Skip to main content
Log in

Flow and transport in channels with submerged vegetation

  • Research Article
  • Published:
Acta Geophysica Aims and scope Submit manuscript

Abstract

This paper reviews recent work on flow and transport in channels with submerged vegetation, including discussions of turbulence structure, mean velocity profiles, and dispersion. For submerged canopies of sufficient density, the dominant characteristic of the flow is the generation of a shear-layer at the top of the canopy. The shear-layer generates coherent vortices by Kelvin-Helmholtz (KH) instability. These vortices control the vertical exchange of mass and momentum, influencing both the mean velocity profile, as well as the turbulent diffusivity. For flexible canopies, the passage of the KH vortices generates a progressive wave along the canopy interface, termed monami. The KH vortices formed at the top of the canopy penetrate a distance δ e into the canopy. This penetration scale segregates the canopy into an upper layer of rapid transport and a lower layer of slow transport. Flushing of the upper canopy is enhanced by the energetic shear-scale vortices. In the lower layer turbulence is limited to length-scales set by the stem geometry, and the resulting transport is significantly slower than that of the upper layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abdelrhman, M. (2003), Effect of eelgrass Zostera marina canopies on flow and transport, Mar. Ecol. Prog. Ser. 248, 67–83.

    Article  Google Scholar 

  • Ackerman, J.D., and A. Okubo (1993), Reduced mixing in a marine macrophyte canopy, Functional Ecol. 7, 305–309.

    Article  Google Scholar 

  • Beavers, G., and D. Joseph (1967), Boundary conditions at a naturally permeable wall, J. Fluid Mechanics 30, 197–207.

    Article  Google Scholar 

  • Brown, G., and A. Roshko (1974), On density effects and large structure in turbulent mixing layers, J. Fluid Mechanics 64, 775–816.

    Article  Google Scholar 

  • Businger, J. (1975), Aerodynmiacs of vegetated surfaces. In: D.A. Devries and N.H. Afgan (eds.), Heat and Mass Transfer in the Biosphere. Part I. Transfer Processes in the Plant Environment, Scripta, Washington, DC.

    Google Scholar 

  • Carollo, F., V. Ferro, and D. Termini (2002), Flow velocity measurements in vegetated channels, J. Hydraul. Eng. ASCE 128, 7, DOI: 10.1061/0733-9429.

  • Chambers, P., and E. Prepas (1994), Nutrient dynamics in riverbeds: the impact of sewage effluent and aquatic macrophytes, Water Research 28, 453–464.

    Article  Google Scholar 

  • Chandler, M., P. Colarusso, and R. Buchsbaum (1996), A study of eelgrass beds in Boston Harbor and northern Massachusetts bays, Office of Res. and Devel., US EPA, Narragansett, RI.

    Google Scholar 

  • Chikwendu, S., and G. Ojiakor (1985), Slow-zone model for longitudinal dispersion in two-dimensional shear flows, J. Fluid Mechanics 152, 15–38.

    Article  Google Scholar 

  • Ciraolo, G., G. Ferreri, and G. LaLoggia (2006), Flow resistance of Posidonia Oceanica in shallow water. J. Hydraul. Res. 44, 2, 189–202.

    Google Scholar 

  • Day, T. (1975), Longitudinal dispersion in natural channels, Water Resour. Res. 11, 6, 909–918.

    Article  Google Scholar 

  • Dimotakis, P., F. Debussy, and M. Koochesfahani (1981), Particle streak velocity field measurements in a two-dimensional mixing layer, Phys. Fluids 24, 6, 95–999.

    Article  Google Scholar 

  • Dunn, C., F. Lopez, and M. Garcia (1996), Mean flow and turbulence in a laboratory channel with simulated vegetation, Hydraulic Eng. Ser. 51, University of Illinois, Urbana, IL.

    Google Scholar 

  • Dwyer, M., E. Patton, and R. Shaw (1997), Turbulent kinetic energy budgets from a large-eddy simulation of airflow above and within a forest canopy, Bound.-Layer Meteor. 84, 23–43.

