Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access August 28, 2012

Tumour necrosis factor - alpha mediated mechanisms of cognitive dysfunction

  • Bernhard Baune EMAIL logo , Marie-Lou Camara , Harris Eyre , Catharine Jawahar , Helen Anscomb and Heinrich Körner

Abstract

[1] Collins P.Y., Patel V., Joestl S.S., March D., Insel T.R., Daar A.S., et al., Grand challenges in global mental health, Nature, 2011, 475, 27–30 http://dx.doi.org/10.1038/475027a10.1038/475027aSearch in Google Scholar

[2] Lieberman J.A., Is schizophrenia a neurodegenerative disorder? A clinical and neurobiological perspective, Biol. Psychiatry, 1999, 46, 729–739 http://dx.doi.org/10.1016/S0006-3223(99)00147-X10.1016/S0006-3223(99)00147-XSearch in Google Scholar

[3] Mandolesi G., Grasselli G., Musumeci G., Centonze D., Cognitive deficits in experimental autoimmune encephalomyelitis: neuroinflammation and synaptic degeneration, Neurol. Sci., 2010, 31, S255–259 http://dx.doi.org/10.1007/s10072-010-0369-310.1007/s10072-010-0369-3Search in Google Scholar

[4] Kupfer D.J., Frank E., Phillips M.L., Major depressive disorder: new clinical, neurobiological, and treatment perspectives, Lancet, 2012, 379, 1045–1055 http://dx.doi.org/10.1016/S0140-6736(11)60602-810.1016/S0140-6736(11)60602-8Search in Google Scholar

[5] Zorrilla E.P., Luborsky L., McKay J.R., Rosenthal R., Houldin A., Tax A., et al., The relationship of depression and stressors to immunological assays: a meta-analytic review, Brain. Behav. Immun., 2001, 15, 199–226 http://dx.doi.org/10.1006/brbi.2000.059710.1006/brbi.2000.0597Search in Google Scholar PubMed

[6] Miller A.H., Maletic V., Raison C.L., Inflammation and its discontents: the role of cytokines in the pathophysiology of major depression, Biol. Psychiatry, 2009, 65, 732–741 http://dx.doi.org/10.1016/j.biopsych.2008.11.02910.1016/j.biopsych.2008.11.029Search in Google Scholar PubMed PubMed Central

[7] Sharief M.K., Hentges R., Association between tumor necrosis factoralpha and disease progression in patients with multiple sclerosis, N. Engl. J. Med., 1991, 325, 467–472 http://dx.doi.org/10.1056/NEJM19910815325070410.1056/NEJM199108153250704Search in Google Scholar PubMed

[8] Blume J., Douglas S.D., Evans D.L., Immune suppression and immune activation in depression, Brain Behav. Immun., 2011, 25, 221–229 http://dx.doi.org/10.1016/j.bbi.2010.10.00810.1016/j.bbi.2010.10.008Search in Google Scholar PubMed PubMed Central

[9] Zunszain P.A., Hepgul N., Pariante C.M., Inflammation and Depression, Curr. Top. Behav. Neurosci., 2012, [Epub ahead of print] 10.1007/7854_2012_211Search in Google Scholar PubMed

[10] Lieberman A.P., Pitha P.M., Shin H.S., Shin M.L., Production of tumor necrosis factor and other cytokines by astrocytes stimulated with lipopolysaccharide or a neurotropic virus, Proc. Natl. Acad. Sci. USA, 1989, 86, 6348–6352 http://dx.doi.org/10.1073/pnas.86.16.634810.1073/pnas.86.16.6348Search in Google Scholar PubMed PubMed Central

[11] Rock R.B., Gekker G., Hu S., Sheng W.S., Cheeran M., Lokensgard J.R., et al., Role of microglia in central nervous system infections, Clin. Microbiol. Rev., 2004, 17, 942–964 http://dx.doi.org/10.1128/CMR.17.4.942-964.200410.1128/CMR.17.4.942-964.2004Search in Google Scholar

[12] Tsakiri N., Kimber I., Rothwell N.J., Pinteaux E., Differential effects of interleukin-1 alpha and beta on interleukin-6 and chemokine synthesis in neurones, Mol. Cell. Neurosci., 2008, 38, 259–265 http://dx.doi.org/10.1016/j.mcn.2008.02.01510.1016/j.mcn.2008.02.015Search in Google Scholar

[13] Kaiya H., Uematsu M., Ofuji M., Nishida A., Takeuchi K., Nozaki M., et al., Elevated plasma prostaglandin E2 levels in schizophrenia, J. Neural. Transm., 1989, 77, 39–46 http://dx.doi.org/10.1007/BF0125581710.1007/BF01255817Search in Google Scholar

[14] Dickerson F., Stallings C., Origoni A., Boronow J., Yolken R., C-reactive protein is associated with the severity of cognitive impairment but not of psychiatric symptoms in individuals with schizophrenia, Schizophr. Res., 2007, 93, 261–265 http://dx.doi.org/10.1016/j.schres.2007.03.02210.1016/j.schres.2007.03.022Search in Google Scholar

[15] Theodoropoulou S., Spanakos G., Baxevanis C.N., Economou M., Gritzapis A.D., Papamichail M.P., et al., Cytokine serum levels, autologous mixed lymphocyte reaction and surface marker analysis in never medicated and chronically medicated schizophrenic patients, Schizophr. Res., 2001, 47, 13–25 http://dx.doi.org/10.1016/S0920-9964(00)00007-410.1016/S0920-9964(00)00007-4Search in Google Scholar

[16] Radewicz K., Garey L.J., Gentleman S.M., Reynolds R., Increase in HLA-DR immunoreactive microglia in frontal and temporal cortex of chronic schizophrenics, J. Neuropathol. Exp. Neurol., 2000, 59, 137–150 10.1093/jnen/59.2.137Search in Google Scholar

[17] Bayer T.A., Buslei R., Havas L., Falkai P., Evidence for activation of microglia in patients with psychiatric illnesses, Neurosci. Lett., 1999, 271, 126–128 http://dx.doi.org/10.1016/S0304-3940(99)00545-510.1016/S0304-3940(99)00545-5Search in Google Scholar

[18] van Berckel B.N., Bossong M.G., Boellaard R., Kloet R., Schuitemaker A., Caspers E., et al., Microglia activation in recent-onset schizophrenia: a quantitative (R)-[11C]PK11195 positron emission tomography study, Biol. Psychiatry, 2008, 64, 820–822 http://dx.doi.org/10.1016/j.biopsych.2008.04.02510.1016/j.biopsych.2008.04.025Search in Google Scholar PubMed

