Skip to main content
Log in

Sodium and boron exclusion in two Brassica juncea cultivars exposed to the combined treatments of salinity and boron at moderate alkalinity

  • Section Botany
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

Salinity and high boron (B) concentrations are important co-limitations to crop production on naturally occurring alkaline soils in low rainfall regions of the world. Although the interactive effects of salinity and B toxicity on Brassica juncea growth have been reported in slightly acidic soils, very little is known about the interactive effects in alkaline soils. In the current study, a moderately tolerant (Vaibhav) and sensitive (Xinyou5) variety, were grown hydroponically for four weeks to assess mild salinity (50 mM NaCl) with or without high B (1 mM B) at moderate alkalinity (pH 8.5/5 mM NaHCO3). The growth of the two varieties was more affected under the combined treatment than either salinity or high B alone. Although growth rate reduction was similar among the varieties, Vaibhav maintained a lower sodium (Na) and B and a higher potassium (K) concentration in the leaves than Xinyou5. In response to salinity, Vaibhav demonstrated essential tolerance mechanisms of partial exclusion and presumably compartmentalization of Na, leading to greater biomass than Xinyou5. Despite being able to better exclude B, Xinyou5 suffered a greater growth penalty, indicating higher B sensitivity than Vaibhav. In conclusion, screening for individual stresses is not necessarily the best strategy because plant responses to a single stress either salinity or high B may not always be the same as observed when both stresses are present together. Therefore, Brassica germplasm screening is essential for stresses in combination but not separately.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Alpaslan M. & Gunes A. 2001. Interactive effects of boron and salinity stress on the growth, membrane permeability and mineral composition of tomato and cucumber plants. Plant Soil 236: 123–128.

    Article  CAS  Google Scholar 

  • Amtmann A. & Sanders D. 1998. Mechanisms of Na+ uptake by plant cells. Advan. Bot. Res. 29: 75–112.

    Article  Google Scholar 

  • Ashraf M. 2001. Relationships between growth and gas exchange characteristics in some salt-tolerant amphidiploid Brassica species in relation to their diploid parents. Plant Sci. 160: 683–689.

    Article  PubMed  CAS  Google Scholar 

  • Ashraf M. & McNeilly T. 2004. Salinity tolerance in Brassica oilseeds. Crit. Rev. Plant Sci. 23: 157–174.

    Article  CAS  Google Scholar 

  • Blumwald E., Grover A. & Good A.G. 2004. Breeding for abiotic stress resistance: Challenges and opportunities. Paper presented at the “New directions for a diverse planet”. Proceedings of the 4th International Crop Science Congress, 26 Sep–1 Oct 2004, Brisbane, Australia.

    Google Scholar 

  • Burton W.A., Ripley V.L., Potts D.A. & Salisbury P.A. 2004. Assessment of genetic diversity in selected breeding lines and cultivars of canola quality Brassica juncea and their implications for canola breeding. Euphytica 136: 181–192.

    Article  CAS  Google Scholar 

  • Campbell T.A., Rathjen A.J., Paull J.G. & Islam A.K.M.R. 1998. Method for screening bread wheat for tolerance to boron. Euphytica 100: 131–135.

    Article  CAS  Google Scholar 

  • Dang Y., Routley R., McDonald M., Dalal R., Singh D., Orange D. & Mann M. 2006. Subsoil constraints in Vertosols: crop water use, nutrient concentration, and grain yields of bread wheat, durum wheat, barley, chickpea, and canola. Austral. J. Agric. Res. 57: 983–998.

    Article  CAS  Google Scholar 

  • Grievea C.M., Possa J.A., Grattanb S.R., Suareza D.L. & Smith T.E. 2010. The combined effects of salinity and excess boron on mineral ion relations in broccoli. Scientia Horticult. 125: 179–187.

