Vol. 111
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2010-12-09
Analysis of a Circular Waveguide Loaded with Dielectric and Metal Discs
By
Progress In Electromagnetics Research, Vol. 111, 253-269, 2011
Abstract
A circular waveguide loaded with dielectric and metal discs was chosen to evaluate its dispersion characteristics and dispersion shaping with change of structure parameters for wideband coalescence of beam- and waveguide-mode dispersion characteristics for wideband gyro-TWT performance. The azimuthally symmetric TE-mode analysis of the structure was carried out in field matching technique by considering the propagating wave in cylindrical free-space region having radius equal to the hole-radius of metal disc, and the stationary waves in free-space and dielectric regions between two consecutive metal discs. The dispersion relation and, in accordance, a computer code were developed. Further, the roots of the dispersion relation for various sets of the structure parameters were obtained using the developed computer code; the dispersion characteristics were plotted; and the dispersion shaping was projected for typically chosen TE01-, TE02- and TE03-modes. The analytical results were validated against those obtained for the conventional and earlier published structures, and also those obtained using commercially available simulation tool. Finally, a study on azimuthal electric field available over the radial coordinate was carried out to show the control of structure parameter on the gyrating electron beam position for the chosen operating mode of a dielectric and metal discs loaded gyro-TWT.
Citation
Vishal Kesari, and Jaishanker Prasad Keshari, "Analysis of a Circular Waveguide Loaded with Dielectric and Metal Discs," Progress In Electromagnetics Research, Vol. 111, 253-269, 2011.
doi:10.2528/PIER10110207
References

1. Kumar, D., P. K. Choudhury, and O. N. Singh II, "Towards the dispersion relations for dielectric optical fibers with helical windings under slow- and fast-wave considerations --- A comparative analysis," Progress In Electromagnetics Research, Vol. 80, 409-420, 2008.
doi:10.2528/PIER07120302

2. Wu, C.-J., Y.-H. Chung, B.-J. Syu, and T.-J. Yang, "Band gap extension in a one-dimensional ternary metal-dielectric photonic crystal," Progress In Electromagnetics Research, Vol. 102, 81-93, 2010.
doi:10.2528/PIER10012004

3. Lin, H.-N. and C.-C. Tang, "Analysis and design for high-gain antenna with periodic structures," PIERS Online, Vol. 6, No. 2, 181-184, 2010.
doi:10.2529/PIERS090905024125

4. Xie, H.-H., Y.-C. Jiao, K. Song, and Z. Zhang, "A novel multi-band electromagnetic band-gap structure," Progress In Electromagnetics Research Letters, Vol. 9, 67-74, 2009.
doi:10.2528/PIERL09042302

5. Escorcia-García, J. and M. E. M. Mora-Ramos, "Study of optical propagation in hybrid periodic/quasiregular structures based on porous silicon," PIERS Online, Vol. 5, No. 2, 167-170, 2009.
doi:10.2529/PIERS080906010703

6. Dai, G. and M. Xia, "Novel miniaturized bandpass filters using spiral-shaped resonators and window feed structures," Progress In Electromagnetics Research, Vol. 100, 235-243, 2010.
doi:10.2528/PIER09120401

7. Yang, M., J. Xu, Q. Zhao, L. Peng, and G. Li, "Compact, broad-stopband lowpass filters using sirs-loaded circular hairpin resonators," Progress In Electromagnetics Research, Vol. 102, 95-106, 2010.
doi:10.2528/PIER09120901

8. Chiou, Y.-C., P.-S. Yang, J.-T. Kuo, and C.-Y.Wu, "Transmission zero design graph for dual-mode dual-band filter with periodic stepped-impedance ring resonator," Progress In Electromagnetics Research, Vol. 108, 23-36, 2010.
doi:10.2528/PIER10071608

9. Amari, S., R. Vahldieck, J. Bornemann, and P. Leuchtmann, "Spectrum of corrugated and periodically loaded waveguides from classical matrix eigenvalues," IEEE Trans. Microwave Theory Tech., Vol. 48, 453-460, 2000.
doi:10.1109/22.826846

10. Amari, S., R. Vahldieck, and J. Bornemann, "Analysis of propagation in periodically loaded circular waveguide," IEE Proc. Microwave Antennas Propagation, Vol. 146, No. 1, 50-54, 1999.
doi:10.1049/ip-map:19990140

11. Clarricoats, P. J. B. and A. D. Olver, Corrugated Horns for Microwave Antennas, Peter Peregrinus, London, 1984.
doi:10.1049/PBEW018E

12. Heydari, R. D., H. R. Hassani, and A. R. Mallahzadeh, "A new 2-18 GHz quad-ridged horn antenna," Progress In Electromagnetics Research, Vol. 81, 183-195, 2008.
doi:10.2528/PIER08010103

13. Uher, J., J. Bornemann, and U. Rosenberg, Waveguides Components for Antenna Feed Systems: Theory and CAD, Artech House, Norwood, 1993.

