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1. Introduction

As it is well-known, convergence theorems for sequences of measurable
functions play a very important role in classical measure theory.

Relationships among different types of convergences such as almost
everywhere convergence, almost uniform convergence and convergence in
measure were especially described by the fundamental results contained in
the Egoroff, Lebesgue and Riesz theorems (Precupanu [19]).

In non-additive measure theory, we mention the remarkable contribu-
tions of Wang and Klir [30], Pap [18], Denneberg [1], Li and Ya-
suda [13], Li [9, 10], Li and Li [11], Li et al. [14], Murofushi et
al. [17], Kawabe [6, 7] concerning Egoroff’s theorem, the papers of Li [9],
Song and Li [24] for Lebesgue’s theorem or Sun [25] for Riesz’s theorem
and Jiang et al. [5] or Takahashi et al. [27], Ha et al. [3], Liu [15],
Li et al. [12], Li [9], Li et al. [14], Li et al. [8], concerning different
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convergence theorems of sequences of measurable functions. We also remark
the papers of Murofushi [16], Ren et al. [23], Sun [26], Zhang [28],
Wang [29] and many others.

Recently, motivated by the applied problems coming from mathematic
economics, artificial intelligence, biomathematics and other important fields,
some of the above mentioned results were generalized in the set-valued case.
In this sense, we remark the paper of Liu [15], in which are given set-
valued versions of Egoroff theorem and of Lebesgue theorem for sequences
of set-valued measurable functions, our papers [20-22] concerning Egoroff
and Lusin theorems for set-valued fuzzy multimeasures, or the paper of Wu
and Liu [31], which contains a set-valued version of Riesz theorem.

The aim of this paper is to continue for set-valued non-additive mono-
tonic set functions, the investigation concerning different types of con-
vergences and pseudo-convergences of sequences of measurable functions.
Thus, we give several set-valued versions of Lebesgue theorem and a pseudo-
version of Riesz’s theorem, in which intercomes the property (PS) intro-
duced by us in the set-valued case.

2. Terminology and notations

Let T be an abstract space, A a σ-algebra of subsets of T , X a real normed
space with the origin 0, P0(X) the family of all nonvoid subsets of X,Pf (X)
the family of closed, nonvoid sets of X, Pbf (X) the family of all bounded,
closed, nonvoid sets of X, Pbfc(X) the family of all bounded, closed, convex
nonvoid sets of X and h the Hausdorff pseudometric on Pf (X) given by:

h(M,N) = max{e(M,N), e(N,M)}, for every M,N ∈ Pf (X),

where e(M,N) = supx∈M d(x,N) is the excess of M over N .

It is known that e(M,N) = 0 if and only ifM ⊂ N. Therefore, e(M,N) =
h(M,N), for everyM,N ∈ Pf (X), withN ⊂ M.Also, e(M,N) ≤ e(M,P )+
e(P,N), for every M,N,P ∈ Pf (X). On Pbf (X), h becomes a metric [4].

We denote |M | = h(M, {0}), for every M ∈ Pf (X). We also denote A∩
A = {E ⊂ A,E ∈ A}, where A is a fixed set in A.

Throughout the paper we shall use the following notions in the set valued
case:

Definition 2.1 ([2], [20]-[22]). A set multifunction µ : A → Pf (X) is
said to be:
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i) a fuzzy multimeasure if µ is monotone with respect to the inclusion
of sets (i.e., µ(A) ⊆ µ(B), for every A,B ∈ A, with A ⊆ B) and
µ(∅) = {0}.

ii) continuous from below if limn→∞ h(µ(An), µ(A)) = 0, for every in-
creasing sequence of sets (An)n ⊂ A, with An ↗ A.

iii) continuous from above if limn→∞ h(µ(An), µ(A)) = 0, for every de-
creasing sequence of sets (An)n ⊂ A, with An ↘ A.

iv) a fuzzy multimeasure in the sense of Sugeno, for short (S)-fuzzy multi-
measure, if µ is a fuzzy multimeasure which is continuous from below
and continuous from above.

v) order continuous if limn→∞ |µ(An)| = 0, for every sequence of sets
(An)n ⊂ A, with An ↘ ∅.

