://dx.doi.org/10.1016/0022-3697(68)90031-010.1016/0022-3697(68)90031-0Search in Google Scholar

[8] L.P. Biró, R.M. Candea, G. Borodi, A. Darabont, P. Fitori, I. Bratu, and D. Dadarlat, “Amorphous PbSe films: growth and properties”, Thin Solid Films 165, 303–315 (1988). http://dx.doi.org/10.1016/0040-6090(88)90701-810.1016/0040-6090(88)90701-8Search in Google Scholar

[9] T.S. Moss, “Lead salt photoconductors”, Proc. IRE 43, 1869–1881 (1955). http://dx.doi.org/10.1109/JRPROC.1955.27804810.1109/JRPROC.1955.278048Search in Google Scholar

[10] T.H. Johnson, “Lead salt detectors and arrays; PbS and PbSe”, Proc. SPIE 443, 60–94 (1984). Search in Google Scholar

[11] B.N. McLean “Method of production of lead selenide photodetectors cells”, US Patent 2.997.409 (1961). Search in Google Scholar

[12] T.H. Jonhson, “Solutions and methods for depositing lead selenide”, US Patent 3.178.312 (1965). Search in Google Scholar

[13] F.J. Sánchez, M.T. Rodrigo, G. Vergara, M. Lozano, J. Santander, M.C. Torquemada, L.J. Gómez, V. Villamayor, M. Álvarez, M. Verdú, R. Almazán, J. Plaza, P. Rodríguez, I. Catalán, J. Diezhandino, and M.T. Montojo, “Progress on monolithic integration of cheap IR FPAs of polycrystalline PbSe”, Proc. SPIE 5783, 441–447 (2005). http://dx.doi.org/10.1117/12.60270510.1117/12.602705Search in Google Scholar

[14] M.T. Rodrigo, J. Diezhandino, G. Vergara, G. Pérez, M.C. Torquemada, F.J. Sánchez, V. Villamayor, R. Almazán, M. Verdú, I. Génova, P. Rodríguez, L.J. Gómez, I. Catalán, J. Plaza, and M.T. Montojo, “Process technology to integrate polycrystalline uncooled PbSe infrared detectors on interference filters”, Proc. SPIE 5251, 97–103 (2003). http://dx.doi.org/10.1117/12.51260110.1117/12.512601Search in Google Scholar

[15] J. Diezhandino, G. Vergara, G. Pérez, I. Génova, M.T. Rodrigo, F.J. Sánchez, M.C. Torquemada, V. Villamayor, J. Plaza, I. Catalán, R. Almazán, M. Verdú, P. Rodríguez, L.J. Gómez, and M.T. Montojo, “Monolithic integration of spectrally selective uncooled lead selenide detectors for low cost applications”, Appl. Phys. Letters 83, 2751–2753 (2003). http://dx.doi.org/10.1063/1.161531410.1063/1.1615314Search in Google Scholar

[16] M.C. Torquemada, V. Villamayor, M.T. Rodrigo, G. Vergara, F.J. Sánchez, R. Almazán, M. Verdú, P. Rodríguez, L.J. Gómez, and M.T. Montojo, “Polycrystalline PbSe x-y addressed uncooled FPAs”, Proc. SPIE 5074, 592–599 (2003). http://dx.doi.org/10.1117/12.48584510.1117/12.485845Search in Google Scholar

[17] M.T. Rodrigo, F.J. Sánchez, M.C. Torquemada, V. Villamayor, G. Vergara, M. Verdú, L.J. Gómez, J. Diezhandino, R. Almazán, P. Rodríguez, J. Plaza, I. Catalán, and M.T. Montojo, “Polycrystalline lead selenide x-y addressed uncooled focal plane arrays”, Infrared Physics & Technology 44, 281–287 (2003). Search in Google Scholar

[18] Z. Jaksic and Z. Djuric, “Cavity enhancement of Auger-suppressed detectors: A way to background-limited room-temperature operation in 3–14 μm range”, IEEE J. Selected Topics in Quantum Electronics 10, 771 (2004). http://dx.doi.org/10.1109/JSTQE.2004.83397610.1109/JSTQE.2004.833976Search in Google Scholar

[19] J. Piotrowski and A. Piotrowski, “Uncooled infrared photodetectos in Poland”, Opto-Electron. Rev. 14, 37–45 (2006). http://dx.doi.org/10.2478/s11772-006-0006-010.2478/s11772-006-0006-0Search in Google Scholar

[20] D. Zogbi, “Infrared detector markets poised for growth”. Marketeye, 16 August (2004). Search in Google Scholar

[21] F.F. Sizov, “Infrared detectors: outlook and means”, Sem. Phys. Quant. Elect. & Optoelec. 3, 52–58 (2000). 10.15407/spqeo3.01.052Search in Google Scholar

[22] A. Rogalski and K. Chrzanowski, “Infrared devices and techniques”, Opto-Electron. Rev. 10, 111–136 (2002). Search in Google Scholar

[23] A. Rogalski, “Optical detectors for focal plane arrays”, Opto-Electron. Rev. 12, 221–245 (2004). Search in Google Scholar

[24] A. Mahmood, A. Dave, Z. Çelik-Butler, and D.P. Butler, “Wafer-level self-packaged infrared microsensors”, Proc. SPIE 5406, 473–482 (2004). http://dx.doi.org/10.1117/12.54268010.1117/12.542680Search in Google Scholar

[25] H. Hata, Y. Nakaki, H. Inoue, Y. Kosasayama, Y. Ohta, H. Fukumoto, T. Seto, K. Kama, M. Takeda, and M. Kimata, “Uncooled IRFPA with chip scale vacuum package”, Proc. SPIE 6206, 620619-1–10 (2006). 10.1117/12.673072Search in Google Scholar

