Skip to main content
Skip to article control options
No AccessRegular Articles

Time-Accurate Experimental Investigation of Hypersonic Inlet Buzz at Mach 5

Published Online:https://doi.org/10.2514/1.J058764

Hypersonic inlet buzz is investigated experimentally in a ramjet intake at Mach 5. A two-dimensional planar inlet featuring a double-compression ramp with 10 and 22° inclination to the freestream direction and a rectangular-cross-section duct is tested. A solenoid is used to raise a barrier into the flow and initiate buzz at high throttling ratios. Static pressure is measured at a data sample rate of 10 kHz, and schlieren images are collected at an image frame rate of 30 kHz. Oscillations in the flow not linked to buzz are present at both zero and full throttle, and they cause a high-amplitude pressure peak at very high frequency (higher than 3 kHz). At full throttle, buzz is spotted, in the contemporary presence of shear layers being ingested by the intake (Ferri criterion) and of separated flow lying on the second compression ramp (Dailey criterion). Both features are analyzed by means of the standard deviation of the frames captured. The kind of buzz hereby observed activates high-amplitude pressure oscillations at both low frequencies and high frequencies. The unstarted flowfield is largely subsonic inside the intake and allows for the use of the linear acoustic theory. Indeed, one of the peaks recorded matches the quarter-wave resonator frequency (1411 Hz) of the inlet, suggesting that the barrier acts as a solid wall and that the inlet model behaves as a duct with a closed end.

References

  • [1] Oswatitsch K., “Der Druckrückgewinn bei Geschossen mit Rückstossantrieb bei hohen Übershallgeschwindigkeiten (Der Wirkungsgrad vos Stossdiffusoren),” Forsch. Und Entwickl. Des Heereswaffenamtes, Bericht Nr. 1005, Göttingen, 1944. Google Scholar

  • [2] Ferri A. and Nucci L. M., “The Origin of Aerodynamic Instability of Supersonic Inlets at Subcritical Conditions,” NACA RM L50K30, 1951. Google Scholar

  • [3] Dailey C. L., “Supersonic Diffuser Instability,” Ph.D. Thesis, California Inst. of Technology, Pasadena, CA, 1954. Google Scholar

  • [4] Fisher S. A., Neale M. C. and Brooks A. J., “On the Sub-Critical Stability of Variable Ramp Intakes at Mach Numbers Around 2,” National Gas Turbine Establishment Rept. ARC-R/M-3711, England, Feb. 1970. Google Scholar

  • [5] Trapier S., Duveau P. and Deck S., “Experimental Study of Supersonic Inlet Buzz,” AIAA Journal, Vol. 44, No. 10, 2006, pp. 2354–2365. https://doi.org/10.2514/1.20451 LinkGoogle Scholar

  • [6] Babinsky H. and Harvey J. K., Shock Wave-Boundary-Layer Interactions, Cambridge Univ. Press, New York, 2011, Chap. 7. CrossrefGoogle Scholar

  • [7] Hong W. and Kim C., “Computational Study on Hysteretic Inlet Buzz Characteristics Under Varying Mass Flow Conditions,” AIAA Journal, Vol. 52, No. 7, 2014, pp. 1357–1373. https://doi.org/10.2514/1.J052481 LinkGoogle Scholar

  • [8] Coltman J. W., “Jet Drive Mechanisms in Edge Tones and Organ Pipes,” The Journal of the Acoustical Society of America, Vol. 60, No. 3, 1976, pp. 725–733. https://doi.org/10.1121/1.381120 CrossrefGoogle Scholar

  • [9] Soltani M. R. and Farahani M., “Experimental Investigation of Effects of Mach Number on the Flow Instability in a Supersonic Inlet,” Experimental Techniques, Vol. 37, No. 3, 2013, pp. 46–54. https://doi.org/10.1111/ext.2013.37.issue-3 CrossrefGoogle Scholar

  • [10] Soltani M. R. and Sepahi-Younsi J., “Buzz Cycle Description in an Axisymmetric Mixed Compression Air Intake,” AIAA Journal, Vol. 54, No. 3, 2016, pp. 1040–1053. https://doi.org/10.2514/1.J054215 LinkGoogle Scholar

  • [11] Shi W., Chang J., Wang Y., Bao W. and Liu X., “Buzz Evolution Process Investigation of a Two-Ramp Inlet with Translating Cowl,” Journal of Aerospace Science and Technology, Vol. 84, Jan. 2019, pp. 712–723. https://doi.org/10.1016/j.ast.2018.11.016 CrossrefGoogle Scholar