vi) strongly order continuous if limn→∞ |µ(An)| = 0, for every sequence
of sets (An)n ⊂ A, with An ↘ A and µ(A) = {0}.

vii) pseudo-order continuous if for every B ∈ A and every sequence of
sets (An)n ⊂ A with An ⊂ B, n ∈ N and An ↘ A, we have
limn→∞ |µ(An)| = 0 and µ(B\A) = µ(B).

viii) null-additive if µ(A ∪ B) = µ(B), for every disjoint A,B ∈ A, with
µ(A) = {0}.

ix) pseudo-null-additive if µ(B ∪ C) = µ(C), whenever A ∈ A, B ∈ A ∩
A, C ∈ A ∩ A and µ(A\B) = µ(A).

x) a) autocontinuous from below (autocontinuous from above, respectively)
if for every A ∈ A and every (Bn)n ⊂ A, with limn→∞ |µ(Bn)| = 0, we
have limn→∞ h(µ(A\Bn), µ(A)) = 0 (limn→∞ h(µ(A∪Bn), µ(A)) = 0,
respectively).

b) autocontinuous if it is autocontinuous from above and autocon-
tinuous from below.

xi) a) pseudo-autocontinuous from above (pseudo-autocontinuous from be-
low, respectively) if for every A∈A and every (Bn)n⊂A, with
limn→∞ h(µ(Bn∩A), µ(A))=0, we have limn→∞ h((µ(A\Bn)∪C), µ(C))
= 0 (respectively, limn→∞ h((µ(Bn ∩ C), µ(C)) = 0), for every C ∈
A ∩ A.
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b) pseudo-autocontinuous if it is pseudo-autocontinuous from above
and pseudo-autocontinuous from below.

Definition 2.2. We say that a set multifunction µ : A → Pf (X) fulfils:

i) [20, 22] property (S) if for any sequence of sets (An)n ⊂ A, with
limn→∞ |µ(An)| = 0, there exists a subsequence (Ank

)k of (An)n such
that µ(limkAnk

) = {0}, where limnEn = lim supnEn =
∩∞

n=1

∪∞
k=nEk.

ii) [22] property (PS) if for any A ∈ A and any sequence of sets (An)n ⊂
A ∩ A, with limn→∞ h(µ(An), µ(A)) = 0, there exists a subsequence
(Ank

)k of (An)n such that h(µ(limkAnk
), µ(A)) = 0, where limnEn =

lim infnEn =
∪∞

n=1

∩∞
k=nEk.

Unless stated otherwise, all over the paper we assume that µ : A → Pf (X)
is a fuzzy (i.e., monotone) multimeasure. By M we denote the class of all
A-measurable real-valued functions on (T,A, µ), the space with the fuzzy
multimeasure µ.

Definition 2.3. We consider arbitrary {fn} ⊂ M and f ∈ M. We say
that:

i) [22] {fn} converges µ-almost everywhere (respectively, pseudo-µ-al-
most everywhere) to f on A, and denote it by fn

a.e.−→
A

f (respectively,

fn
p.a.e.−→
A

f) if there exists a subset B ∈ A ∩ A such that µ(B) = {0}
(respectively, µ(A\B) = µ(A)) and {fn} is pointwise convergent to f
on A\B.

ii) [22] {fn} converges in µ-measure (respectively, pseudo in µ-measure)

to f on A, and denote it by fn
µ−→
A

f (respectively, fn
p.µ−→
A

f) if for

every ε > 0, limn→∞ |µ(An(ε)| = 0, where An(ε) = {t ∈ A; |fn(t) −
f(t)| ≥ ε} (respectively, limn→∞ h(µ(A\An(ε)), µ(A)) = 0).

iii) [20, 22] {fn} converges µ-almost uniformly (respectively, µ-pseudo-
almost uniformly) to f on A and denote it by fn

a.u.−→
A

f (respectively,

fn
p.a.u.−→
A

f) if there exists a decreasing sequence {Ak}k∈N ⊂ A∩A such

that limk→∞ |µ(Ak)| = 0 (respectively, limk→∞ h(µ(A\Ak), µ(A)) =
0) and for every fixed k ∈ N, {fn} uniformly converges to f on A\Ak

(fn
u−→

A\Ak

f).
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Remark 2.4 ([22]). The following statements are equivalent:

a) µ is pseudo-null-additive;

b) µ(B ∩ C) = µ(C), whenever A ∈ A, B ∈ A ∩ A, C ∈ A ∩ A and
µ(B) = µ(A);

c) µ((A\B) ∪ C) = µ(C), whenever A ∈ A, B ∈ A ∩ A, C ∈ A ∩ A and
µ(B) = µ(A).