[26] JJ. Yon, L. Biancardini, E. Mottin, JL. Tissot, and L. Letellier. “High-sensitivity uncooled IRFPAs for driver vision enhancement”, http://www.saveu.org/download/PDF/Microtec_200310.pdf Search in Google Scholar

[27] P.A. Topart, S. Leclair, C. Alain, and H. Jerominek. “Wafer-level vacuum packaging technology based on selective electroplating”, Proc. SPIE 5342, 26–34 (2004). http://dx.doi.org/10.1117/12.52580210.1117/12.525802Search in Google Scholar

[28] J.L. Tissot, “IR detection with uncooled focal plane arrays. State-of-the art and trends”, Opto-Electron. Rev. 12, 105–109 (2004). Search in Google Scholar

[29] Y. Guimond and Y. Bellec, “Molded GASIR ® infrared optics for automotive applications”, Proc. SPIE 6206, 62062L-1–6 (2006). 10.1117/12.668887Search in Google Scholar

[30] G. Curatu, B. Binkley, D. Tinch, and C. Curatu, “Using molded chalcogenide glass technology to reduce cost in a compact wide-angle thermal imaging lens”, Proc. SPIE 6206, 62062M-1–8 (2006). 10.1117/12.667250Search in Google Scholar

[31] S.R. Hunter, G. Maurer, L. Jiang, and G. Simelgor, “High sensitivity uncooled microcantilever infrared imaging arrays”, Proc. SPIE 6206, 62061J-1–12 (2006). 10.1117/12.664727Search in Google Scholar

[32] N.V. Lavrik, D. Grbovic, S. Rajic, P.G. Datskos, D. Forrai, E. Nelson, J. Devitt, and B. McIntyre, “Uncooled infrared imaging using biomaterial microcantilever arrays”, Proc. SPIE 6206, 62061K-1–8 (2006). 10.1117/12.666125Search in Google Scholar

[33] A. Rogalski, Infrared Photon Detectors, SPIE Optical Engineering Press, ISBN: 0-8194-1798-X, (1995). Search in Google Scholar

[34] J. Piotrowski and A. Rogalski, “Uncooled long wavelength infrared photon detectors”, Infrared Physics & Technology 46, 115–131 (2004). http://dx.doi.org/10.1016/j.infrared.2004.03.01610.1016/j.infrared.2004.03.016Search in Google Scholar

[35] J. Piotrowski, “Uncooled operation of IR detectors”, Opto-Electron Rev. 12, 111–122 (2004). Search in Google Scholar

[36] A. Rogalski, “Competitive technologies of third generation infrared photon detectors”, Opto-Electron. Rev. 14, 87–101 (2006). http://dx.doi.org/10.2478/s11772-006-0012-210.2478/s11772-006-0012-2Search in Google Scholar

[37] F. Szmulowicz, H.J. Haugan, G.J. Brown, K. Mahalingam, B. Ullrich, S.R. Munshi, and L. Grazulis, Opto-Electron. Rev. 14, 71–77 (2006). http://dx.doi.org/10.2478/s11772-006-0010-410.2478/s11772-006-0010-4Search in Google Scholar

[38] M.C. Torquemada, M.T. Rodrigo, G. Vergara, F.J. Sánchez, R. Almazán, M. Verdú, P. Rodriguez, V. Villamayor, L.J. Gómez, and M.T. Montojo, “Role of halogens in the mechanism of sensitization of uncooled PbSe infrared detectors”, J. Appl. Phys. 93, 1778–1784 (2003). http://dx.doi.org/10.1063/1.153490710.1063/1.1534907Search in Google Scholar

[39] D.E. Bode, “Lead salt detectors”, in Physics of Thin Films, Vol. 3, pp. 275–301, edited by G. Hass and R.E. Thun, Academic Press, New York, 1966. Search in Google Scholar

[40] P.R. Norton, “Infrared image sensors”, Opt. Eng. 30, 1649–1663 (1991). http://dx.doi.org/10.1117/12.5600110.1117/12.56001Search in Google Scholar

[41] “Second generation PbSe arrays demonstrate scanning imagery”, Laser Focus World 11, (1990). Search in Google Scholar

[42] J.F. Kreider, M.K. Preis, P.C.T. Roberts, L.D. Owen, and W.M. Scott, “Multiplexed mid wavelength IR long linear photoconductive focal plane array”, Proc. SPIE 1488, 376–378 (1991). http://dx.doi.org/10.1117/12.4581810.1117/12.45818Search in Google Scholar

[43] N.F. Jacksen, J.G. Tibbitt, and M.A. Sepulveda of Litton Systems Inc. “Monolithic lead salt infrared radiation detectors and methods of formation”, US Patent 6,734,516 (2002). Search in Google Scholar

[44] T. Beystrum, R. Himoto, N.F. Jacksen, and M. Sutton, “Low cost Pb salt FPA’s”, Proc. SPIE 5406, 287–294 (2004). http://dx.doi.org/10.1117/12.54417710.1117/12.544177Search in Google Scholar

[45] G. Vergara, M.T. Rodrigo, M.C. Torquemada, L.J. Gómez, V. Villamayor, M. Álvarez, M. Verdú, F.J. Sánchez, R. Almazán, J. Plaza, P. Rodríguez, I. Catalán, J. Diezhandino, and M.T. Montojo, “A 32×32 array of polycrystalline PbSe opens up the market of very low cost MWIR sensitive photon detectors”, Proc. SPIE 6206, 62062Y-1–10 (2006). 10.1117/12.664365Search in Google Scholar

Published Online: 2007-6-1
Published in Print: 2007-6-1

© 2007 SEP, Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 12.5.2024 from https://www.degruyter.com/document/doi/10.2478/s11772-007-0007-7/html
Scroll to top button