[19] Doorduin J., de Vries E.F., Willemsen A.T., de Groot J.C., Dierckx R.A., Klein H.C., Neuroinflammation in schizophrenia-related psychosis: a PET study, J. Nucl. Med., 2009, 50, 1801–1807 http://dx.doi.org/10.2967/jnumed.109.06664710.2967/jnumed.109.066647Search in Google Scholar PubMed

[20] Niitsu T., Shirayama Y., Matsuzawa D., Hasegawa T., Kanahara N., Hashimoto T., et al., Associations of serum brain-derived neurotrophic factor with cognitive impairments and negative symptoms in schizophrenia, Prog. Neuropsychopharmacol. Biol. Psychiatry, 2011, 35, 1836–1840 http://dx.doi.org/10.1016/j.pnpbp.2011.09.00410.1016/j.pnpbp.2011.09.004Search in Google Scholar PubMed

[21] Campbell S., Marriott M., Nahmias C., MacQueen G.M., Lower hippocampal volume in patients suffering from depression: a metaanalysis, Am. J. Psychiatry, 2004, 161, 598–607 http://dx.doi.org/10.1176/appi.ajp.161.4.59810.1176/appi.ajp.161.4.598Search in Google Scholar PubMed

[22] Ziehn M.O., Avedisian A.A., Tiwari-Woodruff S., Voskuhl R.R., Hippocampal CA1 atrophy and synaptic loss during experimental autoimmune encephalomyelitis, EAE, Lab. Invest., 2010, 90, 774–786 http://dx.doi.org/10.1038/labinvest.2010.610.1038/labinvest.2010.6Search in Google Scholar PubMed PubMed Central

[23] Renno T., Krakowski M., Piccirillo C., Lin J.Y., Owens T., TNF-alpha expression by resident microglia and infiltrating leukocytes in the central nervous system of mice with experimental allergic encephalomyelitis. Regulation by Th1 cytokines, J. Immunol., 1995, 154, 944–953 Search in Google Scholar

[24] Appenzeller S., Bertolo M.B., Costallat L.T., Cognitive impairment in rheumatoid arthritis, Methods Find. Exp. Clin. Pharmacol., 2004, 26, 339–343 http://dx.doi.org/10.1358/mf.2004.26.5.83132410.1358/mf.2004.26.5.831324Search in Google Scholar PubMed

[25] El-Tantawy A.M., El-Sayed A.E., Kora B.A., Amin R.T., Psychiatric morbidity associated with some cytokines (IL-1beta, IL-12, IL-18 and TNF-alpha) among rheumatoid arthritis patients, Egypt. J. Immunol., 2008, 15, 1–11 Search in Google Scholar

[26] Hider S.L., Tanveer W., Brownfield A., Mattey D.L., Packham J.C., Depression in RA patients treated with anti-TNF is common and under-recognized in the rheumatology clinic, Rheumatology (Oxford), 2009, 48, 1152–1154 http://dx.doi.org/10.1093/rheumatology/kep17010.1093/rheumatology/kep170Search in Google Scholar PubMed

[27] Aloe L., Tuveri M.A., Levi-Montalcini R., Nerve growth factor and distribution of mast cells in the synovium of adult rats, Clin. Exp. Rheumatol., 1992, 10, 203–204 Search in Google Scholar

[28] Stellwagen D., Malenka R.C., Synaptic scaling mediated by glial TNFalpha, Nature, 2006, 440, 1054–1059 http://dx.doi.org/10.1038/nature0467110.1038/nature04671Search in Google Scholar PubMed

[29] Golan H., Levav T., Mendelsohn A., Huleihel M., Involvement of tumor necrosis factor alpha in hippocampal development and function, Cereb. Cortex, 2004, 14, 97–105 http://dx.doi.org/10.1093/cercor/bhg10810.1093/cercor/bhg108Search in Google Scholar PubMed

[30] Fiore M., Probert L., Kollias G., Akassoglou K., Alleva E., Aloe L., Neurobehavioral alterations in developing transgenic mice expressing TNF-alpha in the brain, Brain Behav. Immun., 1996, 10, 126–138 http://dx.doi.org/10.1006/brbi.1996.001310.1006/brbi.1996.0013Search in Google Scholar PubMed

[31] Baune B.T., Wiede F., Braun A., Golledge J., Arolt V., Koerner H., Cognitive dysfunction in mice deficient for TNF- and its receptors, Am. J. Med. Genet. B Neuropsychiatr. Genet., 2008, 147B, 1056–1064 http://dx.doi.org/10.1002/ajmg.b.3071210.1002/ajmg.b.30712Search in Google Scholar PubMed

[32] Stellwagen D., Beattie E.C., Seo J.Y., Malenka R.C., Differential regulation of AMPA receptor and GABA receptor trafficking by tumor necrosis factor-alpha, J. Neurosci., 2005, 25, 3219–3228 http://dx.doi.org/10.1523/JNEUROSCI.4486-04.200510.1523/JNEUROSCI.4486-04.2005Search in Google Scholar PubMed PubMed Central

[33] Moher D., Liberati A., Tetzlaff J., Altman D.G., Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement, J. Clin. Epidemiol., 2009, 62, 1006–1012 http://dx.doi.org/10.1016/j.jclinepi.2009.06.00510.1016/j.jclinepi.2009.06.005Search in Google Scholar PubMed

[34] Medawar P.B., Immunity to homologous grafted skin; the fate of skin homografts transplanted to the brain, to subcutaneous tissue, and to the anterior chamber of the eye, Br. J. Exp. Pathol., 1948, 29, 58–69 Search in Google Scholar

[35] Barker C.F., Billingham R.E., Immunologically privileged sites, Adv. Immunol., 1977, 25, 1–54 http://dx.doi.org/10.1016/S0065-2776(08)60930-X10.1016/S0065-2776(08)60930-XSearch in Google Scholar

[36] Ransohoff R.M., Kivisakk P., Kidd G., Three or more routes for leukocyte migration into the central nervous system, Nat. Rev. Immunol., 2003, 3, 569–581 http://dx.doi.org/10.1038/nri113010.1038/nri1130Search in Google Scholar

[37] Streilein J.W., Immune privilege as the result of local tissue barriers and immunosuppressive microenvironments, Curr. Opin. Immunol., 1993, 5, 428–432 http://dx.doi.org/10.1016/0952-7915(93)90064-Y10.1016/0952-7915(93)90064-YSearch in Google Scholar

[38] Tabakman R., Lecht S., Sephanova S., Arien-Zakay H., Lazarovici P., Interactions between the cells of the immune and nervous system: neurotrophins as neuroprotection mediators in CNS injury, Prog. Brain Res., 2004, 146, 387–401 10.1016/S0079-6123(03)46024-XSearch in Google Scholar

[39] Garay P.A., McAllister A.K., Novel roles for immune molecules in neural development: implications for neurodevelopmental disorders, Front. Synaptic Neurosci., 2010, 2, 136 10.3389/fnsyn.2010.00136Search in Google Scholar PubMed PubMed Central

