Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter September 27, 2008

External cavity wavelength tunable semiconductor lasers - a review

  • B. Mroziewicz EMAIL logo
From the journal Opto-Electronics Review

Abstract

External cavity tunable lasers have been around for many years and now constitute a large group of semiconductor lasers featuring very unique properties. The present review has been restricted to the systems based on the edge emitting diode lasers set-up in a hybrid configuration. The aim was to make the paper as concise as possible without sacrificing, however, most important details. We start with short description of the fundamentals essential for operation of the external cavity lasers to set the stage for explanation of their properties and some typical designs. Then, semiconductor optical amplifiers used in the external cavity lasers are highlighted more in detail as well as diffraction gratings and other types of wavelength-selective reflectors used to provide optical feedback in these lasers. This is followed by a survey of designs and properties of various external cavity lasers both with mobile bulk gratings and with fixed wavelength selective mirrors. The paper closes with description of some recent developments in the field to show prospects for further progress directed towards miniaturization and integration of the external cavity laser components used so far to set-up hybrid systems.

[1] T. Kleine-Ostmann, P. Knobloch, M. Koch, S. Hoffmann, M. Breede, M. Hofmann, G. Hein, K. Pierz, M. Sperling, and K. Donhuijsen, “Continuous-wave THz imaging”, Electron. Lett. 37, 1461–1463 (2001). http://dx.doi.org/10.1049/el:2001100310.1049/el:20011003Search in Google Scholar

[2] C.S. Friedrich, C. Brenner, S. Hoffmann, A. Schmitz, I.C. Mayorga, A. Klehr, G. Erbert, and M.R. Hofmann, “New two-colour laser concepts for THz generation”, IEEE J. Sel. Top. Quant. 14, 270–275 (2008). http://dx.doi.org/10.1109/JSTQE.2007.91275410.1109/JSTQE.2007.912754Search in Google Scholar

[3] L. Gasman, “Device development will tackle video traffic jam”, Fibre Systems Europe, June, 2007. Search in Google Scholar

[4] T. Morikawa, Y. Mitsuhashi, and J. Shimada, “Return-beam induced oscillations in self-coupled semiconductor lasers”, Electron. Lett. 12, 435–436 (1976). http://dx.doi.org/10.1049/el:1976033110.1049/el:19760331Search in Google Scholar

[5] V. Jayaraman, Z.M Chuang, and L.A. Coldren, “Theory, design, and performance of extended tuning range semiconductor lasers with sampled gratings”, IEEE J. Quantum Elect. 29, 1824–1834 (1993). http://dx.doi.org/10.1109/3.23444010.1109/3.234440Search in Google Scholar

[6] Y. Tohmori, Y. Yoshikuni, H. Ishii, F. Kano, T. Tamamura, and Y. Kondo, “Over 100 nm wavelength tuning in superstructure grating (SSG) DBR lasers”, Electron. Lett. 29, 352–354 (1993). http://dx.doi.org/10.1049/el:1993023810.1049/el:19930238Search in Google Scholar

[7] J. Hong, H. Kim F. Shepard, C. Rogers, B. Baulcomb, and S. Clements, “Matrix-grating strongly gain-coupled (MG-SGC) DFB lasers with #4-nm continuous wavelength tuning range”, IEEE Photonic. Techn. L. 11, 515–517 (1999). http://dx.doi.org/10.1109/68.75938310.1109/68.759383Search in Google Scholar

[8] P.J. Rigole, S. Nilsson, L. Backbom, B. Stalnacke, E. Berglind, J.P. Weber, and B. Stoltz, “Quasi-continuous tuning range from 1560 to 1520 nm in a GCSR laser, with high power and low tuning currents”, Electron. Lett. 32, 2352–2354 (1996). http://dx.doi.org/10.1049/el:1996154010.1049/el:19961540Search in Google Scholar

[9] A. Wicht, M. Rudolf, P. Huke, R.H. Rinkleff, and K. Danzmann, “Grating enhanced external cavity laser”, Appl. Phys. B78, 305–313 (2003). 10.1007/s00340-003-1304-6Search in Google Scholar