14. Shi, W., L. Yuzheng, and T. Higo, "A new method for dispersion curves of HOM in periodical axisymmetric accelerating structures," Proc. 2nd Asian Particle Accelerator Conf., 153-155, Beijing, China, 2001.

15. Hu, Y., C. Tang, H. Chen, Y. Lin, and D. Tong, "An X-band disk and washer accelerating structure for electron accelerators," Proc. Particle Accelerator Conf., 975-977, Chicago, 2001.

16. Amin, M. R. and K. Ogura, "Dispersion characteristics of a rectangularly corrugated cylindrical slow-wave structure driven by a non-relativistic annular electron beam," IET Microwave Antennas Propag., Vol. 1, No. 3, 575-579, 2007.
doi:10.1049/iet-map:20060279

17. Ding, S., B. Jia, F. Li, and Z. Zhu, "3D simulation of 18-vane 5.8 GHz magnetron," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 14-15, 1925-1930, 2008.
doi:10.1163/156939308787537946

18. Malek, F., "The analytical design of a folded waveguide traveling wave tube and small signal gain analysis using Madey's theorem," Progress In Electromagnetics Research, Vol. 98, 137-162, 2009.
doi:10.2528/PIER09092604

19. Mulcahy, T., H. Song, and F. Francisco, "New method of integrating periodic permanent magnet (PPM) assembly in traveling wave tubes (TWTs)," Progress In Electromagnetics Research C, Vol. 10, 187-199, 2009.
doi:10.2528/PIERC09082907

20. Jain, P. K. and B. N. Basu, "Electromagnetic wave propagation through helical structures," Electromagnetic Fields in Unconventional Materials, O. N. Singh and A. Lakhtakia, Ed., John Wiley & Sons, USA, 2000.

21. Zhu, Z. J., B. F. Jia, and D. M. Wan, "Efficiency improvement of helix traveling-wave tube," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 13, 1747-1756, 2008.
doi:10.1163/156939308786375145

22. Duan, Z. Y., Y. B. Gong, Y. Y. Wei, W. X. Wang, B.-I. Wu, and J. A. Kong, "Efficiency improvement of broadband helix traveling wave tubes using hybrid phase velocity tapering model," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 7, 1013-1023, 2008.
doi:10.1163/156939308784150119

23. Jerby, E. and G. Bekefi, "Cyclotron maser experiments in a periodic wave guide," Phys. Rev. E, Vol. 48, No. 6, 4637-4641, 1993.
doi:10.1103/PhysRevE.48.4637

24. Chu, K. R., "The electron cyclotron maser," Rev. Mod. Phys., Vol. 76, No. 2, 489-540, May 2004.
doi:10.1103/RevModPhys.76.489

25. Barroso, J. J., R. A. Correa, and P. J. de Castro, "Gyrotron coaxial cylindrical resonators with corrugated inner conductor: Theory and experiment," IEEE Trans. Microwave Theory Tech., Vol. 46, No. 9, 1221-1230, Sep. 1998.
doi:10.1109/22.709460

26. Iatrou, C. T., S. Kern, and A. B. Pavelyev, "Coaxial cavities with corrugated inner conductor for gyrotrons," IEEE Trans. Microwave Theory Tech., Vol. 44, No. 1, 56-64, Jan. 1996.
doi:10.1109/22.481385

27. Thumm, M., "State-of-the-art of high-power gyro-devices and free electron masers, Update 2008,", Scientific Report FZKA 6224, Forschungszentrum Karlsruhe, Germany, Jan. 2008.

