Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter May 3, 2013

X-ray absorption spectroscopy of nanostructured polyanilines

  • Gustavo Nascimento EMAIL logo
From the journal Chemical Papers

Abstract

In this paper, X-ray absorption near edge spectroscopy at the nitrogen K edge (N K XANES) data of polyaniline (PANI) and its derivatives were revisited and expanded. The N K XANES spectra of PANI nanocomposites and PANI nanofibers were also investigated. The analysis of N K XANES spectra were done by the deconvolution of bands and the 1s → π* and 1s → σ* transitions were assigned by a correlation with the N K XANES spectra of smaller organic compounds. The “free” forms of PANI were dominated by bands from 397.7 eV to 399.1 eV attributed to imine and radical cation nitrogen atoms, respectively. Nitrogen bonded to phenazine-like rings can also be seen, mainly for PANI prepared at pH higher than 3.0. The spectra of nanocomposites show sharper bands than the “free” polymers as well as new bands at 398.8 eV and 405–406 eV. These new bands were assigned to phenazine-like rings and azo bonds in the structure of the polymers (polyaniline, polybenzidine, and poly(p-phenylediamine)) within the galleries of the montmorillonite clay. PANI nanofibers doped with HCl or HClO4 show bands related to phenazine-like rings and/or dication segments of PANI, indicating that these segments are important in the formation of PANI nanofibers.

[1] Abruña, H. D. (1989). X ray as probes of electrochemical interfaces. In J. O’M. Bockris, R. E. White, & B. E. Conway (Eds.), Modern aspects of electrochemistry (pp. 265–326). New York, NY, USA: Plenum Press. Search in Google Scholar

[2] Atkins, P. W. (1994). Physical chemistry. Oxford, London, UK: Oxford University Press. Search in Google Scholar

[3] Bianconi, A. (1980). Surface X-ray absorption spectroscopy: Surface EXAFS and surface XANES. Applications of Surface Science, 6, 392–418. DOI: 10.1016/0378-5963(80)90024-0. http://dx.doi.org/10.1016/0378-5963(80)90024-010.1016/0378-5963(80)90024-0Search in Google Scholar

[4] Bianconi, A. (1988). Xanes spectroscopy. In D. C. Koningsberger, & R. Prins (Eds.), X-ray absorption (pp. 573–662). New York, NY, USA: Wiley. Search in Google Scholar

[5] Bilderback, D. H., Elleaume, P., & Weckert, E. (2005). Review of third and next generation synchrotron light sources. Journal of Physics B: Atomic, Molecular and Optical Physics, 38, S773–S797. DOI: 10.1088/0953-4075/38/9/022. http://dx.doi.org/10.1088/0953-4075/38/9/02210.1088/0953-4075/38/9/022Search in Google Scholar

[6] do Nascimento, G. M., Constantino, V. R. L., & Temperini, M. L. A. (2002a). Spectroscopic characterization of a new type of conducting polymer-clay nanocomposite. Macromolecules, 35, 7535–7537. DOI: 10.1021/ma025571l. http://dx.doi.org/10.1021/ma025571l10.1021/ma025571lSearch in Google Scholar

[7] do Nascimento, G.M., da Silva, J. E. P., de Torresi, S. I. C., Santos, P. S., & Temperini, M. L. A. (2002b). Spectroscopic characterization of the inclusion compound formed by polyaniline and β-cyclodextrin. Molecular Crystals and Liquid Crystals, 374, 53–58. DOI: 10.1080/10587250210439. http://dx.doi.org/10.1080/1058725021043910.1080/10587250210439Search in Google Scholar

[8] do Nascimento, G. M., Pereira da Silva, J. E., Córdoba de Torresi, S. I., & Temperini, M. L. A. (2002c). Comparison of secondary doping and thermal treatment in poly(diphenylamine) and polyaniline monitored by resonance Raman spectroscopy. Macromolecules, 35, 121–125. DOI: 10.1021/ma010920h. http://dx.doi.org/10.1021/ma010920h10.1021/ma010920hSearch in Google Scholar