[40] Boulanger L.M., Shatz C.J., Immune signalling in neural development, synaptic plasticity and disease, Nat. Rev. Neurosci., 2004, 5, 521–531 http://dx.doi.org/10.1038/nrn142810.1038/nrn1428Search in Google Scholar PubMed

[41] Zlokovic B.V., The blood-brain barrier in health and chronic neurodegenerative disorders, Neuron, 2008, 57, 178–201 http://dx.doi.org/10.1016/j.neuron.2008.01.00310.1016/j.neuron.2008.01.003Search in Google Scholar PubMed

[42] Banks W.A., Erickson M.A., The blood-brain barrier and immune function and dysfunction, Neurobiol. Dis., 2010, 37, 26–32 http://dx.doi.org/10.1016/j.nbd.2009.07.03110.1016/j.nbd.2009.07.031Search in Google Scholar PubMed

[43] Engelhardt B., Regulation of immune cell entry into the central nervous system, Results Probl. Cell. Differ., 2006, 43, 259–280 http://dx.doi.org/10.1007/400_02010.1007/400_020Search in Google Scholar PubMed

[44] Brietzke E., Stertz L., Fernandes B.S., Kauer-Sant’anna M., Mascarenhas M., Escosteguy Vargas A., et al., Comparison of cytokine levels in depressed, manic and euthymic patients with bipolar disorder, J. Affect. Disord., 2009, 116, 214–217 http://dx.doi.org/10.1016/j.jad.2008.12.00110.1016/j.jad.2008.12.001Search in Google Scholar PubMed

[45] Maccioni R.B., Rojo L.E., Fernandez J.A., Kuljis R.O., The role of neuroimmunomodulation in Alzheimer’s disease, Ann. NY Acad. Sci., 2009, 1153, 240–246 http://dx.doi.org/10.1111/j.1749-6632.2008.03972.x10.1111/j.1749-6632.2008.03972.xSearch in Google Scholar

[46] Bossu P., Ciaramella A., Salani F., Bizzoni F., Varsi E., Di Iulio F., et al., Interleukin-18 produced by peripheral blood cells is increased in Alzheimer’s disease and correlates with cognitive impairment, Brain Behav. Immun., 2008, 22, 487–492 http://dx.doi.org/10.1016/j.bbi.2007.10.00110.1016/j.bbi.2007.10.001Search in Google Scholar

[47] Cross A.H., Waubant E., MS and the B cell controversy, Biochim. Biophys. Acta, 2011, 1812, 231–238 http://dx.doi.org/10.1016/j.bbadis.2010.07.02010.1016/j.bbadis.2010.07.020Search in Google Scholar

[48] Pan W., Kastin A.J., TNFalpha transport across the blood-brain barrier is abolished in receptor knockout mice, Exp. Neurol., 2002, 174, 193–200 http://dx.doi.org/10.1006/exnr.2002.787110.1006/exnr.2002.7871Search in Google Scholar

[49] Miric D., Katanic R., Kisic B., Zoric L., Miric B., Mitic R., et al., Oxidative stress and myeloperoxidase activity during bacterial meningitis: effects of febrile episodes and the BBB permeability, Clin. Biochem., 2010, 43, 246–252 http://dx.doi.org/10.1016/j.clinbiochem.2009.09.02310.1016/j.clinbiochem.2009.09.023Search in Google Scholar

[50] Leib S.L., Tauber M.G., Pathogenesis of bacterial meningitis, Infect. Dis. Clin. North Am., 1999, 13, 527–548, v–vi http://dx.doi.org/10.1016/S0891-5520(05)70093-310.1016/S0891-5520(05)70093-3Search in Google Scholar

[51] Nishioku T., Matsumoto J., Dohgu S., Sumi N., Miyao K., Takata F., et al., Tumor necrosis factor-alpha mediates the blood-brain barrier dysfunction induced by activated microglia in mouse brain microvascular endothelial cells, J. Pharmacol. Sci., 2010, 112, 251–254 http://dx.doi.org/10.1254/jphs.09292SC10.1254/jphs.09292SCSearch in Google Scholar

[52] Forster C., Burek M., Romero I.A., Weksler B., Couraud P.O., Drenckhahn D., Differential effects of hydrocortisone and TNFalpha on tight junction proteins in an in vitro model of the human blood-brain barrier, J. Physiol., 2008, 586, 1937–1949 http://dx.doi.org/10.1113/jphysiol.2007.14685210.1113/jphysiol.2007.146852Search in Google Scholar PubMed PubMed Central

[53] Aslam M., Ahmad N., Srivastava R., Hemmer B., TNF-alpha induced NFkappaB signaling and p65 (RelA) overexpression repress Cldn5 promoter in mouse brain endothelial cells, Cytokine, 2012, 57, 269–275 http://dx.doi.org/10.1016/j.cyto.2011.10.01610.1016/j.cyto.2011.10.016Search in Google Scholar PubMed

[54] Wake H., Moorhouse A.J., Nabekura J., Functions of microglia in the central nervous system — beyond the immune response, Neuron Glia Biol., 2012, 1–7 10.1017/S1740925X12000063Search in Google Scholar PubMed

[55] Butovsky O., Talpalar A.E., Ben-Yaakov K., Schwartz M., Activation of microglia by aggregated beta-amyloid or lipopolysaccharide impairs MHC-II expression and renders them cytotoxic whereas IFN-gamma and IL-4 render them protective, Mol. Cell. Neurosci., 2005, 29, 381–393 http://dx.doi.org/10.1016/j.mcn.2005.03.00510.1016/j.mcn.2005.03.005Search in Google Scholar

[56] Morgan S.C., Taylor D.L., Pocock J.M., Microglia release activators of neuronal proliferation mediated by activation of mitogen-activated protein kinase, phosphatidylinositol-3-kinase/Akt and delta-Notch signalling cascades, J. Neurochem., 2004, 90, 89–101 http://dx.doi.org/10.1111/j.1471-4159.2004.02461.x10.1111/j.1471-4159.2004.02461.xSearch in Google Scholar

[57] Medana I.M., Hunt N.H., Chaudhri G., Tumor necrosis factor-alpha expression in the brain during fatal murine cerebral malaria: evidence for production by microglia and astrocytes, Am. J. Pathol., 1997, 150, 1473–1486 Search in Google Scholar

[58] Tracey K.J., Tumor necrosis factor (cachectin) in the biology of septic shock syndrome, Circ. Shock, 1991, 35, 123–128 Search in Google Scholar

[59] Bielefeldt Ohmann H., Campos M., Snider M., Rapin N., Beskorwayne T., Popowych Y., et al., Effect of chronic administration of recombinant bovine tumor necrosis factor to cattle, Vet. Pathol., 1989, 26, 462–472 http://dx.doi.org/10.1177/03009858890260060210.1177/030098588902600602Search in Google Scholar