28. Singh, G., "Analytical study of the interaction structure of vane-loaded gyro-traveling wave tube amplifier," Progress In Electromagnetics Research B, Vol. 4, 41-66, 2008.
doi:10.2528/PIERB08010402

29. Qiu, C. R., Z. B. Ouyang, S. C. Zhang, H. B. Zhang, and J. B. Jin, "Self-consistent nonlinear investigation of an outer-slotted-coaxial waveguide gyrotron traveling-wave amplifier," IEEE Trans. Plasma Sci., Vol. 33, No. 3, 1013-1018, Jun. 2005.
doi:10.1109/TPS.2005.848600

30. Kesari, V., Analysis of Disc-loaded Circular Waveguides for Wideband Gyro-TWTs, LAP-Lambert Academic Publishing AG & Co., Germany, 2009, ISBN: 978-3-8383-1145-6.

31. Kesari, V., P. K. Jain, and B. N. Basu, "Analytical approaches to a disc loaded cylindrical waveguide for potential application in wideband gyro-TWTs," IEEE Trans. Plasma Sci., Vol. 32, No. 5, 2144-2151, Oct. 2004.
doi:10.1109/TPS.2004.835518

32. Kesari, V., P. K. Jain, and B. N. Basu, "Analysis of a circular waveguide loaded with thick annular metal discs for wideband gyro-TWTs," IEEE Trans. Plasma Sci., Vol. 33, No. 4, 1358-1365, Aug. 2005.
doi:10.1109/TPS.2005.852393

33. Kesari, V., P. K. Jain, and B. N. Basu, "Analysis of a disc-loaded circular waveguide for interaction impedance of a gyrotron amplifier," Int. J. Infrared and Millimeter Waves, Vol. 26, No. 8, 1093-1110, Aug. 2005.
doi:10.1007/s10762-005-7270-9

34. Kesari, V., P. K. Jain, and B. N. Basu, "Modeling of axially periodic circular waveguide with combined dielectric and metal loading," J. Physics D: Applied Physics, Vol. 38, 3523-3529, Sep. 2005.
doi:10.1088/0022-3727/38/18/030

35. Kesari, V., "Beam-absent analysis of disc-loaded-coaxial waveguide for its application in gyro-TWT (Part-1)," Progress In Electromagnetics Research, Vol. 109, 211-227, 2010.
doi:10.2528/PIER10071305

36. Kesari, V., "Beam-present analysis of disc-loaded-coaxial waveguide for its application in gyro-TWT (Part-2)," Progress In Electromagnetics Research, Vol. 109, 229-243, 2010.
doi:10.2528/PIER10071505

37. Choe, J. Y. and H. S. Uhm, "Theory of gyrotron amplifiers in disc or helix loaded waveguides," Int. J. Electron., Vol. 53, No. 6, 729-741, Jun. 1982.
doi:10.1080/00207218208901564

38. Leou, K. C., T. Pi, D. B. Mcdermott, and Jr. N. C. Luhmann, "Circuit design for a wideband disc loaded gyro-TWT amplifier," IEEE Trans. Plasma Sc., Vol. 26, No. 3, 488-495, Jun. 1998.
doi:10.1109/27.700782

39. Yue, L., W. Wang, Y. Wei, and Y. Gong, "Approach to a coaxial arbitrary-shaped groove cylindrical waveguide for application in wideband gyro-TWTs," IEEE Trans. Plasma Sc., Vol. 35, No. 3, 551-558, Jun. 2007.
doi:10.1109/TPS.2007.896982

40. Bratman, V. L., A. W. Gross, G. G. Denisov, W. He, A. D. R. Phelps, K. Ronald, S. V. Samsonov, C. G. Whyte, and A. R. Young, "High-gain wide-band gyrotron traveling wave amplifier with a helically corrugated waveguide," Phys. Rev. Lett., Vol. 84, No. 12, 2746-2749, Mar. 2000.
doi:10.1103/PhysRevLett.84.2746

41. Rao, S. J., P. K. Jain, and B. N. Basu, "Broadbanding of gyro-TWT by dielectric-loading through dispersion shaping," IEEE Trans. Electron Dev., Vol. 43, No. 12, 2290-2299, Dec. 1996.
doi:10.1109/16.544423

42. Rao, S. J., P. K. Jain, and B. N. Basu, "Hybrid-mode helix-loading effects on gyro-travelling-wave tubes," Int. J. Electron., Vol. 82, No. 6, 663-675, Jun. 1997.
doi:10.1080/002072197135814