[10] A.D. White, “Reflecting prisms for dispersive optical maser cavities”, Appl. Optics 3, 431–432 (1964). Search in Google Scholar

[11] T.W. Hänsch, “Repetitively pulsed tunable dye laser for high resolution spectroscopy”, Appl. Optics 11, 895–898 (1972). Search in Google Scholar

[12] M.G. Littman, “Single-mode operation of grazing-incidence pulsed dye laser”, Opt. Lett. 3, 138–140 (1978). Search in Google Scholar

[13] L. Ménager, L. Cabaret, I. Lorgeré, and J.L. Le Gouët, “Diode laser extended cavity for broad-range fast ramping”, Opt. Lett. 25, 1246–1248 (2000). http://dx.doi.org/10.1364/OL.25.00124610.1364/OL.25.001246Search in Google Scholar PubMed

[14] L. Levin, “Mode-hop-free electro-optically tuned diode laser”, Opt. Lett. 27, 237–239 (2002). http://dx.doi.org/10.1364/OL.27.00023710.1364/OL.27.000237Search in Google Scholar

[15] G.A. Coquin and K.W. Cheung, “Electronically tunable external-cavity semiconductor laser”, Electron. Lett. 24, 599–600 (1988). http://dx.doi.org/10.1049/el:1988040610.1049/el:19880406Search in Google Scholar

[16] K. Takabayashi, K. Takada, N. Hashimoto, M. Doi, S. Tomabechi, T. Nakazawa, and K. Morito, “Widely (132nm) wavelength tunable laser using a semiconductor optical amplifier and an acousto-optic tunable filter”, Electron. Lett. 40, 1187–1188 (2004). http://dx.doi.org/10.1049/el:2004608910.1049/el:20046089Search in Google Scholar

[17] J. De Merlier, K. Mizutani, S. Sudo, K. Naniwae, Y. Furushima, S. Sato, K. Sato, and K. Kudo, “Full C-band external cavity wavelength tunable laser using a liquid-crystal-based tunable mirror”, IEEE Photonic. Techn. L. 17, 681–683 (2005). http://dx.doi.org/10.1109/LPT.2004.84238110.1109/LPT.2004.842381Search in Google Scholar

[18] T. Sato, F. Yamamoto, K. Tsuji, H. Takesue, and T. Horiguchi, “An uncooled external cavity diode laser for coarse-WDM access network systems”, IEEE Photonic. Techn. L. 14, 1001–1003 (2002). http://dx.doi.org/10.1109/LPT.2002.101241210.1109/LPT.2002.1012412Search in Google Scholar

[19] V. Crozatier, B.K. Das, G. Baili, G. Gorju, F. Bretenaker, J.L. Le Gouët, I. Lorgeré, and W. Kohler, “Highly coherent electronically tunable waveguide extended cavity diode laser”, IEEE Photonic. Techn. L. 18, 1527–1529 (2006). http://dx.doi.org/10.1109/LPT.2006.87754910.1109/LPT.2006.877549Search in Google Scholar

[20] I.H. White, K.O. Nyairo, P.A. Kirkby, and C.J. Armistead, “Demonstration of a 1×2 multichannel grating cavity laser for wavelength division multiplexing (WDM) applications”, Electron. Lett. 26, 832–834 (1990). http://dx.doi.org/10.1049/el:1990054610.1049/el:19900546Search in Google Scholar

[21] I.H. White, “A multichannel grating cavity laser for wavelength division multiplexing applications”, J. Lightwave Technol. 9, 893–899 (1991). http://dx.doi.org/10.1109/50.8579110.1109/50.85791Search in Google Scholar

[22] J.B.D. Soole, A. Scherer, H.P. LeBlanc, N.C. Andreadakis, R. Bhat, and M.A. Koza, “Monolithic InP/InGaAsP/InP grating spectrometer for the 1.48-1.56 μm wavelength range”, Appl. Phys. Lett. 58, 1949–1951 (1991). http://dx.doi.org/10.1063/1.10502810.1063/1.105028Search in Google Scholar