[60] Probert L., Keffer J., Corbella P., Cazlaris H., Patsavoudi E., Stephens S., et al., Wasting, ischemia, and lymphoid abnormalities in mice expressing T cell-targeted human tumor necrosis factor transgenes, J. Immunol., 1993, 151, 1894–1906 Search in Google Scholar

[61] Das S., Basu A., Inflammation: a new candidate in modulating adult neurogenesis, J. Neurosci. Res., 2008, 86, 1199–1208 http://dx.doi.org/10.1002/jnr.2158510.1002/jnr.21585Search in Google Scholar

[62] Albensi B.C., Mattson M.P., Evidence for the involvement of TNF and NF-kappaB in hippocampal synaptic plasticity, Synapse, 2000, 35, 151–159 http://dx.doi.org/10.1002/(SICI)1098-2396(200002)35:2<151::AID-SYN8>3.0.CO;2-P10.1002/(SICI)1098-2396(200002)35:2<151::AID-SYN8>3.0.CO;2-PSearch in Google Scholar

[63] Horiuchi T., Mitoma H., Harashima S., Tsukamoto H., Shimoda T., Transmembrane TNF-alpha: structure, function and interaction with anti-TNF agents, Rheumatology (Oxford), 2010, 49, 1215–1228 http://dx.doi.org/10.1093/rheumatology/keq03110.1093/rheumatology/keq031Search in Google Scholar

[64] Wajant H., Pfizenmaier K., Scheurich P., Tumor necrosis factor signaling, Cell. Death Differ., 2003, 10, 45–65 http://dx.doi.org/10.1038/sj.cdd.440118910.1038/sj.cdd.4401189Search in Google Scholar

[65] Black R.A., Rauch C.T., Kozlosky C.J., Peschon J.J., Slack J.L., Wolfson M.F., et al., A metalloproteinase disintegrin that releases tumournecrosis factor-alpha from cells, Nature, 1997, 385, 729–733 http://dx.doi.org/10.1038/385729a010.1038/385729a0Search in Google Scholar

[66] McCoy M.K., Tansey M.G., TNF signaling inhibition in the CNS: implications for normal brain function and neurodegenerative disease, J. Neuroinflammation, 2008, 5, 45 http://dx.doi.org/10.1186/1742-2094-5-4510.1186/1742-2094-5-45Search in Google Scholar

[67] Li J., Ramenaden E.R., Peng J., Koito H., Volpe J.J., Rosenberg P.A., Tumor necrosis factor alpha mediates lipopolysaccharide-induced microglial toxicity to developing oligodendrocytes when astrocytes are present, J. Neurosci., 2008, 28, 5321–5330 http://dx.doi.org/10.1523/JNEUROSCI.3995-07.200810.1523/JNEUROSCI.3995-07.2008Search in Google Scholar

[68] Kassiotis G., Kollias G., Uncoupling the proinflammatory from the immunosuppressive properties of tumor necrosis factor (TNF) at the p55 TNF receptor level: implications for pathogenesis and therapy of autoimmune demyelination, J. Exp. Med., 2001, 193, 427–434 http://dx.doi.org/10.1084/jem.193.4.42710.1084/jem.193.4.427Search in Google Scholar

[69] Grell M., Wajant H., Zimmermann G., Scheurich P., The type 1 receptor (CD120a) is the high-affinity receptor for soluble tumor necrosis factor, Proc. Natl. Acad. Sci. USA, 1998, 95, 570–575 http://dx.doi.org/10.1073/pnas.95.2.57010.1073/pnas.95.2.570Search in Google Scholar

[70] Chen G., Goeddel D.V., TNF-R1 signaling: a beautiful pathway, Science, 2002, 296, 1634–1635 http://dx.doi.org/10.1126/science.107192410.1126/science.1071924Search in Google Scholar

[71] Hsu H., Xiong J., Goeddel D.V., The TNF receptor 1-associated protein TRADD signals cell death and NF-kappa B activation, Cell, 1995, 81, 495–504 http://dx.doi.org/10.1016/0092-8674(95)90070-510.1016/0092-8674(95)90070-5Search in Google Scholar

[72] Hsu H., Shu H.B., Pan M.G., Goeddel D.V., TRADD-TRAF2 and TRADDFADD interactions define two distinct TNF receptor 1 signal transduction pathways, Cell, 1996, 84, 299–308 http://dx.doi.org/10.1016/S0092-8674(00)80984-810.1016/S0092-8674(00)80984-8Search in Google Scholar

[73] Micheau O., Tschopp J., Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes, Cell, 2003, 114, 181–190 http://dx.doi.org/10.1016/S0092-8674(03)00521-X10.1016/S0092-8674(03)00521-XSearch in Google Scholar

[74] Shu H.B., Takeuchi M., Goeddel D.V., The tumor necrosis factor receptor 2 signal transducers TRAF2 and c-IAP1 are components of the tumor necrosis factor receptor 1 signaling complex, Proc. Natl. Acad. Sci USA, 1996, 93, 13973–13978 http://dx.doi.org/10.1073/pnas.93.24.1397310.1073/pnas.93.24.13973Search in Google Scholar

[75] Winston B.W., Lange-Carter C.A., Gardner A.M., Johnson G.L., Riches D.W., Tumor necrosis factor alpha rapidly activates the mitogenactivated protein kinase (MAPK) cascade in a MAPK kinase kinasedependent, c-Raf-1-independent fashion in mouse macrophages, Proc. Natl. Acad. Sci. USA, 1995, 92, 1614–1618 http://dx.doi.org/10.1073/pnas.92.5.161410.1073/pnas.92.5.1614Search in Google Scholar

[76] Tobiume K., Matsuzawa A., Takahashi T., Nishitoh H., Morita K., Takeda K., et al., ASK1 is required for sustained activations of JNK/p38 MAP kinases and apoptosis, EMBO Rep., 2001, 2, 222–228 http://dx.doi.org/10.1093/embo-reports/kve04610.1093/embo-reports/kve046Search in Google Scholar

[77] Ghosh S., Karin M., Missing pieces in the NF-kappaB puzzle, Cell, 2002, 109Suppl, S81–96 http://dx.doi.org/10.1016/S0092-8674(02)00703-110.1016/S0092-8674(02)00703-1Search in Google Scholar

[78] Camandola S., Mattson M.P., NF-kappa B as a therapeutic target in neurodegenerative diseases, Expert Opin. Ther. Targets, 2007, 11, 123–132 http://dx.doi.org/10.1517/14728222.11.2.12310.1517/14728222.11.2.123Search in Google Scholar