[9] do Nascimento G. M., Constantino, V. R. L., Landers, R., & Temperini, M. L. A. (2004a). Aniline polymerization into montmorillonite clay: A spectroscopic investigation of the intercalated conducting polymer. Macromolecules, 37, 9373–9385. DOI: 10.1021/ma049054+. http://dx.doi.org/10.1021/ma049054+10.1021/ma049054+Search in Google Scholar

[10] do Nascimento G. M., Constantino, V. R. L., & Temperini, M. L. A. (2004b). Spectroscopic characterization of doped poly(benzidine) and its nanocomposite with cationic clay. The Journal of Physical Chemistry B, 108, 5564–5571. DOI: 10.1021/jp037262i. http://dx.doi.org/10.1021/jp037262i10.1021/jp037262iSearch in Google Scholar

[11] do Nascimento, G. M., & Temperini, M. L. A. (2006). Nitrogen oxidation states elucidated by X-ray absorption nitrogen K-edge spectroscopy. Química Nova, 29, 823–828. DOI: 10.1590/s0100-40422006000400033. http://dx.doi.org/10.1590/S0100-4042200600040003310.1590/S0100-40422006000400033Search in Google Scholar

[12] do Nascimento, G. M., Constantino, V. R. L., Landers, L., & Temperini, M. L. A. (2006a). Spectroscopic characterization of polyaniline formed in the presence of montmorillonite clay. Polymer, 47, 6131–6139. DOI: 10.1016/j.polymer.2006.06.036. http://dx.doi.org/10.1016/j.polymer.2006.06.03610.1016/j.polymer.2006.06.036Search in Google Scholar

[13] do Nascimento, G. M., Silva, C. H. B., & Temperini, M. L. A. (2006b). Electronic structure and doping behavior of PANI-NSA nanofibers investigated by resonance Raman spectroscopy. Macromolecular Rapid Communications, 27, 255–259. DOI: 10.1002/marc.200500690. http://dx.doi.org/10.1002/marc.20050069010.1002/marc.200500690Search in Google Scholar

[14] do Nascimento, G. M., Kobata, P. Y. G., Millen, R. P., & Temperini, M. L. A. (2007). Raman dispersion in polyaniline base forms. Synthetic Metals, 157, 247–251. DOI: 10.1016/j.synthmet.2007.02.003. http://dx.doi.org/10.1016/j.synthmet.2007.02.00310.1016/j.synthmet.2007.02.003Search in Google Scholar

[15] do Nascimento, G. M., & Temperini, M. L. A. (2008a). Structure of polyaniline formed in different inorganic porous materials: A spectroscopic study. European Polymer Journal, 44, 3501–3511. DOI: 10.1016/j.eurpolymj.2008.08.038. http://dx.doi.org/10.1016/j.eurpolymj.2008.08.03810.1016/j.eurpolymj.2008.08.038Search in Google Scholar

[16] do Nascimento, G. M., & Temperini, M. L. A. (2008b). Studies on the resonance Raman spectra of polyaniline obtained with near-IR excitation. Journal of Raman Spectroscopy, 39, 772–778. DOI: 10.1002/jrs.1841. http://dx.doi.org/10.1002/jrs.184110.1002/jrs.1841Search in Google Scholar

[17] do Nascimento, G. M., Kobata, P. Y. G., & Temperini, M. L. A. (2008a). Structural and vibrational characterization of polyaniline nanofibers prepared from interfacial polymerization. The Journal of Physical Chemistry B, 112, 11551–11557. DOI: 10.1021/jp804154k. http://dx.doi.org/10.1021/jp804154k10.1021/jp804154kSearch in Google Scholar

[18] do Nascimento, G. M., Padilha, A. C. M., Constantino, V. R. L., & Temperini, M. L. A. (2008b). Oxidation of anilinium ions intercalated in montmorillonite clay by electrochemical route. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 318, 245–253. DOI: 10.1016/j.colsurfa.2007.12.042. http://dx.doi.org/10.1016/j.colsurfa.2007.12.04210.1016/j.colsurfa.2007.12.042Search in Google Scholar