    Article  Google Scholar 

  • Finnigan, J. (1979), Turbulence in waving wheat: I. Mean statistics and honami, Bound.-Layer Meteor. 16, 181–211.

    Article  Google Scholar 

  • Finnigan, J. (2000), Turbulence in plant canopies, Ann. Rev. Fluid Mech. 32, 519–571.

    Article  Google Scholar 

  • Fitzmaurice, L., R. Shaw, K.U. Paw, and E. Patton (2004), Three-dimensional scalar microfront systems in a large-eddy simulation of vegetation canopy flow, Bound.-Layer Meteor. 112, 107–127.

    Article  Google Scholar 

  • Folkard, A. (2005), Hydrodynamics of model Posidonia oceanica patches in shallow water, Limnol. Oceanogr. 50, 5, 1592–1600.

    Google Scholar 

  • Fonseca, M.S., and W.J. Kenworthy (1987), Effects of current on photosynthesis and distribution of seagrasses, Aquat. Bot. 27, 59–78.

    Article  Google Scholar 

  • Furukawa, K., E. Wolanski, and H. Mueller (1997), Currents and sediment transport in mangrove forests, Estuarine, Coastal and Shelf Science 44, 301–310.

    Article  Google Scholar 

  • Ghisalberti, M. (2000), Mixing layers and coherent structures in vegetated aquatic flows, Massachusetts Instititute of Technology, Cambridge, MA, MS Thesis.

    Google Scholar 

  • Ghisalberti, M. (2005), Momentum and scalar transport in vegetated shear flows, Massachusetts Institute of Technology, Cambridge, MA, PhD Thesis.

    Google Scholar 

  • Ghisalberti, M. (2006), Vortex dynamics in obstructed flows. In: G.N. Ivey (ed.) Proc. Sixth I.S.S.F, University of Western Australia, Perth, Australia, 342–347.

  • Ghisalberti, M., and H. Nepf (2002), Mixing layers and coherent structures in vegetated aquatic flow, J. Geophys. Res. 107, C2, DOI: 10.1029/2001JC000871.

    Article  Google Scholar 

  • Ghisalberti, M., and H. Nepf (2005), Mass transfer in vegetated shear flows, Environ. Fluid Mech. 5, 6, 527–551, DOI: 10.1007/s10652-005-0419-1.

    Article  Google Scholar 

  • Ghisalberti, M., and H. Nepf (2006), The structure of the shear layer over rigid and flexible canopies, Environ. Fluid Mech. 6, 3, 277–301, DOI: 10.1007/s10652-006-0002-4

    Article  Google Scholar 

  • Grimond, C., and T. Oke (1999), Aerodynamic properties of urban areas derived from analysis of surface form, J. Appl. Meteorol. 38, 1262–1292.

    Article  Google Scholar 

  • Grizzle, R., F. Short, C. Newell, H. Hoven, and L. Kindblom (1996), Hydrodynamically induced synchronous waving of seagrasses: “monami” and its possible effects on larval mussel settlement, J. Exp. Mar. Biol. Ecol. 206, 165–177.

    Article  Google Scholar 

  • Harvey, J., J. Saiers, and J. Newlin (2005), Solute transport and storage mechanisms in wetlands of the Everglades, South Florida. Water Resour. Res 41, W05009, DOI: 10.1029/2004WR003507.

    Article  Google Scholar 

  • Ho, C-M., Y. Zohar, J. Foss, and J. Buell (1991), Phase decorrelation of coherent structures in a free shear layer, J. Fluid Mechanics 230, 319–337.

    Article  Google Scholar 

  • Ikeda, S., and M. Kanazawa (1996), Three-dimensional organized vortices above flexible water plants, J. Hydraul. Eng. 122, 11, 634–640.

    Article  Google Scholar 

  • Kaimal, J., and J. Finnigan (1994), Atmospheric Boundary Layer Flows: Their Structure and Measurement, Oxford University Press, Oxford.