[79] Rothe M., Pan M.G., Henzel W.J., Ayres T.M., Goeddel D.V., The TNFR2-TRAF signaling complex contains two novel proteins related to baculoviral inhibitor of apoptosis proteins, Cell, 1995, 83, 1243–1252 http://dx.doi.org/10.1016/0092-8674(95)90149-310.1016/0092-8674(95)90149-3Search in Google Scholar

[80] Marchetti L., Klein M., Schlett K., Pfizenmaier K., Eisel U.L., Tumor necrosis factor (TNF)-mediated neuroprotection against glutamateinduced excitotoxicity is enhanced by N-methyl-D-aspartate receptor activation. Essential role of a TNF receptor 2-mediated phosphatidylinositol 3-kinase-dependent NF-kappa B pathway, J. Biol. Chem., 2004, 279, 32869–32881 http://dx.doi.org/10.1074/jbc.M31176620010.1074/jbc.M311766200Search in Google Scholar PubMed

[81] Bliss T.V., Collingridge G.L., A synaptic model of memory: long-term potentiation in the hippocampus, Nature, 1993, 361, 31–39 http://dx.doi.org/10.1038/361031a010.1038/361031a0Search in Google Scholar PubMed

[82] Wang G., Gilbert J., Man H.Y., AMPA receptor trafficking in homeostatic synaptic plasticity: functional molecules and signaling cascades, Neural Plast., 2012, 2012, 825364 10.1155/2012/825364Search in Google Scholar PubMed PubMed Central

[83] Lipsky R.H., Xu K., Zhu D., Kelly C., Terhakopian A., Novelli A., et al., Nuclear factor kappaB is a critical determinant in N-methyl-Daspartate receptor-mediated neuroprotection, J. Neurochem., 2001, 78, 254–264 http://dx.doi.org/10.1046/j.1471-4159.2001.00386.x10.1046/j.1471-4159.2001.00386.xSearch in Google Scholar PubMed

[84] Beattie E.C., Stellwagen D., Morishita W., Bresnahan J.C., Ha B.K., Von Zastrow M., et al., Control of synaptic strength by glial TNFalpha, Science, 2002, 295, 2282–2285 http://dx.doi.org/10.1126/science.106785910.1126/science.1067859Search in Google Scholar PubMed

[85] Butler M.P., O’Connor J.J., Moynagh P.N., Dissection of tumor-necrosis factor-alpha inhibition of long-term potentiation (LTP) reveals a p38 mitogen-activated protein kinase-dependent mechanism which maps to early-but not late-phase LTP, Neuroscience, 2004, 124, 319–326 http://dx.doi.org/10.1016/j.neuroscience.2003.11.04010.1016/j.neuroscience.2003.11.040Search in Google Scholar PubMed

[86] Bolshakov V.Y., Carboni L., Cobb M.H., Siegelbaum S.A., Belardetti F., Dual MAP kinase pathways mediate opposing forms of long-term plasticity at CA3-CA1 synapses, Nat. Neurosci., 2000, 3, 1107–1112 http://dx.doi.org/10.1038/8062410.1038/80624Search in Google Scholar PubMed

[87] Wang Q., Walsh D.M., Rowan M.J., Selkoe D.J., Anwyl R., Block of long-term potentiation by naturally secreted and synthetic amyloid beta-peptide in hippocampal slices is mediated via activation of the kinases c-Jun N-terminal kinase, cyclin-dependent kinase 5, and p38 mitogen-activated protein kinase as well as metabotropic glutamate receptor type 5, J. Neurosci., 2004, 24, 3370–3378 http://dx.doi.org/10.1523/JNEUROSCI.1633-03.200410.1523/JNEUROSCI.1633-03.2004Search in Google Scholar PubMed PubMed Central

[88] Ono K., Han J., The p38 signal transduction pathway: activation and function, Cell. Signal., 2000, 12, 1–13 http://dx.doi.org/10.1016/S0898-6568(99)00071-610.1016/S0898-6568(99)00071-6Search in Google Scholar

[89] Pickering M., Cumiskey D., O’Connor J.J., Actions of TNF-alpha on glutamatergic synaptic transmission in the central nervous system, Exp. Physiol., 2005, 90, 663–670 http://dx.doi.org/10.1113/expphysiol.2005.03073410.1113/expphysiol.2005.030734Search in Google Scholar

[90] Hallbook F., Evolution of the vertebrate neurotrophin and Trk receptor gene families, Curr. Opin. Neurobiol., 1999, 9, 616–621 http://dx.doi.org/10.1016/S0959-4388(99)00011-210.1016/S0959-4388(99)00011-2Search in Google Scholar

[91] Huang E.J., Reichardt L.F., Neurotrophins: roles in neuronal development and function, Annu. Rev. Neurosci., 2001, 24, 677–736 http://dx.doi.org/10.1146/annurev.neuro.24.1.67710.1146/annurev.neuro.24.1.677Search in Google Scholar

[92] Lewin G.R., Barde Y.A., Physiology of the neurotrophins, Annu. Rev. Neurosci., 1996, 19, 289–317 http://dx.doi.org/10.1146/annurev.ne.19.030196.00144510.1146/annurev.ne.19.030196.001445Search in Google Scholar

[93] Sofroniew M.V., Howe C.L., Mobley W.C., Nerve growth factor signaling, neuroprotection, and neural repair, Annu. Rev. Neurosci., 2001, 24, 1217–1281 http://dx.doi.org/10.1146/annurev.neuro.24.1.121710.1146/annurev.neuro.24.1.1217Search in Google Scholar

[94] Henderson C.E., Role of neurotrophic factors in neuronal development, Curr. Opin. Neurobiol., 1996, 6, 64–70 http://dx.doi.org/10.1016/S0959-4388(96)80010-910.1016/S0959-4388(96)80010-9Search in Google Scholar

[95] Aloe L., Properzi F., Probert L., Akassoglou K., Kassiotis G., Micera A., et al., Learning abilities, NGF and BDNF brain levels in two lines of TNFalpha transgenic mice, one characterized by neurological disorders, the other phenotypically normal, Brain Res., 1999, 840, 125–137 http://dx.doi.org/10.1016/S0006-8993(99)01748-510.1016/S0006-8993(99)01748-5Search in Google Scholar

[96] Takei Y., Laskey R., Interpreting crosstalk between TNF-alpha and NGF: potential implications for disease, Trends Mol. Med., 2008, 14, 381–388 http://dx.doi.org/10.1016/j.molmed.2008.07.00210.1016/j.molmed.2008.07.002Search in Google Scholar PubMed

[97] Takei Y., Laskey R., Intracellular and intercellular cross talk between NGF and TNF, Adv. Exp. Med. Biol., 2011, 691, 559–565 http://dx.doi.org/10.1007/978-1-4419-6612-4_5810.1007/978-1-4419-6612-4_58Search in Google Scholar PubMed