3. Set-valued versions of Lebesgue theorems

In this section, we present some set-valued versions of Lebesgue theorem.

Firstly, using some ideas from [9] and [24], we establish several set-valued
versions of Lebesgue theorem. In this way, we give some characterizations
for several important asymptotic structural properties of monotone set mul-
tifunctions.

Theorem 3.1 (Lebesgue type). Let be A ∈ A,f ∈ M and {fn} ⊂ M.
Then:

i) fn
a.e.−→
A

f ⇒ fn
µ−→
A

f if and only if µ is strongly order continuous;

ii) fn
p.a.e.−→
A

f ⇒ fn
p.µ−→
A

f if and only if µ is continuous from below;

iii) fn
p.a.e.−→
A

f ⇒ fn
µ−→
A

f if and only if µ is pseudo-order continuous;

iv) If µ : A → Pbf (X), then fn
a.e.−→
A

f ⇒ fn
p.µ−→
A

f if and only if µ is

null-additive and continuous from below.

Proof. Take arbitrary A ∈ A and f ∈ M, {fn} ⊂ M. We observe
that the set C of points t ∈ A at which {fn} is pointwise convergent to
f can be written as C =

∩∞
m=1

∪∞
n=1

∩∞
i=n(A\Bi(

1
m)), where Bi(

1
m) =

{t ∈ A; |fi(t) − f(t)| ≥ 1
m}, for every m, i ∈ N∗. For every m,n ∈ N∗,

we denote A
(m)
n =

∪∞
i=nBi(

1
m) and A(m) =

∩∞
n=1A

(m)
n . Then A\A(m) =∪∞

n=1(A\A
(m)
n ) =

∪∞
n=1

∩∞
i=n(A\Bi(

1
m)) and C =

∩∞
m=1

∪∞
n=1(A\A

(m)
n ) =∩∞

m=1(A\A(m)). We observe that for every fixed m ∈ N∗, A
(m)
n ↘

n→∞
A(m)
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and so, A\A(m)
n ↗

n→∞
A\A(m). If there exists a set B ∈ A ∩ A and {fn} is

pointwise convergent to f on A\B, then for every m ∈ N∗,

(1) A\B ⊂ C ⊂
∞∪
n=1

∞∩
i=n

(
A\Bi

(
1

m

))
= A\A(m) ⊂ A.

We also observe that

(2) Bn

(
1

m

)
⊂ A(m)

n , for every m,n ∈ N∗.

i) Necessity. To prove that µ is strongly order continuous, let us consider
(An)n∈N ⊂ A ∩ A, with An ↘ Ã and µ(Ã) = {0}. Then Ã ⊂ An ⊂ A, for
every n ∈ N. We shall prove that limn→∞ |µ(An)| = 0. For every n ∈ N, we
define the following functions:

fn(t) =

{
0, if t ∈ An

1, if t ∈ A\An

and

f(t) =

{
0, if t ∈ Ã

1, if t ∈ A\Ã.

We observe that f ∈ M, {fn} ⊂ M and {fn} is pointwise convergent

to 1 on A\Ã, so fn
a.e.−→
A

1. By virtue of hypothesis, fn
µ−→
A

f , whence

limn→∞ |µ({t ∈ A; |fn(t)−1| ≥ 1
2})| = 0, which implies that limn→∞ |µ(An)|

= 0. This means that µ is strongly order continuous.