    Google Scholar 

  • Katul, G., P. Wiberg, J. Albertson, and G. Hornberger (2002), A mixing layer theory for flow resistance in shallow streams, Water Resour. Res. 38, 11, 1250, DOI: 10.1029/2001WR000817.

    Article  Google Scholar 

  • Kemp, J., D. Harper, and G. Crosa (2000), The habitat-scale ecohydraulics of rivers, Ecol. Eng. 16, 17–29

    Article  Google Scholar 

  • Knutson, P., R. Brochu, W. Seelig, and M. Inskeep (1982), Wave damping in Spartina alterniflora marshes, Wetlands 2, 87–104.

    Article  Google Scholar 

  • Kouwen, N. (1992), Modern approach to design of grassed channels, J. Irrigation and Drainage Engng. 118, 5, 733–743.

    Article  Google Scholar 

  • Kouwen, N., and T. Unny (1973), Flexible roughness in open channels, J. Hydraul. Div. 99, HY5, 713–728.

    Google Scholar 

  • Leonard, L., and M. Luther (1995), Flow hydrodynamics in tidal marsh canopies, Limnol. Oceanogr. 40, 1474–1484.

    Google Scholar 

  • Leonard, L., and D. Reed (2002), Hydrodynamics and sediment transport through tidal marsh canopies, J. Coastal Res. 36, 459–469.

    Google Scholar 

  • Lightbody, A., and H. Nepf (2006a), Prediction of velocity profiles and longitudinal dispersion in emergent salt marsh vegetation, Limnol. Oceanogr. 51, 1, 218–228.

    Google Scholar 

  • Lightbody, A., and H. Nepf (2006b), Prediction of near-field shear dispersion in an emergent canopy with heterogeneous morphology, Env. Fluid Mech. 6, 5, DOI: 10.1007/s10652-006-9002-7.

    Google Scholar 

  • Lopez, F., and M. Garcia (1998), Open-channel flow through simulated vegetation: suspended sediment transport modeling, Water Resour. Res. 34, 9, 2341–2352.

    Article  Google Scholar 

  • Mars, M., M. Kuruvilla and H. Goen (1999), The role of submergent macrophyte triglochin huegelii in domestic greywater treatment, Ecol. Eng. 12, 57–66.

    Article  Google Scholar 

  • Mazda, Y., E. Wolanski, B. King, A. Sase, D. Ohtsuka, and M. Magi (1997), Drag forces due to vegetation in mangrove swamps, Mangr. Salt Marsh. 1, 193–199.

    Article  Google Scholar 

  • Murphy, E., H. Nepf, and M. Ghisalberti (2007), Longitudinal dispersion in vegetated channels, Water Resour. Res. 43, W05438, DOI: 10.1029/2006WR005229.

    Article  Google Scholar 

  • Nepf, H. (1999), Drag, turbulence, and diffusion in flow through emergent vegetation, Water Resour. Res. 35, 479–489.

    Article  Google Scholar 

  • Nepf, H., and E. Vivoni (2000), Flow structure in depth-limited, vegetated flow, J. Geophys. Res. 105, 28, 547–557.

    Google Scholar 

  • Nepf, H., M. Ghisalberti, B. White, and E. Murphy (2007), Retention time and dispersion associated with submerged aquatic canopies, Water Resour. Res. 43, W04422, DOI: 10.1029/2006WR005362.

    Article  Google Scholar 

  • Nikora, N., and V. Nikora (2007), A viscous drag concept for flow resistance in vegetated channels, Proc. of the 32 nd IAHR Congress, Venice, 1–6 July.

  • Nikora, V., K. Koll, S. McLean, A. Dittrich, and J. Aberle (2002), Zero-plane displacement for rough-bed open-channel flows. Proc. Intern. Conf. on Fluvial Hydraulics, River Flow, Louvain-la-Neuve, Belgium, September 4–6, 2002, 83–92.