[98] Saha R.N., Liu X., Pahan K., Up-regulation of BDNF in astrocytes by TNF-alpha: a case for the neuroprotective role of cytokine, J. Neuroimmune Pharmacol., 2006, 1, 212–222 http://dx.doi.org/10.1007/s11481-006-9020-810.1007/s11481-006-9020-8Search in Google Scholar PubMed PubMed Central

[99] Streit W.J., Mrak R.E., Griffin W.S., Microglia and neuroinflammation: a pathological perspective, J. Neuroinflammation, 2004, 1, 14 http://dx.doi.org/10.1186/1742-2094-1-1410.1186/1742-2094-1-14Search in Google Scholar PubMed PubMed Central

[100] Khairova R.A., Machado-Vieira R., Du J., Manji H.K., A potential role for pro-inflammatory cytokines in regulating synaptic plasticity in major depressive disorder, Int. J. Neuropsychopharmacol., 2009, 12, 561–578 http://dx.doi.org/10.1017/S146114570900992410.1017/S1461145709009924Search in Google Scholar PubMed PubMed Central

[101] Potvin S., Stip E., Sepehry A.A., Gendron A., Bah R., Kouassi E., Inflammatory cytokine alterations in schizophrenia: a systematic quantitative review, Biol. Psychiatry, 2008, 63, 801–808 http://dx.doi.org/10.1016/j.biopsych.2007.09.02410.1016/j.biopsych.2007.09.024Search in Google Scholar PubMed

[102] Schmidt H.D., Shelton R.C., Duman R.S., Functional biomarkers of depression: diagnosis, treatment, and pathophysiology, Neuropsychopharmacology, 2011, 36, 2375–2394 http://dx.doi.org/10.1038/npp.2011.15110.1038/npp.2011.151Search in Google Scholar PubMed PubMed Central

[103] Eyre H., Baune B.T., Neuroimmunological effects of physical exercise in depression, Brain Behav. Immun., 2012, 26, 251–266 http://dx.doi.org/10.1016/j.bbi.2011.09.01510.1016/j.bbi.2011.09.015Search in Google Scholar PubMed

[104] Mirescu C., Gould E., Stress and adult neurogenesis, Hippocampus, 2006, 16, 233–238 http://dx.doi.org/10.1002/hipo.2015510.1002/hipo.20155Search in Google Scholar PubMed

[105] Leonard B.E., Myint A., The psychoneuroimmunology of depression, Hum. Psychopharmacol., 2009, 24, 165–175 10.1002/hup.1011Search in Google Scholar PubMed

[106] Brydon L., Harrison N.A., Walker C., Steptoe A., Critchley H.D., Peripheral inflammation is associated with altered substantia nigra activity and psychomotor slowing in humans, Biol. Psychiatry, 2008, 63, 1022–1029 http://dx.doi.org/10.1016/j.biopsych.2007.12.00710.1016/j.biopsych.2007.12.007Search in Google Scholar PubMed PubMed Central

[107] Reichenberg A., Yirmiya R., Schuld A., Kraus T., Haack M., Morag A., et al., Cytokine-associated emotional and cognitive disturbances in humans, Arch. Gen. Psychiatry, 2001, 58, 445–452 http://dx.doi.org/10.1001/archpsyc.58.5.44510.1001/archpsyc.58.5.445Search in Google Scholar PubMed

[108] Dantzer R., O’Connor J.C., Freund G.G., Johnson R.W., Kelley K.W., From inflammation to sickness and depression: when the immune system subjugates the brain, Nat. Rev. Neurosci., 2008, 9, 46–56 http://dx.doi.org/10.1038/nrn229710.1038/nrn2297Search in Google Scholar

[109] Dowlati Y., Herrmann N., Swardfager W., Liu H., Sham L., Reim E.K., et al., A meta-analysis of cytokines in major depression, Biol. Psychiatry, 2010, 67, 446–457 http://dx.doi.org/10.1016/j.biopsych.2009.09.03310.1016/j.biopsych.2009.09.033Search in Google Scholar

[110] Howren M.B., Lamkin D.M., Suls J., Associations of depression with C-reactive protein, IL-1, and IL-6: a meta-analysis, Psychosom. Med., 2009, 71, 171–186 http://dx.doi.org/10.1097/PSY.0b013e3181907c1b10.1097/PSY.0b013e3181907c1bSearch in Google Scholar

[111] Bernardino L., Agasse F., Silva B., Ferreira R., Grade S., Malva J.O., Tumor necrosis factor-alpha modulates survival, proliferation, and neuronal differentiation in neonatal subventricular zone cell cultures, Stem Cells, 2008, 26, 2361–2371 http://dx.doi.org/10.1634/stemcells.2007-091410.1634/stemcells.2007-0914Search in Google Scholar

[112] Tilleux S., Hermans E., Neuroinflammation and regulation of glial glutamate uptake in neurological disorders, J. Neurosci. Res., 2007, 85, 2059–2070 http://dx.doi.org/10.1002/jnr.2132510.1002/jnr.21325Search in Google Scholar

[113] Kaster M.P., Gadotti V.M., Calixto J.B., Santos A.R., Rodrigues A.L., Depressive-like behavior induced by tumor necrosis factor-alpha in mice, Neuropharmacology, 2012, 62, 419–426 http://dx.doi.org/10.1016/j.neuropharm.2011.08.01810.1016/j.neuropharm.2011.08.018Search in Google Scholar

[114] You Z., Luo C., Zhang W., Chen Y., He J., Zhao Q., et al., Pro- and antiinflammatory cytokines expression in rat’s brain and spleen exposed to chronic mild stress: Involvement in depression, Behav. Brain Res., 225, 135–141 10.1016/j.bbr.2011.07.006Search in Google Scholar

[115] Kafitz K.W., Rose C.R., Konnerth A., Neurotrophin-evoked rapid excitation of central neurons, Prog. Brain Res., 2000, 128, 243–249 http://dx.doi.org/10.1016/S0079-6123(00)28021-710.1016/S0079-6123(00)28021-7Search in Google Scholar

[116] Gavillet M., Allaman I., Magistretti P.J., Modulation of astrocytic metabolic phenotype by proinflammatory cytokines, Glia, 2008, 56, 975–989 http://dx.doi.org/10.1002/glia.2067110.1002/glia.20671Search in Google Scholar PubMed

[117] Hamidi M., Drevets W.C., Price J.L., Glial reduction in amygdala in major depressive disorder is due to oligodendrocytes, Biol. Psychiatry, 2004, 55, 563–569 http://dx.doi.org/10.1016/j.biopsych.2003.11.00610.1016/j.biopsych.2003.11.006Search in Google Scholar PubMed