Sufficiency. Suppose µ is strongly order continuous and fn
a.e.−→
A

f . Then

there exists B ∈ A ∩ A such µ(B) = {0} and {fn} is pointwise convergent
to f on A\B. By (1), for every m ∈ N∗, A(m) ⊂ B and so, because µ is a
fuzzy multimeasure, we get that µ(A(m)) = {0}.

Since for every fixed m ∈ N∗, A
(m)
n ↘

n→∞
A(m) and µ is strongly order

continuous, then for every m ∈ N∗, limn→∞ |µ(A(m)
n )| = 0. By (2), we get

that for every m ∈ N∗, limn→∞ |µ(Bn(
1
m))| = 0, that is, fn

µ−→
A

f.

ii) Necessity : To prove that µ is continuous from below, let us consider
(An)n∈N ⊂ A ∩ A, with An ↗ Ã. Then An ⊂ Ã ⊂ A, for every n ∈ N.
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We shall prove that lim
n→∞

h(µ(An), µ(Ã)) = 0. For every n ∈ N, we define

f, {fn} as follows:

fn(t) =

{
0, if t ∈ A\An

1, if t ∈ An

and

f(t) =

{
0, if t ∈ A\Ã
1, if t ∈ Ã.

We observe that f ∈ M, {fn} ⊂ M and {fn} is pointwise convergent to f

on Ã, so fn
p.a.e.−→
Ã

f .

Consequently, fn
p.µ−→
Ã

f , whence limn→∞ h(µ(Ã\{t ∈ Ã; |fn(t)− f(t)| ≥
1
2}), µ(Ã)) = 0 and so, limn→∞ h(µ(Ã\(A\An)), µ(Ã)) = 0, which implies

that limn→∞ h(µ(An), µ(Ã)) = 0, that is, µ is continuous from below.

Sufficiency : Suppose that µ is continuous from below and fn
p.a.e.−→
A

f .

Then there exists B ∈ A ∩ A such that µ(A\B) = µ(A) and {fn} is point-
wise convergent to f on A\B. Because µ(A\B) = µ(A) and µ is a fuzzy
multimeasure, by (1) we have

(3) µ(A\B) = µ(C) = µ(
∞∪
n=1

∞∩
i=n

(A\Bi(
1

m
))) = µ(A) = µ(A\A(m)).

By (2), we get µ(A\A(m)
n ) ⊂ µ(A\Bn(

1
m)) ⊂ µ(A). Since µ is continuous

from below, then for every m ∈ N, limn→∞ h(µ(A\A(m)
n ), µ(A\A(m))) = 0,

that is, by (3), limn→∞ h(µ(A\A(m)
n ), µ(A)) = 0.

Using Lemma 2.1 from [22], we have limn→∞ h(µ(A\Bn(
1
m), µ(A)) = 0,

which says that fn
p.µ−→
A

f .

iii) Necessity. To prove that µ is pseudo order continuous, let us consider
arbitrary (An)n ⊂ A and B ∈ A, with An ⊂ B, for every n, An ↘ Ã ∈ A
and µ(B\Ã) = µ(B). We shall prove that limn→∞ |µ(An)| = 0. For every
n ∈ N, we define f, {fn} as follows:

fn(t) =

{
0, if t ∈ An

1, if t ∈ B\An
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and

f(t) =

{
0, if t ∈ Ã

1, if t ∈ B\Ã.

We observe that f ∈ M, {fn} ⊂ M and {fn} is pointwise convergent to 1

on B\Ã, so fn
p.a.e.−→
B

1.

Consequently, fn
µ−→
B

1, whence limn→∞ |µ({t ∈ B; |fn(t)− 1| ≥ 1
2})| =

0, which implies limn→∞ |µ(An)| = 0, that is, µ is pseudo-order continuous.

Sufficiency. Suppose µ is pseudo-order continuous and fn
p.a.e.−→
A

f . There

exists B ∈ A∩A such that µ(A\B) = µ(A) and {fn} is pointwise convergent
to f on A\B. By (1), we have for every m ∈ N∗, µ(A) = µ(A\A(m)).