  • [12] Chen H., Tan H.-J., Zhang Q.-F. and Zhang Y., “Throttling Process and Buzz Mechanism of a Supersonic Inlet at Overspeed Mode,” AIAA Journal, Vol. 56, No. 5, 2018, pp. 1953–1964. https://doi.org/10.2514/1.J056674 LinkGoogle Scholar

  • [13] Chen H., Tan H.-J., Zhang Q.-F. and Zhang Y., “Buzz Flows in an External Compression Inlet with Partially Isentropic Compression,” AIAA Journal, Vol. 55, No. 12, 2017, pp. 4286–4295. https://doi.org/10.2514/1.J056066 LinkGoogle Scholar

  • [14] Su W.-Y., Ji Y.-X. and Chen Y., “Effects of Dynamic Backpressure on Pseudoshock Oscillations in Scramjet Inlet-Isolator,” Journal of Propulsion and Power, Vol. 32, No. 2, 2016, pp. 516–528. https://doi.org/10.2514/1.B35898 LinkGoogle Scholar

  • [15] Xiong B., Fan X., Wang Y., Zhou L. and Tao Y., “Back-Pressure Effects on Unsteadiness of Separation Shock in a Rectangular Duct at Mach 3,” Acta Astronautica, Vol. 141, Dec. 2017, pp. 248–254. https://doi.org/10.1016/j.actaastro.2017.09.032 CrossrefGoogle Scholar

  • [16] Kurth G. and Bauer C., “Air Intake Development for a Mach 5+ Throttleable Ducted Rocket Propelled Lower Tier Interceptor,” 51st AIAA/SAE/ASEE Joint Propulsion Conference, AIAA Paper 2015-4233, 2015. https://doi.org/10.2514/6.2015-4233 LinkGoogle Scholar

  • [17] Hyo-Won Y., Hong-Gye S. and Vigor Y., “A Numerical Analysis of Supersonic Intake Buzz in an Axisymmetric Ramjet Engine,” International Journal of Aeronautical and Space Science, Vol. 16, No. 2, 2015, pp. 165–176. https://doi.org/10.5139/IJASS.2015.16.2.165 Google Scholar

  • [18] Chang J. T., Li N., Xu K. J., Bao W. and Yu D. R., “Recent Research Progress on Unstart Mechanism, Detection and Control of Hypersonic Inlet,” Progress in Aerospace Sciences, Vol. 89, Feb. 2017, pp. 1–22. https://doi.org/10.1016/j.paerosci.2016.12.001 CrossrefGoogle Scholar

  • [19] Curran E. T. and Murthy S. N. B., Scramjet Propulsion, Progress in Astronautics and Aeronautics, Vol. 189, AIAA, Reston, VA, 2001, Chap. 7. https://doi.org/10.2514/4.866609 Google Scholar

  • [20] Idris A. C., “Characterization of High Speed Inlets Using Global Measurement Techniques,” Ph.D. Thesis, Univ. of Manchester, Manchester, England, U.K., 2014. Google Scholar

  • [21] Pope A. and Goin K. L., High-Speed Wind Tunnel Testing, Wiley, New York, 2005, Chaps. 1, 2, 8, 10. Google Scholar

  • [22] Matthews A. J., Jones T. V. and Cain T. M., “Design and Test of a Hypersonic Isentropic-Spike Intake with Aligned Cowl,” Journal of Propulsion and Power, Vol. 21, No. 5, 2005, pp. 838–843. https://doi.org/10.2514/1.13000 LinkGoogle Scholar

  • [23] Schlieren Video of Supersonic Inlet Buzz,” NASA Glenn Research Center, 2010. https://doi.org/https://www.youtube.com/watch?v=iO-O64q7d_o. Google Scholar

  • [24] Wagner J. L., Yuceil K. B., Valdivia A., Clemens N. T. and Dolling D. S., “Experimental Investigation of Unstart in an Inlet/Isolator Model in Mach 5 Flow,” Journal of Propulsion and Power, Vol. 47, No. 6, 2009, pp. 1528–1542. https://doi.org/10.2514/1.40966 Google Scholar

  • [25] Rodi P. E., Emami S. and Trexler C. A., “Unsteady Pressure Behavior in a Ramjet/Scramjet Inlet,” Journal of Propulsion and Power, Vol. 12, No. 3, 1996, pp. 486–493. https://doi.org/10.2514/3.24061 LinkGoogle Scholar