Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter September 28, 2013

Photoluminescence of HgCdTe nanostructures grown by molecular beam epitaxy on GaAs

  • I. Izhnin EMAIL logo , A. Izhnin , K. Mynbaev , N. Bazhenov , A. Shilyaev , N. Mikhailov , V. Varavin , S. Dvoretsky , O. Fitsych and A. Voitsekhovsky
From the journal Opto-Electronics Review

Abstract

Photoluminescence (PL) of HgCdTe-based hetero-epitaxial nanostructures with 50 to 1100 nm-wide potential wells was studied. The nanostructures were grown by molecular beam epitaxy on GaAs substrates. A strong degree of alloy disorder was found in the material, which led to the broadening of the PL spectra and a considerable Stokes shift that could be traced up to temperature T∼230 K. Annealing of the structures improved the ordering and led to the increase in the PL intensity. A remarkable feature of the PL was an unexpectedly small decrease of its intensity with temperature increasing from 84 to 300 K. This effect can be related to localization of carriers at potential fluctuations and to the specific character of Auger-type processes in HgCdTe-based nanostructures.

[1] C.R. Tonheim, A.S. Sudbø, E. Selvig, and R. Haakenaasen, “Enhancement in light emission from Hg-Cd-Te due to surface patterning”, IEEE Photonic Techn. L. 23, 36–38 (2011). http://dx.doi.org/10.1109/LPT.2010.209051710.1109/LPT.2010.2090517Search in Google Scholar

[2] J.P. Zanatta, F. Noël, P. Ballet, N. Hdadach, A. Million, G. Destefanis, E. Mottin, C. Kopp, E. Picard, and E. Hadji, “HgCdTe molecular beam epitaxy material for microcavity light emitters: application to gas detection in the 2–6 μm range”, J. Electron. Mater. 32, 602–607 (2003). http://dx.doi.org/10.1007/s11664-003-0039-910.1007/s11664-003-0039-9Search in Google Scholar

[3] N.L. Bazhenov, V.I. Ivanov-Omskii, A.I. Izhnin, and V.A. Smirnov, “Quantum yield of CdHgTe solid solutions”, Sov. Phys. Semicond. 25, 667–668 (1991). Search in Google Scholar

[4] Y. Jiang, M.C. Teich, and W. Wang, “Carrier lifetimes and threshold currents in HgCdTe double heterostructures and multi-quantum-well lasers”, J. Appl. Phys. 69, 6869–6875 (1991). http://dx.doi.org/10.1063/1.34767610.1063/1.347676Search in Google Scholar

[5] R.D. Feldman, C.L. Cesar, M.N. Islam, R.F. Austin, A.E. Di Giovanni, J. Shah, R. Spitzer, and J. Orenstein, “Hg1−xCdxTe based quantum wells for the 3-μm wavelength region”, J. Vac. Sci. Technol. B7, 431–434 (1989). http://dx.doi.org/10.1116/1.57619810.1116/1.576198Search in Google Scholar

[6] K.K. Mahavadi, S. Sivananthan, M.D. Lange, X.P. Chu, J. Bleuase, and J.P. Faurie, “Stimulated emission from a Hg1−xCdxTe epilayer and CdTe/Hg1−xCdxTe heterostructures grown by molecular beam epitaxy”, J. Vac. Sci. Technol. A8, 1210–1214 (1990). http://dx.doi.org/10.1116/1.57694710.1116/1.576947Search in Google Scholar

[7] E. Monterrat, L. Ulmer, R. Mallard, N. Magnea, J.L. Pautrat, and H. Mariette, “Molecular beam epitaxy growth and characterization of CdxHg1−xTe (0.4<x<1) quantum wells”, J. Appl. Phys. 71, 1774–1781 (1992). http://dx.doi.org/10.1063/1.35121310.1063/1.351213Search in Google Scholar

[8] E. Hadji, J. Bleuse, N. Magnea, and J.L. Pautrat, “3.2 μm infrared resonant cavity light emitting diode”, Appl. Phys. Lett. 67, 2591–2593 (1995). http://dx.doi.org/10.1063/1.11514110.1063/1.115141Search in Google Scholar

[9] E. Hadji, E. Picard, C. Roux, E. Molva, and P. Ferret, “3.2 μm microcavity light emitter for gas detection”, Optics Lett. 25, 725–727 (2000). http://dx.doi.org/10.1364/OL.25.00072510.1364/OL.25.000725Search in Google Scholar

[10] E. Hadji, J. Bleuse, N. Magnea, and J.L. Pautrat, “Photopumped infrared vertical-cavity surface-emitting laser”, Appl. Phys. Lett. 68, 2480–2482 (1996). http://dx.doi.org/10.1063/1.11582710.1063/1.115827Search in Google Scholar

[11] M. Kinch, “HgCdTe: recent trends in the ultimate IR semiconductor”, J. Electron. Mater. 39, 1043–1052 (2010). http://dx.doi.org/10.1007/s11664-010-1087-610.1007/s11664-010-1087-6Search in Google Scholar

[12] J. Shao, L. Chen, W. Lu, X. Lu, L. Zhu, S. Guo, L. He, and J. Chu, “Backside-illuminated infrared photoluminescence and photoreflectance: probe of vertical nonuniformity of HgCdTe on GaAs”, Appl. Phys. Lett. 96, 121915 (2010). http://dx.doi.org/10.1063/1.337359510.1063/1.3373595Search in Google Scholar

[13] X. Zhang, J. Shao, L. Chen, X. Lu, S. Guo, L. He, and J. Chu, “Infrared photoluminescence of arsenic-doped HgCdTe in a wide temperature range of up to 290 K”, J. Appl. Phys. 110, 043503 (2011). http://dx.doi.org/10.1063/1.362258810.1063/1.3622588Search in Google Scholar

[14] K.D. Mynbaev, N.L. Bazhenov, V.I. Ivanov-Omski, N.N. Mikhailov, M.V. Yakushev, A.V. Sorochkin, S.A. Dvoretsky, V.S. Varavin, and Yu.G. Sidorov, “Photoluminescence of HgCdTe-based heterostructures grown by molecular-beam epitaxy”, Semiconductors 45, 872–879 (2011). http://dx.doi.org/10.1134/S106378261107015310.1134/S1063782611070153Search in Google Scholar

[15] V.I. Ivanov-Omskii, K.D. Mynbaev, N.L. Bazhenov, V.A. Smirnov, N.N. Mikhailov, G.Yu. Sidorov, V.G. Remesnik, V.S. Varavin, and S. A. Dvoretsky, “Optical properties of molecular beam epitaxy-grown HgCdTe structures with potential wells”, Phys. Stat. Sol. C7, 1621–1623 (2010). http://dx.doi.org/10.1002/pssc.20098318610.1002/pssc.200983186Search in Google Scholar

[16] I.I. Izhnin, A.I. Izhnin, H.V. Savytskyy, O.I. Fitsych, N.N. MIkhailov, V.S. Varavin, S.A. Dvoretsky, Yu.G. Sidorov, and K.D. Mynbaev, “Defects in HgCdTe grown by molecular beam epitaxy on GaAs substrates”, Opto-Electron. Rev. 20, 375–378 (2012). http://dx.doi.org/10.2478/s11772-012-0048-410.2478/s11772-012-0048-4Search in Google Scholar

[17] I.I. Izhnin, K.D. Mynbaev, M.V. Yakushev, A.I. Izhnin, E.I. Fitsych, N.L. Bazhenov, A.V. Shilyaev, G.V. Savitskii, R. Jakiela, A.V. Sorochkin, V.S. Varavin, and S.A. Dvoretskii, “Electrical and optical properties of CdHgTe films grown by molecular-beam epitaxy on silicon substrates”, Semiconductors 46, 1341–1345 (2012). http://dx.doi.org/10.1134/S106378261210006510.1134/S1063782612100065Search in Google Scholar

[18] N.N. Mikhailov, R.N. Smirnov, S.A. Dvoretsky, Yu.G. Sidorov, V.A. Shvets, E.V. Spesivtsev, and S.V. Rykhlitski, “Growth of Hg1−xCdxTe nanostructures by molecular beam epitaxy with ellipsometric control”, Int. J. Nanotechnology 3, 126–130 (2006). Search in Google Scholar

[19] J.P. Laurenti, J. Camassel, A. Bouhemadou, B. Toulouse, R. Legros, and A. Lusson, “Temperature dependence of the fundamental absorption edge of mercury cadmium telluride”, J. Appl. Phys. 67, 6454–6460 (1990). http://dx.doi.org/10.1063/1.34511910.1063/1.345119Search in Google Scholar

[20] A. Lusson, F. Fuchs, and Y. Marfaing, “Systematic photoluminescence study of CdxHg1−xTe alloys in a wide composition range”, J. Cryst. Growth 101, 673–677 (1990). http://dx.doi.org/10.1016/0022-0248(90)91056-V10.1016/0022-0248(90)91056-VSearch in Google Scholar

[21] M.M. Kraus, C.R. Becker, S. Scholl, Y.S. Wu, S. Yuan, and G. Landwehr, “Infrared photoluminescence on molecular beam epitaxially grown Hg1−xCdxTe layers”, Semicond. Sci. Technol. 8, S62-S65 (1993). 10.1088/0268-1242/8/1S/014Search in Google Scholar

[22] I.C. Robin, M. Taupin, R. Derone, P. Ballet, and A. Lusson, “Photoluminescence studies of HgCdTe epilayers,” J. Electron. Mater. 39, 868–872 (2010). http://dx.doi.org/10.1007/s11664-010-1219-z10.1007/s11664-010-1219-zSearch in Google Scholar

[23] N.L. Bazhenov, B.E. Zhurtanov, K.D. Mynbaev, A.P. Astakhova, A.N. Imenkov, M.P. Mikhailova, V.A. Smirnov, N.D. Stoyanov, and Yu.P. Yakovlev, “Impact-ionization-stimulated electroluminescence in isotype n-GaSb/n-AlGaAsSb/n-GaInAsSb heterostructures”, Tech. Phys. Lett. 33, 987–989 (2007). http://dx.doi.org/10.1134/S106378500712001210.1134/S1063785007120012Search in Google Scholar

[24] G.B. Stringfellow, “Microstructures produced during the epitaxial growth of InGaN alloys”, J. Cryst. Growth 312, 735–749 (2010). http://dx.doi.org/10.1016/j.jcrysgro.2009.12.01810.1016/j.jcrysgro.2009.12.018Search in Google Scholar

Published Online: 2013-9-28
Published in Print: 2013-12-1

© 2013 SEP, Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 25.4.2024 from https://www.degruyter.com/document/doi/10.2478/s11772-013-0103-9/html
Scroll to top button