[19] do Nascimento, G. M., Silva, C. H. B., Izumi, C. M. S., & Temperini, M. L. A. (2008c). The role of cross-linking structures to the formation of one-dimensional nano-organized polyaniline and their Raman fingerprint. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 71, 869–875. DOI: 10.1016/j.saa.2008.02.009. http://dx.doi.org/10.1016/j.saa.2008.02.00910.1016/j.saa.2008.02.009Search in Google Scholar

[20] do Nascimento, G. M., Sestrem, R. H., & Temperini, M. L. A. (2010). Structural characterization of poly-paraphenylenediamine-montmorillonite clay nanocomposites. Synthetic Metals, 160, 2397–2403. DOI: 10.1016/j.synthmet.2010.09.016. http://dx.doi.org/10.1016/j.synthmet.2010.09.01610.1016/j.synthmet.2010.09.016Search in Google Scholar

[21] Francis, J. T., & Hitchcock, A. P. (1992). Inner-shell spectroscopy of p-benzoquinone, hydroquinone, and phenol: distinguishing quinoid and benzenoid structures. The Journal of Physical Chemistry, 96, 6598–6610. DOI: 10.1021/j100195a018. http://dx.doi.org/10.1021/j100195a01810.1021/j100195a018Search in Google Scholar

[22] Gelius, U., Hedén, P. F., Hedman, J., Lindberg, B. J., Manne, R., Nordberg, R., Nordling, C., & Siegbahn, K. (1970). Spectroscopy by means of esca. III. Carbon compounds. Physica Scripta, 2, 70–80. DOI: 10.1088/0031-8949/2/1-2/014. http://dx.doi.org/10.1088/0031-8949/2/1-2/01410.1088/0031-8949/2/1-2/014Search in Google Scholar

[23] Heald, S. M. (1988). Design of an exafs experiment. In D. C. Koningsberger, & R. Prins (Eds.), X-ray absorption (pp. 87–118). New York, NY, USA: Wiley. Search in Google Scholar

[24] Hennig, C., Hallmeier, K. H., Bach, A., Bender, S., Franke, R., Hormes, J., & Szargan, R. (1996). Influence of substituents on the N K X-ray absorption near-edge structure of pyrrole derivatives. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 52, 1079–1083. DOI: 10.1016/0584-8539(95)01649-x. http://dx.doi.org/10.1016/0584-8539(95)01649-X10.1016/0584-8539(95)01649-XSearch in Google Scholar

[25] Hennig, C., Hallmeier, K. H., & Szargan, R. (1998). XANES investigation of chemical states of nitrogen in polyaniline. Synthetic Metals, 92, 161–166. DOI: 10.1016/s0379-6779(98)80106-9. http://dx.doi.org/10.1016/S0379-6779(98)80106-910.1016/S0379-6779(98)80106-9Search in Google Scholar

[26] Huang, J., & Wan, M. X. (1999). Polyaniline doped with different sulfonic acids by in situ doping polymerization. Journal of Polymer Science Part A: Polymer Chemistry, 37, 1277–1284. DOI: 10.1002/(sici)1099-0518(19990501)37:9〈1277::aid-pola7〉3.0.co;2-a. http://dx.doi.org/10.1002/(SICI)1099-0518(19990501)37:9<1277::AID-POLA7>3.0.CO;2-A10.1002/(SICI)1099-0518(19990501)37:9<1277::AID-POLA7>3.0.CO;2-ASearch in Google Scholar

[27] Huang, J. X., & Kaner, R. B. (2004a). Nanofiber formation in the chemical polymerization of aniline: A mechanistic study. Angewandte Chemie International Edition, 43, 5817–5821. DOI: 10.1002/anie.200460616. http://dx.doi.org/10.1002/anie.20046061610.1002/anie.200460616Search in Google Scholar

[28] Huang, J. X., & Kaner, R. B. (2004b). A general chemical route to polyaniline nanofibers. Journal of the American Chemical Society, 126, 851–855. DOI: 10.1021/ja0371754. http://dx.doi.org/10.1021/ja037175410.1021/ja0371754Search in Google Scholar

