Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter May 21, 2011

Ferric hydrogensulphate as a recyclable catalyst for the synthesis of fluorescein derivatives

  • Hossein Eshghi EMAIL logo and Narges Mirzaie
From the journal Chemical Papers

Abstract

Polycondensation reactions of phenols with phthalic anhydride were carried out in the presence of ferric hydrogensulphate under melt conditions. The reactions proceeded in short reaction times by using a catalytic amount of Fe(HSO4)3 and the corresponding fluorescein derivatives were obtained in high yields. The simplicity, scale-up, along with the use of an inexpensive, non-toxic, recyclable catalyst of an environmentally benign nature, are other remarkable features of the procedure. The absorption and emission properties of these fluorescein derivatives were studied.

[1] Cihelník, S., Stibor, I., & Lhoták, P. (2002). Solvent-free synthesis of sulfonephthaleins, sulfonefluoresceins and fluoresceins under microwave irradiation. Collection of Czechoslovak Chemical Communications, 67, 1779–1789. DOI: 10.1135/cccc20021779. http://dx.doi.org/10.1135/cccc2002177910.1135/cccc20021779Search in Google Scholar

[2] Eshghi, H. (2006). Ferric hydrogensulfate catalysed Schmidt reaction of ketones to amides under solvent-free conditions. Journal of the Chinese Chemical Society, 53, 987–990. 10.1002/jccs.200600131Search in Google Scholar

[3] Eshghi, H., Bakavoli, M., & Moradi, H. (2009a). Ferric hydrogensulfate catalyzed aerobic oxidative coupling of 2-naphthols in water or under solvent free conditions. Chinese Chemical Letters, 20, 663–667. DOI: 10.1016/j.cclet.2008.12. 045. http://dx.doi.org/10.1016/j.cclet.2008.12.045Search in Google Scholar

[4] Eshghi, H., Bakavoli, M., & Moradi, H. (2008a). Fe(HSO4)3: An efficient, heterogeneous and reusable catalyst for the synthesis of 14-aryl- or alkyl-14H-dibenzo[a,j]xanthenes. Chinese Chemical Letters, 19, 1423–1426. DOI: 10.1016/j.cclet.2008. 09.048. http://dx.doi.org/10.1016/j.cclet.2008.09.04810.1016/j.cclet.2008.09.048Search in Google Scholar

[5] Eshghi, H., Bakavoli, M., Moradi, H., & Davoodnia, A. (2009b). Fe(HSO4)3 and Fe(HSO4)3/DMSO as efficient, heterogeneous, and reusable catalyst systems for the oxidative coupling of thiols. Phosphorus, Sulfur and Silicon and the Related Elements, 184, 3110–3118. DOI: 10.1080/10426500802704654. http://dx.doi.org/10.1080/1042650080270465410.1080/10426500802704654Search in Google Scholar

[6] Eshghi, H., Mirzaie, N., & Asoodeh, A. (2011). Synthesis of fluorescein aromatic esters in the presence of P2O5/SiO2 as catalyst and their hydrolysis studies in the presence of lipase. Dyes and Pigments, 89, 120–126. DOI: 10.1016/j.dyepig.2010. 09.013. http://dx.doi.org/10.1016/j.dyepig.2010.09.01310.1016/j.dyepig.2010.09.013Search in Google Scholar

[7] Eshghi, H., Rahimizadeh, M., & Saberi, S. (2008b). Fe(HSO4)3 as an inexpensive, eco-friendly, heterogeneous and reusable catalyst for acetal/ketal formation and their facile regeneration. Catalysis Communications, 9, 2460–2466. DOI: 10.1016/j.catcom.2008.06.015. http://dx.doi.org/10.1016/j.catcom.2008.06.01510.1016/j.catcom.2008.06.015Search in Google Scholar

[8] Fatima, K., Nosheen, S., Azhar, H., & Azhar, M. (2009). Synthesis and application of eosin. Pakistan Journal of Agricultural Sciences, 46, 1–7. Search in Google Scholar

[9] Gronowska, J., & Dabkowska-Naskret, H. (1981). Fluoran derivatives. Part IX. Synthesis of halofluorans. Polish Journal of Chemistry, 55, 2151–2163. Search in Google Scholar

[10] Heller, E., Klöckner, J., Lautenschläger, W., & Holzgrabe, U. (2010). Online monitoring of microwave-enhanced reactions by UV/Vis spectroscopy. European Journal of Organic Chemistry, 2010, 3569–3573. DOI: 10.1002/ejoc.201000441. http://dx.doi.org/10.1002/ejoc.20100044110.1002/ejoc.201000441Search in Google Scholar

[11] Hilderbrand, S. A., & Weissleder, R. (2007). One-pot synthesis of new symmetric and asymmetric xanthene dyes. Tetrahedron Letters, 48, 4383–4385. DOI: 10.1016/j.tetlet.2007.04. 088. http://dx.doi.org/10.1016/j.tetlet.2007.04.08810.1016/j.tetlet.2007.04.088Search in Google Scholar PubMed PubMed Central