  • Nikora, V., K. Koll, I. McEwan, S. McLean, and A. Dittrich (2004), Velocity distribution in the roughness layer of rough-bed flows, J. Hydraul. Eng. 130, 1036–1042, DOI: 10.1061/(ASCE)0733-9429(2004)130:10(1036).

    Article  Google Scholar 

  • Nikora, V., I. McEwan, S. McLean, S. Coleman, D. Pokrajac, and R. Walters (2007), Double-averaging concept for rough-bed open-channel and over-land flows: theoretical background, J. Hydraul. Eng. ASCE 133, 8, 873–883.

    Article  Google Scholar 

  • Panides, E., and R. Chevray (1990), Vortex dynamics in a plane, moderate-Reynolds-number shear layer, J. Fluid Mechanics 214, 411–435.

    Article  Google Scholar 

  • Plate, E., and A. Quraishi (1965), Modeling of velocity distributions inside and above tall crops, J. Appl. Meteorol. 4, 400–408.

    Article  Google Scholar 

  • Poggi, D., A. Porporato, L. Ridolfi, J. Albertson, and G. Katul (2004a), The effect of vegetation density on canopy sub-layer turbulence, Bound.-Layer Meteor. 111, 565–587.

    Article  Google Scholar 

  • Poggi, D., G. Katul, and J. Albertson (2004b), A note on the contribution of dispersive fluxes to momentum transfer within canopies, Bound.-Layer Meteor. 111, 615–621.

    Article  Google Scholar 

  • Poggi, D., G. Katul, and J. Albertson (2004c), Momentum transfer and turbulent kinetic energy budgets within a dense model canopy, Bound.-Layer Meteor. 111, 589–614.

    Article  Google Scholar 

  • Raupach, M. (1992), Drag and drag partition on rough surfaces, Bound.-Layer. Meteor. 60, 375–395.

    Article  Google Scholar 

  • Raupach, M. (1994), Simplified expressions for vegetation roughness length and zero-plane displacement as functions of canopy height and area index, Bound.-Layer Meteor. 71, 211–216.

    Article  Google Scholar 

  • Raupach, M., and R. Shaw (1982), Averaging procedures for flow within vegetation canopies, Bound.-Layer Meteor. 22, 79–90.

    Article  Google Scholar 

  • Raupach, M., and A. Thom (1981), Turbulence in and above plant canopies, Ann. Rev. Fluid Mech. 13, 97–129.

    Article  Google Scholar 

  • Raupach, M., J. Finnigan, and Y. Brunet (1996), Coherent eddies and turbulence in vegetation canopies: The mixing-layer analogy, Bound.-Layer Meteor. 60, 375–395.

    Article  Google Scholar 

  • Sand-Jensen, K. (1998), Influence of submerged macrophytes on sediment composition and near-bed flow in lowland streams, Freshwater. Biol. 39, 663–679, DOI: 10.1046/j.1365-2427.1998.00316.x.

    Article  Google Scholar 

  • Schultz, M., H.-P. Kozerski, T. Pluntke, and K. Rinke (2002), The influence of macrophytes on sedimentation and nutrient retention in the lower River Spree, Water Resour. Res. 37, 569–578.

    Google Scholar 

  • Shaw, R., and I. Seginer (1985), The dissipation of turbulence in plant canopies, 7th Symp. of the Amer. Meteor. Society on Turbulence and Diffusion, Boulder, CO, 200–203.

  • Shields, F.D., and J.R. Rigby (2005), River habitat quality from river velocities measured using acoustic doppler current profiler, Environmental Management, 36, 4, 565–575, DOI: 10.1007/s00267-004-0292-6.

    Article  Google Scholar 

  • Smith, R. (1981), A delay-diffusion description for contaminant dispersion, J. Fluid Mechanics 105, 469–486.

    Article  Google Scholar 

  • Tanino, Y., and H. Nepf (2008a), Laboratory investigation on mean drag in a random array of rigid, emergent cylinders, J. Hydraul. Eng. 134, 1, 34–41, DOI: 10.1061/(ASCE)0733-9429(2008)134:1(34).