[29] Lee, P. A., Citrin, P. H., Eisenberger, P., & Kincaid, B. M. (1981). Extended X-ray absorption fine-structure — its strenghts and limitations as a structural tool. Reviews of Modern Physics, 53, 769–806. DOI: 10.1103/revmodphys.53.769. http://dx.doi.org/10.1103/RevModPhys.53.76910.1103/RevModPhys.53.769Search in Google Scholar

[30] Li, D., Bancroft, G. M., Fleet, M. E., & Feng, X. H. (1995). Silicon K-edge xanes spectra of silicate minerals. Physics & Chemistry of Minerals, 22, 115–122. DOI: 10.1007/bf00202471. 10.1007/BF00202471Search in Google Scholar

[31] MacDiarmid, A. G., Chiang, J. C., Richter, A. F., & Sonosiri, N. L. D. (1987). The polyanilines. In L. Alcácer (Ed.), Conducting polymers (pp. 105–120). Dordrecht, The Netherlands: Reidel Publications. http://dx.doi.org/10.1007/978-94-009-3907-3_910.1007/978-94-009-3907-3_9Search in Google Scholar

[32] MacDiarmid, A. G., & Epstein, A. J. (1989). Polyanilines: a novel class of conducting polymers. Faraday Discussions of the Chemical Society, 88, 317–332. DOI: 10.1039/dc9898800317. http://dx.doi.org/10.1039/dc989880031710.1039/dc9898800317Search in Google Scholar

[33] MacDiarmid, A. G. (2001). “Synthetic metals”: A novel role for organic polymers. Angewandte Chemie International Edition, 40, 2581–2590. DOI: 10.1002/1521-3773(20010716)40:14〈2581::aid-anie2581〉3.0.co;2-2. http://dx.doi.org/10.1002/1521-3773(20010716)40:14<2581::AID-ANIE2581>3.0.CO;2-210.1002/1521-3773(20010716)40:14<2581::AID-ANIE2581>3.0.CO;2-2Search in Google Scholar

[34] Manne, R., & Åberg, T. (1970). Koopmans’ theorem for inner-shell ionization. Chemical Physics Letters, 7, 282–284. DOI: 10.1016/0009-2614(70)80309-8. http://dx.doi.org/10.1016/0009-2614(70)80309-810.1016/0009-2614(70)80309-8Search in Google Scholar

[35] Margaritondo, G. (1988). Introduction to synchrotron radiation. New York, NY, USA: Oxford University Press. Search in Google Scholar

[36] Margaritondo, G. (2002). Elements of synchrotron light: For biology, chemistry and medical research. New York, NY, USA: Oxford University Press. Search in Google Scholar

[37] Parsons, J. G., Aldrich, M. V., & Gardea-Torresdey, J. L. (2002). Environmental and biological applications of extended X-ray absorption fine structure (EXAFS) and X-ray absorption near edge structure (XANES) spectroscopies. Applied Spectroscopy Reviews, 37, 187–222. DOI: 10.1081/asr-120006044. http://dx.doi.org/10.1081/ASR-12000604410.1081/ASR-120006044Search in Google Scholar

[38] Pavlychev, A. A., Hallmeier, K. H., Hennig, C., Hennig, L., & Szargan, R. (1995). Nitrogen K-shell excitations in complex molecules and polypyrrole. Chemical Physics, 201, 547–555. DOI: 10.1016/0301-0104(95)00287-1. http://dx.doi.org/10.1016/0301-0104(95)00287-110.1016/0301-0104(95)00287-1Search in Google Scholar

[39] Rodrigues, F., do Nascimento, G. M., & Santos, P. S. (2007a). Dissolution and doping of polyaniline emeraldine base in imidazolium ionic liquids investigated by spectroscopic techniques. Macromolecular Rapid Communications, 28, 666–669. DOI: 10.1002/marc.200600635. http://dx.doi.org/10.1002/marc.20060063510.1002/marc.200600635Search in Google Scholar