[23] O.K. Kwon, K.H. Kim, E.D. Sim, J.H. Kim, and K.R. Oh, “Monolithically integrated multiwavelength grating cavity laser”, IEEE Photonic. Techn. L. 17, 1788–1790 (2005). http://dx.doi.org/10.1109/LPT.2005.85300910.1109/LPT.2005.853009Search in Google Scholar

[24] Y. Arakawa and A. Yariv, “Quantum well lasers-gain, spectra, dynamics”, IEEE J. Quantum Elect. QE-22, 1887–1899 (1986). http://dx.doi.org/10.1109/JQE.1986.107318510.1109/JQE.1986.1073185Search in Google Scholar

[25] R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties”, IEEE J. Quantum Elect. QE-16, 347–355 (1980). http://dx.doi.org/10.1109/JQE.1980.107047910.1109/JQE.1980.1070479Search in Google Scholar

[26] M. Bagley, R. Wyatt, D.J. Elton, H.J. Wickes, P.C. Spurdens, C.P. Seltzer, D.M. Cooper, and W.J. Devlin, “242 nm continuous tuning from a GRIN-SCH-MQW-BH InGaAsP laser in an extended cavity”, Electron. Lett. 26, 267–269 (1990). http://dx.doi.org/10.1049/el:1990017810.1049/el:19900178Search in Google Scholar

[27] A.S. Arnold, J.S. Wilson, and M.G. Boshier, “A simple extended-cavity diode laser”, Rev. Sci. Instrum. 69, 1236–1239 (1998). http://dx.doi.org/10.1063/1.114875610.1063/1.1148756Search in Google Scholar

[28] K.C. Harvey and C.J. Myatt, “External-cavity diode laser using a grazing-incidence diffraction grating”, Opt. Lett. 16, 910–912 (1991). http://dx.doi.org/10.1364/OL.16.00091010.1364/OL.16.000910Search in Google Scholar PubMed

[29] J.E. Epler, G.S. Jackson, N. Holonyak, Jr., R.L. Thornton, R.D. Burnham, and T.L. Paoli, “Broadband operation of coupled-stripe multiple quantum well AlGaAs laser diodes”, Appl. Phys. Lett. 47, 779–780 (1985). http://dx.doi.org/10.1063/1.9603510.1063/1.96035Search in Google Scholar

[30] D.C. Hall, J.S. Major, Jr., N. Holonyak, Jr., P. Gavrilovic, K. Meehan, W. Stutius, and J.E. Williams, “Broadband long-wavelength operation (9700 Å ≥ λ ≥ 8700 Å) of AlyGa1−yAs-GaAs-InxGa1−xAs quantum well heterostructure lasers in an external grating cavity”, Appl. Phys. Lett. 55, 752–754 (1989). http://dx.doi.org/10.1063/1.10179610.1063/1.101796Search in Google Scholar

[31] M. Mittelstein, D. Mehuys, and A. Yariv, “Broadband tunability of gain-flattened quantum well semiconductor lasers with an external grating”, Appl. Phys. Lett. 54, 1092–1094 (1989). http://dx.doi.org/10.1063/1.10076710.1063/1.100767Search in Google Scholar

[32] A. Lidgard, T. Tanbun-Ek, R.A. Logan, H. Temkin, K.W. Wecht, and N.A. Olsson, “External-cavity InGaAs/InP graded index multiquantum well laser with a 200 nm tuning range”, Appl. Phys. Lett. 56, 816–817 (1990). http://dx.doi.org/10.1063/1.10267210.1063/1.102672Search in Google Scholar

[33] C.P. Seltzer, M. Bagley, D.J. Elton, S. Perrin, and D.M Cooper, “160-nm continuous tuning of an MQW laser in the external cavity across the entire 1.3 μm communications window”, Electron. Lett. 27, 95–96 (1991). http://dx.doi.org/10.1049/el:1991006010.1049/el:19910060Search in Google Scholar

[34] J.N. Walpole, E.S. Kintzer, S.R. Chinn, C.A. Wang, and L.J. Missaggia, “High-power strained-layer InGaAs/AlGaAs tapered travelling wave amplifier”, Appl. Phys. Lett. 61, 740–742 (1992). http://dx.doi.org/10.1063/1.10778310.1063/1.107783Search in Google Scholar

[35] C.F. Lin, Y.S. Su, and B.R. Wu, “External-cavity semiconductor laser tunable from 1.3 to 1.54 μm for optical communication”, IEEE Photonic. Tech. L. 14, 3–5 (2002). http://dx.doi.org/10.1109/68.97414210.1109/68.974142Search in Google Scholar

[36] H.S. Gingrich, D.R. Chumney, S.Z. Sun, S.D. Hersee, L.F. Lester, and S.R.J. Brueck, “Broadly tunable external cavity laser diodes with staggered thickness multiple quantum wells”, IEEE Photonic. Techn. L. 9, 155–157 (1997). http://dx.doi.org/10.1109/68.55307010.1109/68.553070Search in Google Scholar

[37] L. Goldberg, D. Mehuys, and D.C. Hall, “3.3 W CW diffraction limited broad area semiconductor amplifier”, Electron. Lett. 28, 1082–1084 (1992). http://dx.doi.org/10.1049/el:1992068410.1049/el:19920684Search in Google Scholar

[38] D. Mehuys, D. Welsh, and D. Scigres, “1 W CW, diffraction-limited, tunable external-cavity semiconductor laser”, Electron. Lett. 29, 1254–1255 (1993). http://dx.doi.org/10.1049/el:1993083810.1049/el:19930838Search in Google Scholar

[39] D. Wandt, M. Laschek, K. Przyklenk, A. Tünnermann, and H. Welling, “Continously tunable 0.5 W single-frequency diode laser source”, Opt. Commun. 148, 261–264 (1998). http://dx.doi.org/10.1016/S0030-4018(97)00696-210.1016/S0030-4018(97)00696-2Search in Google Scholar

[40] S. Stry, L. Hildebrandt, J. Sacher, Ch. Buggle, M. Kemmann, and W. von Klitzing “Compact tunable diode laser with diffraction limited 1 Watt for atom cooling and trapping”, e-mail: sandra.stry@sacher-laser.com Search in Google Scholar

[41] R.J. Jones, S. Gupta, R.K. Jain, and J.N. Walpole, “Near-diffraction-limited high power (∼1 W) single longitudinal mode CW diode laser tunable from 960 to 980 nm”, Electron. Lett. 31, 1668–1669 (1995). http://dx.doi.org/10.1049/el:1995114710.1049/el:19951147Search in Google Scholar

[42] M. Notomi, O. Mitomi, Y. Yoshikuni, F. Kano, and Y. Tohmori, “Broad-band tunable two-section laser diode with external grating feedback”, IEEE Photonic. Techn. L. 2, 85–87 (1990). http://dx.doi.org/10.1109/68.4705510.1109/68.47055Search in Google Scholar

[43] J. De Merlier, K. Mizutani, S. Sudo, K. Sato, and K. Kudo, “Wavelength channel accuracy of an external cavity wavelength tunable laser with intracavity wavelength reference etalon”, J. Lightwave Technol. 24, 3202–3209 (2006). http://dx.doi.org/10.1109/JLT.2006.87633810.1109/JLT.2006.876338Search in Google Scholar

[44] A. Lohman, and R.R.A. Syms, “External cavity laser with a vertically etched silicon blazed grating”, IEEE Photonic. Techn. L. 15, 120–122 (2003). http://dx.doi.org/10.1109/LPT.2002.80576210.1109/LPT.2002.805762Search in Google Scholar

[45] E.G. Loewen, M. Neviere, and D. Maystre, “Grating efficiency theory as it applies to blazed and holographic gratings”, Appl. Optics 16, 2711–2721 (1977). Search in Google Scholar

[46] R.R.A. Syms, A. Lohman, “MOEMS tuning element for a littrow external cavity laser”, J. Microelectromech. Syst. 12, 921–928 (2003). http://dx.doi.org/10.1109/JMEMS.2003.82026910.1109/JMEMS.2003.820269Search in Google Scholar

[47] M.C. Hutley, Diffraction Gratings, Academic Press Ltd., London, 1990. Search in Google Scholar

[48] B. Mroziewicz, T. Piwoński, E. Kowalczyk, A. Szerling, and S.J. Lewandowski, “External cavity diode lasers with ridge-waveguide type broad contact semiconductor optical amplifiers”, Proc. SPIE 5958, J1–J8 (2005). 10.1117/12.621811Search in Google Scholar

[49] B. Mroziewicz, E. Kowalczyk, L. Dobrzański, J. Ratajczak, and S.J. Lewandowski, “External cavity diode lasers with E-beam written silicon diffraction gratings”, Opt. Quant. Electron. 39, 585–595 (2007). http://dx.doi.org/10.1007/s11082-007-9111-710.1007/s11082-007-9111-7Search in Google Scholar

[50] D. Rosenblatt, A. Sharon, and A.A. Friesem, “Resonant grating waveguide structures”, IEEE J. Quantum Elect. 33, 2038–2059 (1997). http://dx.doi.org/10.1109/3.64132010.1109/3.641320Search in Google Scholar

[51] A.S.P. Chang, H. Tan, S. Bai, W. Wu, Z. Yu, and S.Y. Chou, “Tunable external cavity laser with a liquid-crystal subwavelength resonant grating filter as wavelength-selective mirror”, IEEE Photonic. Techn. L. 19, 1099–1101 (2007). http://dx.doi.org/10.1109/LPT.2007.89943710.1109/LPT.2007.899437Search in Google Scholar

[52] S. Block, E. Gamet, and F. Pigeon, “Semiconductor laser with external resonant grating mirror”, IEEE J. Quantum Elect. 41, 1049–1053 (2005). http://dx.doi.org/10.1109/JQE.2005.85124810.1109/JQE.2005.851248Search in Google Scholar

[53] S.Y. Chou, P.R. Krauss, and P.J. Renstrom, “Imprint of sub-25 nm vias and trenches in polymers”, Appl. Phys. Lett. 67, 3114–3116 (1995). http://dx.doi.org/10.1063/1.11485110.1063/1.114851Search in Google Scholar

[54] I. Avrutsky and R. Rabady, “Waveguide grating mirror for large-area semiconductor lasers”, Opt. Lett. 26, 989–991 (2001). http://dx.doi.org/10.1364/OL.26.00098910.1364/OL.26.000989Search in Google Scholar

[55] S.S. Wang and R. Magnusson, “Multilayer waveguide-grating filters”, Appl. Optics 34, 2414–2420 (1995). http://dx.doi.org/10.1364/AO.34.00241410.1364/AO.34.002414Search in Google Scholar PubMed

[56] M.G. Littman and H.J. Metcalf, “Spectrally narrow pulsed dye laser without beam expander”, Appl. Optics 17, 2224–2227 (1978). Search in Google Scholar

[57] P. McNicholl and H.J. Metcalf, “Synchronous cavity mode and feedback wavelength scanning in dye laser oscillators with gratings”, Appl. Optics 24, 2757–2761 (1985). Search in Google Scholar

[58] F. Favre, D. Le Guen, J.C. Simon, and B. Landousies, “External-cavity semiconductor laser with 15 nm continuous tuning range”, Electron. Lett. 22, 795–796 (1986). http://dx.doi.org/10.1049/el:1986054510.1049/el:19860545Search in Google Scholar

[59] F. Favre and D. Le Guen, “82 nm of continuous tunability for an external cavity semiconductor laser”, Electron. Lett. 27, 183–184 (1991). http://dx.doi.org/10.1049/el:1991011710.1049/el:19910117Search in Google Scholar

[60] H. Tabuchi and H. Ishikawa, “External grating tunable MWQ laser with wide tuning range of 240 nm”, Electron. Lett. 26, 742–743 (1990). http://dx.doi.org/10.1049/el:1990048410.1049/el:19900484Search in Google Scholar

[61] D. Wandt, M. Laschek, K. Przyklenk, A. Tunnermann, and H. Welling, “External cavity laser diode with 40 nm continuous tuning range around 825 nm”, Optics Commun. 130, 81–84 (1996). http://dx.doi.org/10.1016/0030-4018(96)00171-X10.1016/0030-4018(96)00171-XSearch in Google Scholar

[62] K. Liu and M.G. Littman, “Novel geometry for single-mode scanning of tunable lasers”, Opt. Lett. 6, 117–118 (1981). Search in Google Scholar

[63] L. Nilse, H.J. Davies, and C.S. Adams, “Synchronous tuning of extended cavity diode lasers: the case for an optimum pivot point”, Appl. Optics 38, 548–553 (1999). http://dx.doi.org/10.1364/AO.38.00054810.1364/AO.38.000548Search in Google Scholar PubMed

[64] M. de Labachelerie and G. Passedat, “Mode-hop suppression of Littrow grating-tuned lasers”, Appl. Optics 32, 269–274 (1993) Search in Google Scholar

[65] W.R. Trutna and L.F. Stokes, “Continuously tuned external cavity semiconductor laser”, J. Lightwave Technol. 11, 1279–1286 (1993). http://dx.doi.org/10.1109/50.25408610.1109/50.254086Search in Google Scholar

[66] T.M. Hard, “Laser wavelength selection and output coupling by a grating”, Appl. Optics 9, 1825–1830 (1990). Search in Google Scholar

[67] C.J. Hawthorn, K.P. Weber, and R.E. Scholten, “Littrow configuration tunable external cavity diode laser with fixed direction output beam”, Rev. Sci. Instrum. 72, 4477–4479 (2001). http://dx.doi.org/10.1063/1.141921710.1063/1.1419217Search in Google Scholar

[68] D. Wandt, M. Laschek, A. Tunnermann, and H. Welling, “Continuously tunable external-cavity diode laser with a double-grating arrangement”, Opt. Lett. 22, 390–392 (1997). http://dx.doi.org/10.1364/OL.22.00039010.1364/OL.22.000390Search in Google Scholar PubMed

[69] J.H. Lee, M.Y. Park, Ch.Y. Kim, S.H. Cho, W. Lee, G. Jeong, and B.W. Kim, “Tunable external cavity laser based on polymer waveguide platform for WDM access network”, IEEE Photonic. Techn. L. 17, 1529–1956 (2005). Search in Google Scholar

[70] M.C. Oh, H.J. Lee, M.H. Lee, J.H. Ahn, S.G. Han, and H.G. Kim, “Tunable wavelength filters with Bragg gratings in polymer waveguides”, Appl. Phys. Lett. 73, 2543–2545 (1998). http://dx.doi.org/10.1063/1.12252710.1063/1.122527Search in Google Scholar

[71] A. Andalkar, S.K. Lamoreaux, and R.B. Warrington, “Improved external cavity design for cesium D1 (894 nm) diode laser”, Rev. Sci. Instrum. 71, 4029–4031 (2000). http://dx.doi.org/10.1063/1.131986010.1063/1.1319860Search in Google Scholar

[72] L. Hildebrandt, R. Knispel, S. Stry, J.R. Sacher, and F. Schael, “Antireflection-coated blue GaN laser diodes in an external cavity and Doppler-free indium absorption spectroscopy”, Appl. Optics 42, 2110–2118 (2003). http://dx.doi.org/10.1364/AO.42.00211010.1364/AO.42.002110Search in Google Scholar

