Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access September 2, 2014

Low temperature impact toughness of the main gas pipeline steel after long-term degradation

  • Pavlo Maruschak EMAIL logo , Iryna Danyliuk , Roman Bishchak and Tomaž Vuherer
From the journal Open Engineering

Abstract

The correlation of microstructure, temperature and Charpy V-notch impact properties of a steel 17G1S pipeline steel was investigated in this study. Within the concept of physical mesomechanics, the dynamic failure of specimens is represented as a successive process of the loss of shear stability, which takes place at different structural/scale levels of the material. Characteristic stages are analyzed for various modes of failure, moreover, typical levels of loading and oscillation periods, etc. are determined. Relations between low temperature derived through this test, microstructures and Charpy (V-notch) toughness test results are also discussed in this paper.

[1] Nykyforchyn H. M., Effect of hydrogen on the kinetics and mechanism of fatigue crack growth in structural steels, Mat Sci, 33, 1997, 504–515 http://dx.doi.org/10.1007/BF0253754710.1007/BF02537547Search in Google Scholar

[2] Zagyrski A., Matysiak H., Tsyrulnyk O. T., Zvirko I. I., Nykyforchyn H. M., Kurzydlowski K., Corrosion and stress corrosion cracking of exploited storage tank steel, Mat Sci, 40, 2004, 421–433 http://dx.doi.org/10.1007/s11003-005-0055-410.1007/s11003-005-0055-4Search in Google Scholar

[3] Krasovskii A. Ya., Lokhman I. V., Orynyak I. V., Stress-corrosion failures of main pipelines, Strength of Materials, 44, 2012, 129–143 http://dx.doi.org/10.1007/s11223-012-9366-510.1007/s11223-012-9366-5Search in Google Scholar

[4] Kotrechko S. O., Krasowsky A. Ya., Meshkov Yu. Ya., Torop V. M., Effect of long-term service on the tensile properties and capability of pipeline steel 17GS to resist cleavage fracture, Int J Press Vess Piping, 81, 2004, 337–344 http://dx.doi.org/10.1016/j.ijpvp.2004.02.01510.1016/j.ijpvp.2004.02.015Search in Google Scholar

[5] Nykyforchyn H., Lunarska E., Tsyrulnyk O. et al. Environmentally assisted ‘in-bulk’ steel degradation of long term service gas trunkline, Eng. Failure Analysis, 17, 2010, 624–632 http://dx.doi.org/10.1016/j.engfailanal.2009.04.00710.1016/j.engfailanal.2009.04.007Search in Google Scholar

[6] Majid Z. A., Mohsin R. Failure Investigation of natural gas pipeline, Arabian J for Sci. and Eng, 37, 2012, 1083–1088 http://dx.doi.org/10.1007/s13369-012-0236-z10.1007/s13369-012-0236-zSearch in Google Scholar

[7] Pilkey A. K., Lambert S. B., Plumtree A., Stress corrosion cracking of X-60 line pipe steel in a carbonate-bicarbonate solution, Corrosion, 51, 1995, 91–96 http://dx.doi.org/10.5006/1.329358810.5006/1.3293588Search in Google Scholar

[8] Zong C., Zhu G., Mao W., Effect of crystallographic texture on the anisotropy of Charpy impact behavior in pipeline steel, Mater Sci Eng A, 563, 2013, 1–7 http://dx.doi.org/10.1016/j.msea.2012.11.05510.1016/j.msea.2012.11.055Search in Google Scholar

[9] Balokhonov R. R., Stefanov Yu. P., Makarov P. V., Smolin I. Yu., Deformation and fracture of surfacehardened materials at meso- and macroscale levels, Theor Appl Fracture Mech, 33, 2000, 9–16 http://dx.doi.org/10.1016/S0167-8442(99)00046-410.1016/S0167-8442(99)00046-4Search in Google Scholar

[10] Wang W., Shan Y. Y., Yang K., Study of high strength pipeline steels with different microstructures, Mater Sci Eng A, 502, 2009, 38–44 http://dx.doi.org/10.1016/j.msea.2008.10.04210.1016/j.msea.2008.10.042Search in Google Scholar

[11] Maruschak P. O., Bishchak R. T., Vuherer T., Laws governing the dynamic fracture of two-layer bimetallic composites. Metallurgist, 55, 2011, 444–449 http://dx.doi.org/10.1007/s11015-011-9450-210.1007/s11015-011-9450-2Search in Google Scholar

[12] Kryzhanivs’kyi E. I., Nykyforchyn H. M., Specific features of hydrogen-induced corrosion degradation of steels of gas and oil pipelines and oil storage reservoirs, Mat Sci, 47, 2011, 127–136 http://dx.doi.org/10.1007/s11003-011-9390-910.1007/s11003-011-9390-9Search in Google Scholar

[13] Botvina L. R., Blinov V. M., Tyutin M. R., Bannykh I. O., Blinov E. V., Fracture of high-nitrogen 05Kh20G10N3AMF steel during impact loading. Russian Metallurgy (Metally) 2012, 2012, 239–247 10.1134/S0036029512030044Search in Google Scholar

[14] Makarov P. V., Localized deformation and fracture of polycrystals at mesolevel, Theor. Appl. Fracture Mech., 33, 2000, 23–30 http://dx.doi.org/10.1016/S0167-8442(99)00048-810.1016/S0167-8442(99)00048-8Search in Google Scholar

[15] Wang J. Q., Atrens A., Cousens D. R., Nockolds C., Bulcock S., Boundary Characterisation of X65 Pipeline Steel Using Analytical Electron Microscopy, J. Mater. Sci., 34, 1999, 1711–1719 http://dx.doi.org/10.1023/A:100453042033810.1023/A:1004530420338Search in Google Scholar

[16] Balokhonov R. R., Makarov P. V., Romanova V. A., Smolin I. Yu., Simulation of crystal plasticity under dynamic loading, Comput Mat Sci, 16, 1999, 355–361 http://dx.doi.org/10.1016/S0927-0256(99)00078-610.1016/S0927-0256(99)00078-6Search in Google Scholar

[17] Torop V. M., Orynyak I. V., The evaluation of structural strength of pipes and pressure vessels with axial cracks. Int J of Pressure Vessels and Piping, 53, 1993, 159–179 http://dx.doi.org/10.1016/0308-0161(93)90109-710.1016/0308-0161(93)90109-7Search in Google Scholar

[18] Maruschak P., Baran D., Gliha V., A multiscale approach to deformation and fracture of heatresistant steel under static and cyclic loading. Medžiagotyra, 19, 2013, 29–33 10.5755/j01.ms.19.1.3821Search in Google Scholar

Published Online: 2014-9-2
Published in Print: 2014-12-1

© 2014 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 16.5.2024 from https://www.degruyter.com/document/doi/10.2478/s13531-013-0178-6/html
Scroll to top button