    Article  Google Scholar 

  • Hayes J.E. & Reid R.J. 2004. Boron tolerance in barley is mediated by efflux of boron from the roots. Plant Physiol. 136: 3376–3382.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Javid M. 2012. Physiological and molecular mechanisms of tolerance to salinity, alkalinity and alkaline salinity in Brassica juncea. PhD thesis, Melbourne School of Land and Environment — Agriculture and Food Systems, The University of Melbourne.

    Google Scholar 

  • Javid M., Ford R. & Nicolas M.E. 2012. Tolerance responses of Brassica juncea to salinity, alkalinity and alkaline salinity. Function. Plant Biol. 39: 699–707.

    Article  CAS  Google Scholar 

  • Javid M., Nicolas M. & Ford R. 2011. Current knowledge in physiological and genetic mechanisms underpinning tolerances to alkaline and saline subsoil constraints of broad acre cropping in dryland regions, pp. 193–214. In: Shanker A. & Venkateswarlu B. (eds), Abiotic Stress in Plants e Mechanisms and Adaptations. InTech.

    Google Scholar 

  • Kaur A., Pan M., Meislin M., Facciotti M.T., El-Geweley R. & Baliga N.S. 2006. A systems view of haloarchaeal strategies to withstand stress from transition metals. Genome Research 16: 841–854.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kumar G., Purty R.S., Sharma M.P., Singla-Pareek S.L. & Pareeka A. 2009. Physiological responses among Brassica species under salinity stress show strong correlation with transcript abundance for SOS pathway-related genes. J. Plant Physiol. 166: 507–520.

    Article  PubMed  CAS  Google Scholar 

  • Malamy J. 2005. Intrinsic and environmental response pathways that regulate root system architecture. Plant Cell Environ. 28: 67–77.

    Article  PubMed  CAS  Google Scholar 

  • Marschner H. 1995. Mineral Nutrition of Higher Plants. 2nd edn. Academic Press, San Diego, pp. 379–396.

    Google Scholar 

  • Martinez-Ballesta M.D.C., Bastías E., Zhu C., Schäffner A.R., González-Moro B., González-Murua C. & Carvajal M. 2008. Boric acid and salinity effects on maize roots. Response of aquaporins ZmPIP1 and ZmPIP2, and plasma membrane H+ -ATPase, in relation to water and nutrient uptake. Physiol. Plant. 132: 479–490.

    Article  CAS  Google Scholar 

  • Masood S., Wimmer M.A., Witzel K., Zörb C. & Mühling K.H. 2012. Interactive effects of high boron and NaCl stresses on subcellular localization of chloride and boron in wheat leaves. J. Agron. Crop Sci. 198: 227–235.

    Article  CAS  Google Scholar 

  • Møller I.S. & Tester M. 2007. Salinity tolerance of Arabidopsis: a good model for cereals? Trends Plant Sci. 12: 534–540.

    Article  PubMed  Google Scholar 

  • Munns R., James R. & Läuchli A. 2006. Approaches to increasing the salt tolerance of wheat and other cereals. J. Exp. Bot. 57: 1025–1043.

    Article  PubMed  CAS  Google Scholar 

  • Munns R. & Tester M. 2008. Mechanisms of Salinity Tolerance. Annu. Rev. Plant Biol. 59: 651–681.

    Article  PubMed  CAS  Google Scholar 

  • Nable R., Paull J. & Cartwright B. 1990. Problems associated with the use of foliar analysis for diagnosing boron toxicity in barley. Plant Soil 128: 225–232.

    Article  CAS  Google Scholar 

  • Nuttall J. & Armstrong R. 2010. Impact of subsoil physicochemical constraints on crops grown in the Wimmera and Mallee is reduced during dry seasonal conditions. Austral. J. Soil Res. 48: 125–139.

    Article  Google Scholar 

  • Nuttall J.G., Armstrong R.D. & Connor D.J. 2003. Evaluating physiochemical constraints of calcarosols on wheat yield in the Victorian southern Mallee. Austral. J. Agric. Res. 54: 487–497.