[118] Ongur D., Drevets W.C., Price J.L., Glial reduction in the subgenual prefrontal cortex in mood disorders, Proc. Natl. Acad. Sci. USA, 1998, 95, 13290–13295 http://dx.doi.org/10.1073/pnas.95.22.1329010.1073/pnas.95.22.13290Search in Google Scholar

[119] Steiner J., Bielau H., Brisch R., Danos P., Ullrich O., Mawrin C., et al., Immunological aspects in the neurobiology of suicide: elevated microglial density in schizophrenia and depression is associated with suicide, J. Psychiatr. Res., 2008, 42, 151–157 http://dx.doi.org/10.1016/j.jpsychires.2006.10.01310.1016/j.jpsychires.2006.10.013Search in Google Scholar

[120] Arguello P.A., Gogos J.A., Cognition in mouse models of schizophrenia susceptibility genes, Schizophr. Bull., 2010, 36, 289–300 http://dx.doi.org/10.1093/schbul/sbp15310.1093/schbul/sbp153Search in Google Scholar

[121] Drzyzga L., Obuchowicz E., Marcinowska A., Herman Z.S., Cytokines in schizophrenia and the effects of antipsychotic drugs, Brain Behav. Immun., 2006, 20, 532–545 http://dx.doi.org/10.1016/j.bbi.2006.02.00210.1016/j.bbi.2006.02.002Search in Google Scholar

[122] Muller N., Riedel M., Gruber R., Ackenheil M., Schwarz M.J., The immune system and schizophrenia. An integrative view, Ann. NY Acad. Sci., 2000, 917, 456–467 http://dx.doi.org/10.1111/j.1749-6632.2000.tb05410.x10.1111/j.1749-6632.2000.tb05410.xSearch in Google Scholar

[123] Coelho F.M., Reis H.J., Nicolato R., Romano-Silva M.A., Teixeira M.M., Bauer M.E., et al., Increased serum levels of inflammatory markers in chronic institutionalized patients with schizophrenia, Neuroimmunomodulation, 2008, 15, 140–144 10.1159/000148197Search in Google Scholar

[124] Boin F., Zanardini R., Pioli R., Altamura C.A., Maes M., Gennarelli M., Association between -G308A tumor necrosis factor alpha gene polymorphism and schizophrenia, Mol. Psychiatry, 2001, 6, 79–82 http://dx.doi.org/10.1038/sj.mp.400081510.1038/sj.mp.4000815Search in Google Scholar

[125] Schwab S.G., Mondabon S., Knapp M., Albus M., Hallmayer J., Borrmann-Hassenbach M., et al., Association of tumor necrosis factor alpha gene — G308A polymorphism with schizophrenia, Schizophr. Res., 2003, 65, 19–25 http://dx.doi.org/10.1016/S0920-9964(02)00534-010.1016/S0920-9964(02)00534-0Search in Google Scholar

[126] Wilson A.G., Symons J.A., McDowell T.L., McDevitt H.O., Duff G.W., Effects of a polymorphism in the human tumor necrosis factor alpha promoter on transcriptional activation, Proc. Natl. Acad. Sci. USA, 1997, 94, 3195–3199 http://dx.doi.org/10.1073/pnas.94.7.319510.1073/pnas.94.7.3195Search in Google Scholar PubMed PubMed Central

[127] Shi J., Levinson D.F., Duan J., Sanders A.R., Zheng Y., Pe’er I., et al., Common variants on chromosome 6p22.1 are associated with schizophrenia, Nature, 2009, 460, 753–757 10.1038/nature08192Search in Google Scholar PubMed PubMed Central

[128] Ingason A., Rujescu D., Cichon S., Sigurdsson E., Sigmundsson T., Pietilainen O.P., et al., Copy number variations of chromosome 16p13.1 region associated with schizophrenia, Mol. Psychiatry, 2011, 16, 17–25 http://dx.doi.org/10.1038/mp.2009.10110.1038/mp.2009.101Search in Google Scholar

[129] Stefansson H., Sigurdsson E., Steinthorsdottir V., Bjornsdottir S., Sigmundsson T., Ghosh S., et al., Neuregulin 1 and susceptibility to schizophrenia, Am. J. Hum. Genet., 2002, 71, 877–892 http://dx.doi.org/10.1086/34273410.1086/342734Search in Google Scholar

[130] Li B., Woo R.S., Mei L., Malinow R., The neuregulin-1 receptor erbB4 controls glutamatergic synapse maturation and plasticity, Neuron, 2007, 54, 583–597 http://dx.doi.org/10.1016/j.neuron.2007.03.02810.1016/j.neuron.2007.03.028Search in Google Scholar

[131] Marballi K., Quinones M.P., Jimenez F., Escamilla M.A., Raventos H., Soto-Bernardini M.C., et al., In vivo and in vitro genetic evidence of involvement of neuregulin 1 in immune system dysregulation, J. Mol. Med. (Berl), 2010, 88, 1133–1141 http://dx.doi.org/10.1007/s00109-010-0653-y10.1007/s00109-010-0653-ySearch in Google Scholar

[132] Durany N., Michel T., Zochling R., Boissl K.W., Cruz-Sanchez F.F., Riederer P., et al., Brain-derived neurotrophic factor and neurotrophin 3 in schizophrenic psychoses, Schizophr. Res., 2001, 52, 79–86 http://dx.doi.org/10.1016/S0920-9964(00)00084-010.1016/S0920-9964(00)00084-0Search in Google Scholar

[133] Green M.J., Matheson S.L., Shepherd A., Weickert C.S., Carr V.J., Brainderived neurotrophic factor levels in schizophrenia: a systematic review with meta-analysis, Mol. Psychiatry, 2011, 16, 960–972 http://dx.doi.org/10.1038/mp.2010.8810.1038/mp.2010.88Search in Google Scholar

[134] Lassmann H., Bruck W., Lucchinetti C., Heterogeneity of multiple sclerosis pathogenesis: implications for diagnosis and therapy, Trends Mol. Med., 2001, 7, 115–121 http://dx.doi.org/10.1016/S1471-4914(00)01909-210.1016/S1471-4914(00)01909-2Search in Google Scholar

[135] Korner H., Sedgwick J.D., Tumour necrosis factor and lymphotoxin: molecular aspects and role in tissue-specific autoimmunity, Immunol. Cell Biol., 1996, 74, 465–472 http://dx.doi.org/10.1038/icb.1996.7710.1038/icb.1996.77Search in Google Scholar PubMed

[136] Ruddle N.H., Bergman C.M., McGrath K.M., Lingenheld E.G., Grunnet M.L., Padula S.J., et al., An antibody to lymphotoxin and tumor necrosis factor prevents transfer of experimental allergic encephalomyelitis, J. Exp. Med., 1990, 172, 1193–1200 http://dx.doi.org/10.1084/jem.172.4.119310.1084/jem.172.4.1193Search in Google Scholar PubMed PubMed Central