Consequently, because for every fixed m ∈ N∗, A
(m)
n ↘

n→∞
A(m) and µ is

pseudo-order continuous, then limn→∞ |µ(A(m)
n )| = 0. By (2), we get that

for every m ∈ N∗, limn→∞ |µ(Bn(
1
m))| = 0, that is, fn

µ−→
A

f.

iv) Necessity : First, we prove that µ is continuous from below.
Let us consider the sequence {fn} from ii), which is pointwise convergent

to f on Ã, so fn
a.e.−→
Ã

f . By virtue of the hypothesis, fn
p.µ−→
Ã

f , whence, as

in ii), µ is continuous from below.
It only remains to prove that µ is null-additive. For this, take arbitrary

disjoint B1, B2 ∈ A, with µ(B1) = {0}. For every n ∈ N, we define

fn(t) =

{
0, if t ∈ B1

1, if t ∈ B2

.

Then fn
a.e.−→

B1∪B2

1, whence fn
p.µ−→

B1∪B2

1, so, h(µ((B1∪B2)\{t ∈ B1∪B2; |fn(t)−

1| ≥ 1
2})), µ(B1∪B2)) = 0, which implies h(µ(B2), µ(B1∪B2)) = 0. Because

µ : A → Pbf (X), we finally have µ(B1 ∪B2) = µ(B2), so, µ is null-additive.
Sufficiency : Suppose µ is null-additive and continuous from below and

fn
a.e.−→
A

f . Since µ is null-additive, we have by Proposition 3.1 from [22]

that fn
p.a.e.−→
A

f and by ii) we obtain that fn
p.µ−→
A

f . �

4. Set-valued versions of Riesz theorem

In this section, we present some characterizations of pseudo-autocontinuity
and we establish a pseudo-version of Riesz theorem.
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Firstly, we mention the following generalization of the set-valued version
of Riesz’s theorem [31] and some of its consequences.

Theorem 4.1 (Riesz type theorem). µ has property (S) if and only if

for every A ∈ A and every f ∈ M, {fn} ⊂ M, with fn
µ−→
A

f , there exists

a subsequence {fnk
}k of {fn} so that fnk

a.e.−→
A

f.

By Theorem 3.1 i) and Theorem 4.1, we get:

Corollary 4.2. Let be µ a strongly order continuous fuzzy multimeasure
which fulfils property (S) and A ∈ A, f ∈ M, {fn} ⊂ M. Then:

i) fn
a.e.−→
A

f implies fn
µ−→
A

f .

ii) If fn
µ−→
A

f , there is a subsequence {fnk
}k of {fn} so that fnk

a.e.−→
A

f.

Since any continuous from above fuzzy multimeasure is strongly order
continuous, by [20] (Corollary 4.7), and by the above considerations we get:

Remark 4.3. Let be arbitrary A ∈ A, f ∈ M and {fn} ⊂ M and
suppose µ is continuous from above, with property (S). Then:

i) fn
a.e.−→
A

f ⇔ fn
a.u.−→
A

f ;

ii) If fn
a.e.−→
A

f , then fn
µ−→
A

f ;

iii) If fn
µ−→
A

f, there exists a subsequence {fnk
}k of {fn} such that

fnk

a.e.−→
A

f.

Using some ideas from [25, 26], we also prove the following characteri-
zations for pseudo-autocontinuity:

Theorem 4.4. If µ : A → Pbf (X) is a (S)-fuzzy multimeasure, then
the following statements are equivalent:

i) µ is pseudo-autocontinuous;

ii) µ is pseudo-autocontinuous from below;

iii) µ is pseudo-autocontinuous from above;
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iv) µ is pseudo-null-additive and fulfils property (PS);

v) µ is pseudo-null-additive and for every A ∈ A and every (An)n ⊂
A ∩ A, with limn→∞ h(µ(An), µ(A)) = 0, there exists a subsequence
(Ank

)k so that µ(A\limkAnk
) = {0}.