[40] Rodrigues, F., do Nascimento, G. M., & Santos, P. S. (2007b). Studies of ionic liquid solutions by soft X-ray absorption spectroscopy. Journal of Electron Spectroscopy and Related Phenomena, 155, 148–154. DOI: 10.1016/j.elspec.2006.12.010. http://dx.doi.org/10.1016/j.elspec.2006.12.01010.1016/j.elspec.2006.12.010Search in Google Scholar

[41] Rodrigues, F., Galante, D., do Nascimento, G. M., & Santos, P. S. (2012). Interionic interactions in imidazolic ionic liquids probed by soft X-ray absorption spectroscopy. The Journal of Physical Chemistry B, 116, 1491–1498. DOI: 10.1021/jp208094p. http://dx.doi.org/10.1021/jp208094p10.1021/jp208094pSearch in Google Scholar PubMed

[42] Schwartz, N. N., & Blumbergs, J. H. (1964). Epoxidations with m-chloroperbenzoic acid. The Journal of Organic Chemistry, 29, 1976–1979. DOI: 10.1021/jo01030a078. http://dx.doi.org/10.1021/jo01030a07810.1021/jo01030a078Search in Google Scholar

[43] SPSS (1995). PeakFit 4.06 [computer software]. Florence, OR, USA: SPSS software. Search in Google Scholar

[44] Stejskal, J., Sapurina, I., Trchová, M., Konyushenko, E. N., & Holler, P. (2006). The genesis of polyaniline nanotubes. Polymer, 47, 8253–8262. DOI: 10.1016/j.polymer.2006.10.007. http://dx.doi.org/10.1016/j.polymer.2006.10.00710.1016/j.polymer.2006.10.007Search in Google Scholar

[45] Stejskal, J., Sapurina, I., Trchová, M., & Konyushenko, E. N. (2008). Oxidation of aniline: Polyaniline granules, nanotubes, and oligoaniline microspheres. Macromolecules, 41, 3530–3536. DOI: 10.1021/ma702601q. http://dx.doi.org/10.1021/ma702601q10.1021/ma702601qSearch in Google Scholar

[46] Stejskal, J., Sapurina, I., & Trchová, M. (2010). Polyaniline nanostructures and the role of aniline oligomers in their formation. Progress in Polymer Science, 35, 1420–1481 DOI: 10.1016/j.progpolymsci.2010.07.006. http://dx.doi.org/10.1016/j.progpolymsci.2010.07.00610.1016/j.progpolymsci.2010.07.006Search in Google Scholar

[47] Stern, E. A. (1988). Theory of EXAFS. In D. C. Koningsberger, & R. Prins (Eds.), X-ray absorption (pp. 3–52). New York, NY, USA: Wiley. Search in Google Scholar

[48] Sun, Y., MacDiarmid, A. G., & Epstein, A. J. (1990). Polyaniline: synthesis and characterization of pernigraniline base. Journal of the Chemical Society, Chemical Communications, 7, 529–531. DOI: 10.1039/c39900000529. http://dx.doi.org/10.1039/c3990000052910.1039/c39900000529Search in Google Scholar

[49] Thompson, A. C., & Kortright, J. B. (2009). X-ray emissionenergies. In A. C. Thompson (Ed.), X-Ray data booklet (pp. 1–2, 1–8). Berkeley, CA, USA: Lawrence Berkeley National Laboratory. Search in Google Scholar

[50] Trchová, M., Morávková, Z., Šeděnková, I., & Stejskal, J. (2012). Spectroscopy of thin polyaniline films deposited during chemical oxidation of aniline. Chemical Papers, 66, 415–445. DOI: 10.2478/s11696-012-0142-6. http://dx.doi.org/10.2478/s11696-012-0142-610.2478/s11696-012-0142-6Search in Google Scholar

[51] Vinogradov, A. S., & Akimov, V. N. (1998). X-ray absorption study of the spectrum of free electronic states in a KNO3 crystal. Optics & Spectroscopy, 85, 53–59. Search in Google Scholar

Published Online: 2013-5-3
Published in Print: 2013-8-1

© 2013 Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 24.4.2024 from https://www.degruyter.com/document/doi/10.2478/s11696-013-0344-6/html
Scroll to top button