    Article  Google Scholar 

  • Nuttall J.G., Armstrong R.D. & Connor D.J. 2006. Early growth of wheat is more sensitive to salinity than boron at levels encountered in alkaline soils of south-eastern Australia. Austral. J. Exp. Agricult. 46: 1507–1514.

    Article  Google Scholar 

  • Reid R. 2007. Identification of boron transporter genes likely to be responsible for tolerance to boron toxicity in wheat and barley. Plant Cell Physiol. 48: 1673–1678.

    Article  PubMed  CAS  Google Scholar 

  • Reid R.J. 2013. Boron Toxicity and Tolerance in Crop Plants. Crop Improvement under Adverse Conditions. Springer, New York, pp. 333–346.

    Chapter  Google Scholar 

  • Reid R. & Fitzpatrick K. 2009. Influence of leaf tolerance mechanisms and rain on boron toxicity in barley and wheat. Plant Physiol. 151: 413–420.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Reid R.J., Hayes J.E., Post A., Strangoulis J.C.R. & Graham R.D. 2004. A critical analysis of the causes of boron toxicity in plants. Plant Cell Environ. 27: 1405–1414.

    Article  CAS  Google Scholar 

  • Rengasamy P. 2002. Transient salinity and subsoil constraints to dryland farming in Australian sodic soils: an overview. Austral. J. Exp. Agricult. 42: 351–361.

    Article  Google Scholar 

  • Rengasamy P. 2006. World salinization with emphasis on Australia. J. Exp. Bot. 57: 1017–1023.

    Article  PubMed  CAS  Google Scholar 

  • Shabala S. & Cuin, T.A. 2008. Potassium transport and plant salt tolerance. Physiol. Plant. 133: 651–669.

    Article  PubMed  CAS  Google Scholar 

  • Smith T., Grattan S., Grieve C., Poss J., Läuchli A. & Suarez D. 2013. pH dependent salinity-boron interactions impact yield, biomass, evapotranspiration and boron uptake in broccoli (Brassica oleracea L.). Plant Soil 370: 541–554.

    Article  CAS  Google Scholar 

  • Stangoulis J.C.R. & Reid R.J. 2002. Boron toxicity in plants and animals, pp. 227–240. In: Goldbach H.E. et al. (eds), Boron in Plant and Animal Nutrition, Kluwer Academic, New York, USA.

    Chapter  Google Scholar 

  • Sun F., Zhang W., Hu H., Li B., Wang Y., Zhao Y., Li K., Liu M. & Li X. 2008. Salt modulates gravity signaling pathway to regulate growth direction of primary roots in Arabidopsis. Plant Physiol. 146: 178–188.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wimmer M.A. & Goldbach H.E. 2012. Boron- and salt- interactions in wheat are affected by boron supply. J. Plant Nutr. Soil Sci. 175: 171–179.

    Article  CAS  Google Scholar 

  • Yamaguchi T., Aharon G.S., Sottosanto J.B. & Blumwald E. 2005. Vacuolar Na+ /H+ antiporter cation selectivity is regulated by calmodulin from within the vacuole in a Ca2+ -and pH-dependent manner. PNAS 102: 16107–16112.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Yermiyahu U., Ben-Gal A., Keren R. & Reid R.J. 2008. Combined effect of salinity and excess boron on plant growth and yield. Plant Soil 304: 73–87.

    Article  CAS  Google Scholar 

  • Wu H., Shabala L., Barry K., Zhou M. & Shabala S. 2013. Ability of leaf mesophyll to retain potassium correlates with salinity tolerance in wheat and barley. Physiol. Plant. 149: 515–527.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc E. Nicolas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Javid, M., Ford, R., Norton, R.M. et al. Sodium and boron exclusion in two Brassica juncea cultivars exposed to the combined treatments of salinity and boron at moderate alkalinity. Biologia 69, 1157–1163 (2014). https://doi.org/10.2478/s11756-014-0412-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-014-0412-6

Key words

Navigation