Proof. In order to prove that i) ⇔ ii) ⇔ iii), it is sufficient to prove
that ii) ⇔ iii):

iii) ⇒ ii): Let us assume that µ is pseudo-autocontinuous from above,
but µ is not pseudo-autocontinuous from below. Then there exist ε0 > 0,
A ∈ A, C ∈ A ∩ A, (Bn) ⊂ A ∩ A so that limn→∞ h(µ(Bn), µ(A)) = 0, but
h(µ(Bn∩C), µ(C)) = e(µ(C), µ(Bn∩C)) > ε0, for every n ∈ N. Let n1 = 1.
Since µ is pseudo-autocontinuous from above, then limn→∞ h(µ((Bn1∩C)∪
(A\Bn)), µ(Bn1 ∩ C)) = 0. Since for every n ∈ N,

ε0 < e(µ(C), µ(Bn1 ∩ C)) ≤ e(µ(C), µ((Bn1 ∩ C) ∪ (A\Bn)))

+ e(µ((Bn1 ∩ C) ∪ (A\Bn)), µ(Bn1 ∩ C)),

then limn→∞ e(µ(C), µ((Bn1 ∩ C) ∪ (A\Bn))) > ε0, so, there exists n2 ∈
N such that n2 > n1 and e(µ(C), µ((Bn1 ∩ C) ∪ (A\Bn2)) > ε0. Ta-
king again into account that µ is pseudo-autocontinuous from above, then
limn→∞ h(µ((Bn2 ∩C)∪ (A\Bn)), µ(Bn2 ∩C)) = 0 and limn→∞ h(µ((Bn1 ∩
C) ∪ (A\Bn2) ∪ (A\Bn)), µ((Bn1 ∩C) ∪ (A\Bn2))) = 0, so, as before, there
exists n3 ∈ N such that n3 > n2, e(µ(C), µ((Bn2 ∩C)∪ (A\Bn3))) > ε0 and
e(µ(C), µ((Bn1 ∩ C) ∪ (A\Bn2) ∪ (A\Bn3))) > ε0.

Analogously, there exists n4 ∈ N such that n4 > n3, e(µ(C), µ((Bn3 ∩
C)∪ (A\Bn4))) > ε0, e(µ(C), µ((Bn2 ∩C)∪ (A\Bn3)∪ (A\Bn4))) > ε0 and
e(µ(C), µ((Bn1 ∩ C) ∪ (A\Bn2) ∪ (A\Bn3) ∪ (A\Bn4))) > ε0. Recurrently,
there exists (Bnk

)k ⊂ (Bn) so that for every k ∈ N,

e(µ(C), µ((Bnk
∩ C) ∪ (A\

∞∩
t=k+1

Bnt))) > ε0.

Denote Dk = Bnk
∪ (A\

∩∞
t=k+1Bnt), for every k ∈ N.

We observe that lim infk Dk = lim supk Dk = A and, for every k ∈ N,
we have µ(C ∩ (

∩∞
t=k Dt)) ⊂ µ((Bnk

∩ C) ∪ (A\
∩∞

t=k+1Bnt)), so,

h(µ(C ∩ (

∞∩
t=k

Dt)), µ(C)) = e(µ(C), µ(C ∩ (

∞∩
t=k

Dt)))
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= e(µ(C), µ(C ∩ (
∞∩
t=k

Dt)))

+ e(µ(C ∩ (
∞∩
t=k

Dt)), µ((Bnk
∩ C) ∪ (A\

∞∩
t=k+1

Bnt)))

≥ e(µ(C), µ((Bnk
∩ C) ∪ (A\

∞∩
t=k+1

Bnt))) > ε0.

Since C ∩ (
∩∞

t=k Dt) ↗
k→∞

C ∩ A = C and µ is continuous from below,

then limk→∞ h(µ(C ∩ (
∩∞

t=k Dt)), µ(C)) = 0, whence 0 ≥ ε0, which is a
contradiction.

ii) ⇒ iv) a) Firstly, we prove that µ is pseudo-null-additive.
Indeed, for every A ∈ A, B ∈ A ∩ A, C ∈ A ∩ A, with µ(A\B) = µ(A),

applying the pseudo-autocontinuity from below of µ for Bn = A\B, for
every n ∈ N, we get that h(µ((A\B) ∩ C), µ(C)) = 0. Because µ : A →
Pbf (X), then µ(C) = µ(C\B). Replacing C by C ∪B, we get µ(C ∪B) =
µ((C ∪B)\B) = µ(C\B) = µ(C), that is, µ is pseudo-null-additive.