[12] Kojima, H., Nakatsubo, N., Kikuchi, K., Kawahara, S., Kirino, Y., Nagoshi, H., Hirata, Y., & Nagano, T. (1998). Detection and imaging of nitric oxide with novel fluorescent indicators: diaminofluoresceins. Analytical Chemistry, 70, 244–2453. DOI: 10.1021/ac9801723. http://dx.doi.org/10.1021/ac980172310.1021/ac9801723Search in Google Scholar PubMed

[13] Miura, T., Urano, Y., Tanaka, K., Nagano, T., Ohkubo, K., & Fukuzumi, S. (2003). Rational design principle for modulating fluorescence properties of fluorescein-based probes by photoinduced electron transfer. Journal of the American Chemical Society, 125, 8666–8671. DOI: 10.1021/ja035282s. http://dx.doi.org/10.1021/ja035282s10.1021/ja035282sSearch in Google Scholar PubMed

[14] Mizukami, S., Kikuchi, K., Higuchi, T., Urano, Y., Mashima, T., Tsuruo, T., & Nagano, T. (1999). Imaging of caspase-3 activation in HeLa cells stimulated with etoposide using a novel fluorescent probe. FEBS Letters, 453, 356–360. DOI: 10.1016/S0014-5793(99)00755-3. http://dx.doi.org/10.1016/S0014-5793(99)00755-310.1016/S0014-5793(99)00755-3Search in Google Scholar

[15] Mugherli, L., Burchak, O. N., Chatelain, F., & Balakirev, M. Y. (2006). Fluorogenic ester substrates to assess proteolytic activity. Bioorganic & Medicinal Chemistry Letters, 16, 4488–4491. DOI: 10.1016/j.bmcl.2006.06.037. http://dx.doi.org/10.1016/j.bmcl.2006.06.03710.1016/j.bmcl.2006.06.037Search in Google Scholar PubMed

[16] Peng, T., & Yang, D. (2010). HKGreen-3: A rhodol-based fluorescent probe for peroxynitrite. Organic Letters, 12, 4932–4935. DOI: 10.1021/ol102182j. http://dx.doi.org/10.1021/ol102182j10.1021/ol102182jSearch in Google Scholar PubMed

[17] Rahimizadeh, M., Eshghi, H., Bakhtiarpoor, Z., & Pordel, M. (2009). Ferric hydrogensulfate as a recyclable catalyst for the synthesis of some new bis(indolyl)methane derivatives. Journal of Chemical Research, 2009, 269–270. DOI: 10.3184/030823409X430194. http://dx.doi.org/10.3184/030823409X43019410.3184/030823409X430194Search in Google Scholar

[18] Sun, W.-C., Gee, K. R., Klaubert, D. H., & Haugland, R. P. (1997). Synthesis of fluorinated fluoresceins. The Journal of Organic Chemistry, 62, 6469–6475. DOI: 10.1021/jo9706178. http://dx.doi.org/10.1021/jo970617810.1021/jo9706178Search in Google Scholar

[19] Tanaka, K., Miura, T., Umezawa, N., Urano, Y., Kikuchi, K., Higuchi, T., & Nagano, T. (2001). Rational design of fluorescein-based fluorescence probes. Mechanism-based design of a maximum fluorescence probe for singlet oxygen. Journal of the American Chemical Society, 123, 2530–2536. DOI: 10.1021/ja0035708. http://dx.doi.org/10.1021/ja003570810.1021/ja0035708Search in Google Scholar PubMed

[20] Tsien, R. Y., & Waggoner, A. (1995). Fluorophores for confocal microscopy. In J. B. Pawley (Ed.), Handbook of biological confocal microscopy (2nd ed., pp. 267–279). New York, NY, USA: Plenum Press. Search in Google Scholar

[21] Weissleder, R., & Ntziachristos, V. (2003). Shedding light onto live molecular targets. Nature Medicine, 9, 123–128. DOI: 10.1038/nm0103-123. http://dx.doi.org/10.1038/nm0103-12310.1038/nm0103-123Search in Google Scholar PubMed

[22] Windholz, M. (1976). The Merck index (9th ed.). Rahway, NJ, USA: Merck. Search in Google Scholar

[23] Woodroofe, C. C., Lim, M. H., Bu. W., & Lippard, S. J. (2005). Synthesis of isomerically pure carboxylate- and sulfonatesubstituted xanthene fluorophores. Tetrahedron Letters, 61, 3097–3105. DOI: 10.1016/j.tet.2005.01.024. 10.1016/j.tet.2005.01.024Search in Google Scholar

[24] Zaikova, T. O., Rukavishnikov, A. V., Birrell, G. B., Griffith, O. H., & Keana, J. F. W. (2001). Synthesis of fluorogenic substrates for continuous assay of phosphatidylinositol-specific phospholipase C. Bioconjugate Chemistry, 12, 307–313. DOI: 10.1021/bc0001138. http://dx.doi.org/10.1021/bc000113810.1021/bc0001138Search in Google Scholar PubMed

Published Online: 2011-5-21
Published in Print: 2011-8-1

© 2011 Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 8.6.2024 from https://www.degruyter.com/document/doi/10.2478/s11696-011-0024-3/html
Scroll to top button