    Article  Google Scholar 

  • Tanino, Y., and H. Nepf (2008b), Lateral dispersion in random cylinder arrays at high Reynolds number, J. Fluid Mechanics 600, 339–371.

    Article  Google Scholar 

  • Tennekes, H., and J. Lumley (1972), A First Course in Turbulence, MIT Press, Cambridge.

    Google Scholar 

  • Thom, A. (1971), Momentum absorption by vegetation, Q. J. Roy. Meteorol. Soc. 97, 414–428.

    Article  Google Scholar 

  • Triska, F., R. Kennedy, G. Zellweger, and K. Bencala (1989), Retention and transport of nutrients in a third-order stream, Ecology 7, 1877–1892.

    Article  Google Scholar 

  • Tsujimoto, T. (2000), Fluvial processes in streams with vegetation, J. Hydraul. Res. 37, 789–804.

    Google Scholar 

  • Valentine, E., and I. Wood (1977), Longitudinal dispersion with dead zones, J. Hydraul. Div. ASCE 103, 975–990.

    Google Scholar 

  • Valiela, I., J. Teal, and W. Deuser (1978), The nature of growth forms in the salt marsh grass Spartina alterniflora, American Naturalist 112, 461–470.

    Article  Google Scholar 

  • Vereecken, H., J. Baetens, P. Viaene, F. Mostaert, and P. Meire (2006), Ecological management of aquatic plants: effects in lowland streams, Hydrobiologia 570, 1, 205–210.

    Article  Google Scholar 

  • Vivoni, E. (1998), Turbulence structure of a model eeagrass meadow, Massachusetts Institute of Technology, Cambridge, MS Thesis.

    Google Scholar 

  • Wallace, S., D. Luketina, and R. Cox (1998), Large scale turbulence in seagrass canopies, Paper presented at 13th Australasian Fluid Mechanics Conference, Monash Univ., Melbourne, Victoria, Australia.

    Google Scholar 

  • White, B., and H. Nepf (2003), Scalar transport in random cylinder arrays at moderate Reynolds number, J. Fluid Mechanics 487, 43–79.

    Article  Google Scholar 

  • White, B., and H. Nepf (2008), A vortex-based model of velocity and shear stress in a partially vegetated shallow channel, Water Resour. Res. 44, W01412, DOI: 10.1029/2006WR005651.

    Article  Google Scholar 

  • Wilcock, R., P. Champion, J. Nagels, and G. Crocker (1999), The influence of aquatic macrophytes on the hydraulic and physicochemical properties of a New Zealand lowland stream, Hydrobiologia 416, 1, 203–214.

    Article  Google Scholar 

  • Wilson, J.D. (1988), A second-order closure model for flow through vegetation, Bound.-Layer Meteor. 42, 371–392.

    Article  Google Scholar 

  • Wilson, C., T. Stoesser, P. Bates, and A. Bateman Pinzen (2003), Open channel flow through different forms of submerged flexible vegetation. J. Hydraul. Eng. 129, 847–853, DOI: 10.1061/(ASCE)0733-9429(2003)129:11(847).

    Article  Google Scholar 

  • Winant, C., and F. Browand (1974), Vortex pairing, the mechanism of turbulent mixing-layer growth, at moderate Reynolds number, J. Fluid Mechanics 63, 237–255.

    Article  Google Scholar 

  • Wu, F.-C., H.-W. Shen, and Y.-J. Chou (1999), Variation of roughness coefficients for unsubmerged and submerged vegetation, J. Hydraul. Eng. 125, 9, 934–942.

    Article  Google Scholar 

  • Wygnanski, I., and H. Fiedler (1970), The two-dimensional mixing region. J. Fluid Mechanics 41, 327–361.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heidi Nepf.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nepf, H., Ghisalberti, M. Flow and transport in channels with submerged vegetation. Acta Geophys. 56, 753–777 (2008). https://doi.org/10.2478/s11600-008-0017-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11600-008-0017-y

Key words

Navigation