b) Now, we prove that µ has PS. Suppose A ∈ A, (An) ⊂ A ∩ A
are so that limn→∞ h(µ(An), µ(A)) = 0 and let be arbitrary ε > 0. Since
µ is pseudo-autocontinuous from below, we get that limn→∞ h(µ(An ∩
C), µ(C)) = 0, for every C ∈ A ∩ A. Since limn→∞ h(µ(An), µ(A)) = 0,
there is n1 ∈ N so that h(µ(An1), µ(A)) <

ε
2 < ε. Because limn→∞ h(µ(An∩

An1), µ(An1)) = 0, there is n2 ∈ N, so that h(µ(An2∩An1), µ(An1)) <
ε
22
, so

h(µ(An2 ∩An1), µ(A)) <
ε
2 + ε

22
< ε. Analogously, also taking into account

that µ is continuous from above, we get that there exists (Ank
)k ⊂ (An) so

that h(µ(
∩∞

k=1Ank
), µ(A)) ≤

∑∞
k=1

ε
2k

= ε.
Consequently, e(µ(A), µ(

∩∞
k=1Ank

)) ≤ ε, whence, for every s ∈ N∗,
e(µ(A), µ(

∩∞
k=sAnk

)) ≤ e(µ(A), µ(
∩∞

k=1Ank
)) ≤ ε.

Since
∩∞

k=sAnk
↗

s→∞

∪∞
s=1

∩∞
k=sAnk

and µ is continuous from below,

then e(µ(A), µ(
∪∞

s=1

∩∞
k=sAnk

)) = 0. Consequently, because µ : A →
Pbf (X), we have µ(A) = µ(

∪∞
s=1

∩∞
k=sAnk

) = µ(lim infk Ank
), that is, µ

has property (PS).
iv) ⇒ ii) Consider arbitrary A ∈ A, (Bn) ⊂ A, C ∈ A ∩ A, so that

limn→∞ h(µ(A∩Bn), µ(A)) = 0. There exists a subsequence (Bnk
)k of (Bn)

so that lim supn h(µ(C ∩Bn), µ(C)) = limk→∞ h(µ(C ∩Bnk
), µ(C)).

Applying property (PS) for A ∩ Bnk
and since µ : A → Pbf (X), there

exists (Bnks
∩A)s so that µ(lim infs(Bnks

∩A)) = µ(A).
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Consequently, by the pseudo-null-additivity of µ, according to Remark
2.4, we have µ((lim infs(Bnks

∩ A) ∩ C))) = µ(A ∩ C), that is, equiva-
lently, µ(lim infs(Bnks

∩C)) = µ(C). On the other hand, because
∩∞

t=sC ∩
Bnkt

↗
s→∞

lim infs(Bnks
∩ C) and µ is continuous from below, we have

0 ≤ lim sup
n

h(µ(C ∩Bn), µ(C)) = lim
s→∞

h(µ(C ∩Bnks
), µ(C))

= lim
s→∞

e(µ(C), µ(C ∩Bnks
)) ≤ lim

s→∞
[e(µ(C), µ(

∞∩
t=s

(C ∩Bnkt
)))

+ e(µ(

∞∩
t=s

(C ∩Bnkt
)), µ(C ∩Bnks

))] = lim
s→∞

e(µ(C), µ(

∞∩
t=s

(C ∩Bnkt
)))

≤ lim
s→∞

[e(µ(C), µ(
∞∪
s=1

∞∩
t=s

(C ∩Bnkt
)))

+ e(µ(
∞∪
s=1

∞∩
t=s

(C ∩Bnkt
)), µ(

∞∩
t=s

C ∩Bnkt
))]

= e(µ(C), µ(lim inf
s

(Bnks
∩ C))) = 0,

so lim supn h(µ(C ∩Bn), µ(C)) = 0, whence limn→∞ h(µ(C ∩Bn), µ(C)) =
0, that is, µ is pseudo-autocontinuous from below.

iv)⇒ v) Consider arbitraryA ∈ A, (An)n ⊂ A∩A, with limn→∞ h(µ(An),
µ(A)) = 0. Since µ : A → Pbf (X) has (PS), there exists a subsequence
(Ank

)k ⊂ (An) so that µ(A) = µ(limkAnk
) = µ(A\(A\limkAnk

)).

