Vol. 62
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2017-11-21
Design and Analysis of Wideband Monopole Antennas for Flexible/Wearable Wireless Device Applications
By
Progress In Electromagnetics Research M, Vol. 62, 167-174, 2017
Abstract
Compact wideband flexible monopole antennas are designed and analyzed for its performance for Body Centric Wireless Communications (BCWC). Two antennas with identical radiators on different substrates are designed and fabricated on polyamide and teslin paper substrates, deployinga modified rectangle-shaped radiator. With the aid of modifications in the radiating plane and defecting the ground plane, the polyamide based antenna is designed to operate between 1.8 and 13.3 GHz, and teslin paper based antenna is designed to operate between 1.45 and 13.4 GHz to cover the wireless communication technology frequencies and ultra-wideband range for various wireless applications. The reflection coefficient characteristics of the fabricated antennas on free space and on various sites of the body are measured and match reasonably well with the simulated reflection coefficient characteristics. The specific absorption rate (SAR) analysis is also carried out by placing the antennas on tissue layered model.
Citation
Bobbili Naga Balarami Reddy, Palaniswamy Sandeep Kumar, Thipparaju Rama Rao, Nishesh Tiwari, and Molupoju Balachary, "Design and Analysis of Wideband Monopole Antennas for Flexible/Wearable Wireless Device Applications," Progress In Electromagnetics Research M, Vol. 62, 167-174, 2017.
doi:10.2528/PIERM17092107
References

1. Samal, P. B., P. J. Soh, and G. A. E. Vandenbosch, "UWB all-textile antenna with full ground plane for off-body WBAN communications," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 1, Jan. 2014.
doi:10.1109/TAP.2013.2287526

2. Abbasi, Q. H., M. U. Rehman, K. Qaraqe, and A. Alomainy, "Advances in body-centric wireless communication: Applications and state-of-the-art," The Institution of Engineering and Technology (IET), London, U.K., Jul. 2016.

3. Dastranj, A., "Optimization of a printed UWB antenna: Application of the invasive weed optimization algorithm in antenna design," IEEE Antennas and Propagation Magazine, Vol. 59, No. 1, 48-57, Feb. 2017.
doi:10.1109/MAP.2016.2630025

4. Palaniswamy, S. K., Y. P. Selvam, M. G. N. Alsath, M. Kanagasabai, S. Kingsly, and S. Subbaraj, "3-D eight-port ultrawideband antenna array for diversity applications," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 569-572, 2017, doi:10.1109/LAWP.2016.2590144.
doi:10.1109/LAWP.2016.2590144

5. Palaniswamy, S., M. Kanagasabai, S. Arun Kumar, M. Alsath, S. Velan, and J. