Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter December 30, 2009

Influence of tapering process on changes of optical fiber refractive index distribution along a structure

  • K.A. Stasiewicz EMAIL logo , R. Krajewski , L.R. Jaroszewicz , M. Kujawińska and R. Świłło
From the journal Opto-Electronics Review

Abstract

Investigations of internal structure changes along an optical fiber during the manufacture of biconical taper have been described. Basing on the constant volume theory, classification of biconical structures manufactured on a special set-up is presented and discussed. The interferometric tomography method has been used for determination of 3D geometry and refractive index distribution in manufactured optical fiber tapers. The experiments provide detailed information on external (diameter of cladding) as well as internal (core diameter and refractive index profile) changes along the taper region. The results have been discussed in relation to the parameters of the manufacturing process.

[1] K. Jędrzejewski, “Biconical fused taper — a universal fiber devices technology”, Opto-Electron. Rev. 8, 153–159 (2000). Search in Google Scholar

[2] K. Stasiewicz and L.R. Jaroszewicz, “Automatic set-up for advanced optical fiber elements manufacturing”, Proc. SPIE 5952, 233–239 (2005). Search in Google Scholar

[3] T.A. Birks and Y.W. Li, “The shape of fiber tapers”, J. Lightwave Technol. 10, 432–438 (1992). http://dx.doi.org/10.1109/50.13419610.1109/50.134196Search in Google Scholar

[4] M. Ahmad and L.L. Hench, “Effect of taper geometries and launch angle on evanescent wave penetration depth in optical fibers”, Biosens. Bioelectron. 20, 1312–1319 (2005). http://dx.doi.org/10.1016/j.bios.2004.04.02610.1016/j.bios.2004.04.026Search in Google Scholar PubMed

[5] W.J. Wadsworth, T.A. Birks, and P.S.J. Russell, “Supercontinuum generation in tapered fibers”, Opt. Lett. 25, 1415–1417 (2000). http://dx.doi.org/10.1364/OL.25.00141510.1364/OL.25.001415Search in Google Scholar PubMed

[6] K.P. Jędrzejewski, F. Martinez, J.D. Minelly, C.D. Hussey, and F.P. Payne, “Tapered-beam expander for single-mode optical-fibre gap devices”, Electron. Lett. 22, 105–106 (1986). http://dx.doi.org/10.1049/el:1986007310.1049/el:19860073Search in Google Scholar

[7] T. Lin, Y. Furuumi, M. Imai, Y. Tsuji, and M. Koshiba, “Desing theory and fabrication of a new fused-taper optical fiber mode converter”, Proc. SPIE 3746, 498–501 (1999). Search in Google Scholar

[8] K. Stasiewicz, L.R. Jaroszewicz, and R. Świłło, “Low-pressure optical fiber biconical taper manufacture method with different length of taper region”, Polish Patent Application, 22.08.09 — in progress Search in Google Scholar

[9] J. Dewynne, J.R. Ockendom, and P. Wilmott, “On a mathematical model for fiber tapering”, SIAM J. Appl. Math. 49, 983–990 (1989). http://dx.doi.org/10.1137/014905910.1137/0149059Search in Google Scholar

[10] M. Eisenmann and W. Weidel, “Single-mode fused biconical couplers for wavelength division multiplexing with channel spacing between 100 and 300 nm”, J. Lightwave Technol. 6, 113–119 (1988). http://dx.doi.org/10.1109/50.397510.1109/50.3975Search in Google Scholar

[11] R. Krajewski, B. Volckaert, Y. Meuret, M. Kujawinska, and H. Thienpont, “Design, modelling, and prototyping of microinterferometric tomography system for optical fiber inspection”, Proc. SPIE 6188, 61880J (2006). http://dx.doi.org/10.1117/12.66395810.1117/12.663958Search in Google Scholar

[12] D. Malacara, M. Sevrin, and Z. Malacara, Interferogram Analysis for Optical Testing, Marcel Drekker Inc., New York, 1998. Search in Google Scholar

[13] C.I. Dasch, “One-dimensional tomography: a comparison of Abel, onion-peeling and filtered back projection methods”, Appl. Optics 31, 1146–1152 (1992). http://dx.doi.org/10.1364/AO.31.00114610.1364/AO.31.001146Search in Google Scholar PubMed

[14] R. Krajewski, M. Kujawińska, B. Volckaerts, and H. Thienpont “Low-cost microinterferometric tomography system for 3D refraction index distribution measurements in the optical fiber splices”, Proc. SPIE 5855, 347–350 (2005). http://dx.doi.org/10.1117/12.62344510.1117/12.623445Search in Google Scholar

[15] P. Kniażewski, W. Górski, and M. Kujawińska, “Microinterferometric tomography of photonics phase elements”, Proc. SPIE 5145, 107–116 (2003). http://dx.doi.org/10.1117/12.50002910.1117/12.500029Search in Google Scholar

[16] M. Kujawińska, “Spatial fringe pattern analysis methods”, in Interferogram Analysis: Digital Fringe Pattern Measurements Techniques, IOP Pub., Bristol and Philadelfia, 1993. Search in Google Scholar

[17] T. Kozacki, M. Kujawińska, and P. Kniażewski, “Investigation of limitations of optical diffraction tomography”, Opto-Electron. Rev. 15, 102–109 (2007). http://dx.doi.org/10.2478/s11772-007-0006-810.2478/s11772-007-0006-8Search in Google Scholar

[18] K.A. Stasiewicz, J. Młynarczyk, L.R. Jaroszewicz, and K. Kopczyński, “Spectrum broadening of the laser impulse throught application biconical taper of single mode fiber”, Biuletyn WAT LVI, 155–165 (2007). (in Polish) Search in Google Scholar

[19] T. Kozacki, P. Kniażewski, and M. Kujawińska, “Photoelastic tomography for birefringence determination in optical microelements”, in Fringe 2005, edited by W. Osten, Springer, Berlin Heidelberg, 226–229 (2006). http://dx.doi.org/10.1007/3-540-29303-5_2910.1007/3-540-29303-5_29Search in Google Scholar

Published Online: 2009-12-30
Published in Print: 2010-3-1

© 2010 SEP, Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 1.5.2024 from https://www.degruyter.com/document/doi/10.2478/s11772-009-0030-y/html
Scroll to top button