[73] D.J. Lonsdale, A.P. Willis, and T.A. King, “Extended tuning and single-mode operation of an anti-reflection-coated InGaN violet laser diode in a Littrow cavity”, Meas. Sci. Technol. 13, 488–493 (2002). Search in Google Scholar

[74] R. Wyatt and W.J. Devlin, “10 kHz linewidth 1.5 μm InGaAsP external cavity laser with 55 nm tuning range”, Electron. Lett. 19, 110–112 (1983). http://dx.doi.org/10.1049/el:1983007910.1049/el:19830079Search in Google Scholar

[75] R. Wyatt, “Spectral linewidth of external cavity semiconductor lasers with strong, frequency-selective feedback”, Electron. Lett. 21, 658–659 (1985). http://dx.doi.org/10.1049/el:1985046710.1049/el:19850467Search in Google Scholar

[76] J. Mellis, S.A. Al-Chalabi, K.H. Cameron, R. Wyatt, J.C. Regnault, W.J. Devlin, and M.C. Brain, “Miniature packaged external-cavity semiconductor laser with 50 GHz continuous electrical tuning range”, Electron. Lett. 24, 988–989 (1988). http://dx.doi.org/10.1049/el:1988067210.1049/el:19880672Search in Google Scholar

[77] A.T. Schremer and C.L. Tang, “External-cavity semiconductor laser with 1000 GHz continuous piezoelectric tuning range”, IEEE Photonic. Techn. L. 2, 3.5 (1990). 10.1109/68.47023Search in Google Scholar

[78] C. Petridis, I.D. Lindsay, D.J.M. Stothard, and M. Ebrahimzadeh, “Mode-hop-free tuning over 80 GHz of an extended cavity diode laser without antireflection coating”, Rev. Sci. Instrum. 72, 3811–3815 (2001). http://dx.doi.org/10.1063/1.140578310.1063/1.1405783Search in Google Scholar

[79] E. Ip, J.M. Kahn, D. Anthon, and J. Hutchins, “Linewidth measurements of MEMS-based tunable lasers for phase-locking applications”, IEEE Photonic. Techn. L. 17, 2029–2031 (2005). http://dx.doi.org/10.1109/LPT.2005.85643510.1109/LPT.2005.856435Search in Google Scholar

[80] K. Sato, J. De Merlier, K. Mizutani, S. Sudo, S. Watanabe, K. Tsuruoka, K. Naniwae, and K. Kudo, “A compact external cavity wavelength tunable laser without an intracavity etalon”, IEEE Photonic. Techn. L. 18, 1191–1193 (2006). http://dx.doi.org/10.1109/LPT.2006.87471710.1109/LPT.2006.874717Search in Google Scholar

[81] U.H. Jacobs, K. Scholle, E. Heumann, G. Huber, M. Rattunde, and J. Wagner, “Room-temperature external cavity GaSb-based diode laser around 2.13 μm”, Appl. Phys. Lett. 85, 5825–5826 (2004). http://dx.doi.org/10.1063/1.183356110.1063/1.1833561Search in Google Scholar

[82] E. Geerlings, M. Rattunde, J. Schmitz, G. Kaufel, H. Zappe, and J. Wagner, “Widely tunable GaSb-based external cavity diode laser emitting around 2.3 μm”, IEEE Photonic. Techn. L. 18, 1913–1915 (2006). http://dx.doi.org/10.1109/LPT.2006.88165810.1109/LPT.2006.881658Search in Google Scholar

[83] F. Capasso, R. Paiella, R. Martini, R. Colombelli, C. Gmachl, T.L. Myers, M.S. Taubaman, R.M. Wiliams, C.G. Bethea, K. Unterrainer, H.Y. Hwang, D.L. Sivco, A.L. Cho, A.M. Sergent, H.C. Liu, and E.A. Whittaker, “Quantum cascade lasers: ultrahigh-speed operation, optical wireless communication, narrow linewidth, and far-infrared emission”, IEEE J. Quantum Elect. 38, 511–532 (2002). http://dx.doi.org/10.1109/JQE.2002.100540310.1109/JQE.2002.1005403Search in Google Scholar