[137] Korner H., Lemckert F.A., Chaudhri G., Etteldorf S., Sedgwick J.D., Tumor necrosis factor blockade in actively induced experimental autoimmune encephalomyelitis prevents clinical disease despite activated T cell infiltration to the central nervous system, Eur. J. Immunol., 1997, 27, 1973–1981 http://dx.doi.org/10.1002/eji.183027082210.1002/eji.1830270822Search in Google Scholar PubMed

[138] Selmaj K., Raine C.S., Cannella B., Brosnan C.F., Identification of lymphotoxin and tumor necrosis factor in multiple sclerosis lesions, J. Clin. Invest., 1991, 87, 949–954 http://dx.doi.org/10.1172/JCI11510210.1172/JCI115102Search in Google Scholar

[139] Kuroda Y., Shimamoto Y., Human tumor necrosis factor-alpha augments experimental allergic encephalomyelitis in rats, J. Neuroimmunol., 1991, 34, 159–164 http://dx.doi.org/10.1016/0165-5728(91)90125-Q10.1016/0165-5728(91)90125-QSearch in Google Scholar

[140] Barten D.M., Ruddle N.H., Vascular cell adhesion molecule-1 modulation by tumor necrosis factor in experimental allergic encephalomyelitis, J. Neuroimmunol., 1994, 51, 123–133 http://dx.doi.org/10.1016/0165-5728(94)90074-410.1016/0165-5728(94)90074-4Search in Google Scholar

[141] Korner H., Riminton D.S., Strickland D.H., Lemckert F.A., Pollard J.D., Sedgwick J.D., Critical points of tumor necrosis factor action in central nervous system autoimmune inflammation defined by gene targeting, J. Exp. Med., 1997, 186, 1585–1590 http://dx.doi.org/10.1084/jem.186.9.158510.1084/jem.186.9.1585Search in Google Scholar PubMed PubMed Central

[142] Suvannavejh G.C., Lee H.O., Padilla J., Dal Canto M.C., Barrett T.A., Miller S.D., Divergent roles for p55 and p75 tumor necrosis factor receptors in the pathogenesis of MOG(35–55)-induced experimental autoimmune encephalomyelitis, Cell. Immunol., 2000, 205, 24–33 http://dx.doi.org/10.1006/cimm.2000.170610.1006/cimm.2000.1706Search in Google Scholar PubMed

[143] D’Intino G., Paradisi M., Fernandez M., Giuliani A., Aloe L., Giardino L., et al., Cognitive deficit associated with cholinergic and nerve growth factor down-regulation in experimental allergic encephalomyelitis in rats, Proc. Natl. Acad. Sci. USA, 2005, 102, 3070–3075 http://dx.doi.org/10.1073/pnas.050007310210.1073/pnas.0500073102Search in Google Scholar PubMed PubMed Central

[144] Roosendaal S.D., Hulst H.E., Vrenken H., Feenstra H.E., Castelijns J.A., Pouwels P.J., et al., Structural and functional hippocampal changes in multiple sclerosis patients with intact memory function, Radiology, 2010, 255, 595–604 http://dx.doi.org/10.1148/radiol.1009143310.1148/radiol.10091433Search in Google Scholar PubMed

[145] Anisman H., Merali Z., Hayley S., Neurotransmitter, peptide and cytokine processes in relation to depressive disorder: comorbidity between depression and neurodegenerative disorders, Prog. Neurobiol., 2008, 85, 1–74 http://dx.doi.org/10.1016/j.pneurobio.2008.01.00410.1016/j.pneurobio.2008.01.004Search in Google Scholar PubMed

[146] Terrando N., Monaco C., Ma D., Foxwell B.M., Feldmann M., Maze M., Tumor necrosis factor-alpha triggers a cytokine cascade yielding postoperative cognitive decline, Proc. Natl. Acad. Sci. USA, 2010, 107, 20518–20522 http://dx.doi.org/10.1073/pnas.101455710710.1073/pnas.1014557107Search in Google Scholar PubMed PubMed Central

[147] McAfoose J., Baune B.T., Evidence for a cytokine model of cognitive function, Neurosci. Biobehav. Rev., 2009, 33, 355–366 http://dx.doi.org/10.1016/j.neubiorev.2008.10.00510.1016/j.neubiorev.2008.10.005Search in Google Scholar PubMed

[148] Peschon J.J., Torrance D.S., Stocking K.L., Glaccum M.B., Otten C., Willis C.R., et al., TNF receptor-deficient mice reveal divergent roles for p55 and p75 in several models of inflammation, J. Immunol., 1998, 160, 943–952 Search in Google Scholar

[149] Longhi L., Ortolano F., Zanier E.R., Perego C., Stocchetti N., De Simoni M.G., Effect of traumatic brain injury on cognitive function in mice lacking p55 and p75 tumor necrosis factor receptors, Acta Neurochir. Suppl., 2008, 102, 409–413 http://dx.doi.org/10.1007/978-3-211-85578-2_8010.1007/978-3-211-85578-2_80Search in Google Scholar PubMed

[150] McAfoose J., Koerner H., Baune B.T., The effects of TNF deficiency on age-related cognitive performance, Psychoneuroendocrinology, 2009, 34, 615–619 http://dx.doi.org/10.1016/j.psyneuen.2008.10.00610.1016/j.psyneuen.2008.10.006Search in Google Scholar PubMed

[151] Akassoglou K., Probert L., Kontogeorgos G., Kollias G., Astrocytespecific but not neuron-specific transmembrane TNF triggers inflammation and degeneration in the central nervous system of transgenic mice, J. Immunol., 1997, 158, 438–445 Search in Google Scholar

[152] Dean B., Tawadros N., Scarr E., Gibbons A.S., Regionallyspecific changes in levels of tumour necrosis factor in the dorsolateral prefrontal cortex obtained postmortem from subjects with major depressive disorder, J. Affect. Disord., 2010, 120, 245–248 http://dx.doi.org/10.1016/j.jad.2009.04.02710.1016/j.jad.2009.04.027Search in Google Scholar PubMed

[153] Grassi-Oliveira R., Brietzke E., Pezzi J.C., Lopes R.P., Teixeira A.L., Bauer M.E., Increased soluble tumor necrosis factor-alpha receptors in patients with major depressive disorder, Psychiatry Clin. Neurosci., 2009, 63, 202–208 http://dx.doi.org/10.1111/j.1440-1819.2008.01918.x10.1111/j.1440-1819.2008.01918.xSearch in Google Scholar PubMed

Published Online: 2012-8-28
Published in Print: 2012-9-1

© 2012 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 26.4.2024 from https://www.degruyter.com/document/doi/10.2478/s13380-012-0027-8/html
Scroll to top button