Since µ is pseudo-null-additive, then µ((A\limkAnk
) ∪ C)) = µ(C), for

every C ∈ A ∩ A. Particularly, for C = ∅, we get µ(A\limkAnk
) = {0}.

v)⇒ iv) Consider arbitraryA ∈ A, (An)n ⊂ A∩A, with limn→∞ h(µ(An),
µ(A)) = 0.

By the hypothesis, there exists a subsequence (Ank
)k ⊂ (An) so that

µ(A\limkAnk
) = {0}. Since µ is pseudo-null-additive, then µ((A\limkAnk

)∪
C)) = µ(C), for every C ∈ A ∩ A. Particularly, for C = limkAnk

, we get
µ(A) = µ(limkAnk

).

It only remains to prove that v) ⇒ iii). For this, one can use the same
method as in the implication iv) ⇒ ii), and Remark 2.4. �

Now, we are in position to give the following pseudo-version of Riesz’s
theorem:
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Theorem 4.5 (a pseudo-version of Riesz’s theorem). Let be µ a fuzzy

multimeasure, A ∈ A, f ∈ M and {fn} ⊂ M so that fn
p.µ−→
A

f. Then there

exists a subsequence {fnk
}k of {fn} such that fnk

p.a.e.−→
A

f if and only if µ

has property (PS).

Proof. Necesssity. Let be (An)n ⊂ A such that limn→∞ h(µ(A\An),
µ(A)) = 0 and let us define for every n ∈ N,

fn(x) =

{
1, if x ∈ An

0, if x ∈ A\An.
.

We see that {fn} ⊂ M and fn
p.µ−→
A

0. Then there exists a subsequence

{fnk
}k of {fn} such that fnk

p.a.e.−→
A

0, whence µ(A) = µ(A\
∩∞

m=1

∪∞
k=m{x ∈

A; |fnk
(x)− 0| ≥ ε}), for every ε > 0.

Particularly, for ε = 1
2 , we obtain µ(A) = µ(A\

∩∞
m=1

∪∞
k=mAnk

), or,
equivalently, µ(A) = µ(

∪∞
m=1

∩∞
k=m(A\Ank

)), which says that µ has prop-
erty (PS).

Sufficiency. Suppose that µ has property (PS) and fn
p.µ−→
A

f. Then we

can find {nk}k such that limn→∞ h(µ(A), µ(A\Bk)) = 0, where Bk = {x ∈
A; |fnk

(x)− f(x)| ≥ 1
k}, for k ∈ N∗.

Since µ has property (PS), there exists a subsequence (Bkl)k of (Bk)k
such that µ(A) = µ(A\

∩∞
m=1

∪∞
l=mBkl). It is easy to see that {fnkm

}m
converges to f on the set A\

∩∞
m=1

∪∞
l=mBkl , and, consequently, fnkm

p.a.e.−→
A

f. �
From Theorem 4.5 and by Theorem 4.3 from [22], we obtain:

Corollary 4.6. If µ is a fuzzy multimeasure which satisfies properties
(PS) and (PE), A ∈ A, f ∈ M and {fn} ⊂ M are so that fn

p.µ−→
A

f, then

there exists a subsequence {fnk
}k of {fn} such that fnk

p.a.u.−→
A

f .

5. Concluding remarks

In this paper, we investigated for set-valued non-additive monotonic set
functions, some relationships among the main types of convergences of se-
quences of measurable functions.
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In this way, we insisted on different types of pseudo-convergences of se-
quences of measurable functions, such as, pseudo-almost everywhere (p.a.e.),
pseudo-almost uniform (p.a.u) convergences and pseudo-convergence in mea-
sure (p.µ) and on the relationships among them, or with almost everywhere,
almost uniform convergences and convergence in measure.

Thus, we obtained several set-valued versions of Lebesgue theorem and
a pseudo-version of Riesz’s theorem.
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