[84] L. Hildebrandt, S. Stry, R. Knispel, J.R. Sacher, T. Beyer, M. Braun, A. Lambrecht, T. Gensty, W. Elsasser, Ch. Mann, and F. Fuchs, “Quantum cascade external cavity and DFB laser systems in the mid-infrared spectral range: devices and applications”, e-mail: lars@sacher-laser.com Search in Google Scholar

[85] G.P. Luo, C. Peng, H.Q. Le, S.S. Pei, W.Y. Hwang, B. Ishaug, J. Um, J.N. Baillargeon, and C.H. Lin, “Grating-tuned external-cavity quantum-cascade semiconductor lasers”, Appl. Phys. Lett. 78, 2834–2836 (2001). http://dx.doi.org/10.1063/1.137152410.1063/1.1371524Search in Google Scholar

[86] Y. Uenishi, K. Honna, and S. Nagaoka, “Tunable laser diode using a nickel micromachined external mirror”, Electron. Lett. 32, 1207–1208 (1996). http://dx.doi.org/10.1049/el:1996080110.1049/el:19960801Search in Google Scholar

[87] M.-H. Kiang, O. Solgaard, R.S. Muller, and K.Y. Lau, “Silicon-micromachined micromirrors with integrated high-precision actuators for external-cavity semiconductor lasers”, IEEE Photonic. Techn. L. 8, 96–97 (1996). Search in Google Scholar

[88] A.Q. Liu, X.M. Zhang, V.M. Murukeshan, and Y.L. Lam, “A novel integrated micromachined tunable laser using polysilicon 3-D mirror”, IEEE Photonic. Techn. L. 11, 427–429 (2001). http://dx.doi.org/10.1109/68.92073910.1109/68.920739Search in Google Scholar

[89] J.B.D. Soole, K. Poguntke, A. Scherer, H.P. LeBlanc, C. Chang-Hasnain, J.R. Hayes, C. Caneau, R. Bhat, and M.A. Koza, “Multistripe array grating integrated cavity (MAGIC) laser: a new semiconductor laser for WDM applications”, Electron. Lett. 28, 1805–1807 (1992). http://dx.doi.org/10.1049/el:1992115110.1049/el:19921151Search in Google Scholar

[90] P.A. Kirkby, “Multichannel wavelength-switched transmitters and receivers-new component concepts for broad-band networks and distributed switching systems”, J. Lightwave Technol. 8, 202–211 (1990). http://dx.doi.org/10.1109/50.4787210.1109/50.47872Search in Google Scholar

[91] O.K. Kwon, K.H. Kim, E.D. Sim, H.K. Yun, J.H. Kim, H.S. Kim, and K.R. Oh, “Proposal of electrically tunable external-cavity laser diode”, IEEE Photonic. Techn. L. 16, 1804–1806 (2004). http://dx.doi.org/10.1109/LPT.2004.83104710.1109/LPT.2004.831047Search in Google Scholar

[92] O.K. Kwon, J.H. Kim, K.H. Kim, E.D. Sim, H.S. Kim, and K.R. Oh, “Monolithically integrated grating cavity tunable lasers”, IEEE Photonic. Techn. L. 17, 1794–1796 (2005). http://dx.doi.org/10.1109/LPT.2005.85325710.1109/LPT.2005.853257Search in Google Scholar

[93] O.K. Kwon, J.H. Kim, K.H. Kim, E.D. Sim, and K.R. Oh, “Widely tunable multichannel grating cavity laser”, IEEE Photonic. Techn. L. 18, 1699–1701 (2006). http://dx.doi.org/10.1109/LPT.2006.87955610.1109/LPT.2006.879556Search in Google Scholar

Published Online: 2008-9-27
Published in Print: 2008-12-1

© 2008 SEP, Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 29.4.2024 from https://www.degruyter.com/document/doi/10.2478/s11772-008-0045-9/html
Scroll to top button