Journal of the Japanese Society for Horticultural Science
Online ISSN : 1880-358X
Print ISSN : 0013-7626
ISSN-L : 0013-7626
ORIGINAL ARTICLE
Effects of Calcium Chloride Spray on Peroxidase Activity and Stone Cell Development in Pear Fruit (Pyrus pyrifolia ‘Niitaka’)
Sang-Hyun LeeJin-Ho ChoiWol-Soo KimYong-Seo ParkHiroshi Gemma
Author information
JOURNAL FREE ACCESS

2007 Volume 76 Issue 3 Pages 191-196

Details
Abstract

The primary objective of this study was to characterize the effects of calcium chloride spray on the formation of stone cells and peroxidase activity in ‘Niitaka’ pear fruit. Calcium chloride (0, 0.3, 0.5, and 1.0%) was sprayed 4 times on selected 15-year-old ‘Niitaka’ pear trees at 10-day intervals with a handgun until runoff, beginning 20 days after full bloom (DAFB). The calcium content and peroxidase activity were determined in flesh extracted from harvested fruit. The distribution of stone cells in the fruit flesh was determined via light microscopy, using phloroglucinol dye. The calcium contents of the leaves and fruit increased significantly in the fruit sprayed with 0.5 and 1% CaCl2, as compared to the control, or the fruit sprayed with 0.3% CaCl2. The stone cell contents in the fruit flesh decreased significantly when the fruit were sprayed with 0.5 and 1.0% CaCl2. Fruit treated with calcium chloride showed an increase in the rate of small stone cell cluster formation (< 200 μm2), whereas the rate at which medium (200–400 μm2) and large (400 μm2 <) clusters formed was significantly reduced. Peroxidase activity in the fruit flesh increased substantially at 60 DAFB, and decreased with fruit development. Peroxidase activity was much higher in the non-treated fruit than in those treated with 0.5% CaCl2. The activities of bound and soluble peroxidase in the cell wall were lower in the fruit treated with 0.5% CaCl2 than in the non-treated fruit. In our experiment, the stone cell content and stone cell size decreased significantly in fruit treated with calcium chloride, as the result of a reduction in lignification due to low peroxidase activity (soluble and bound).

Content from these authors
© 2007 by Japanese Society for Horticultural Science
Previous article Next article
feedback
Top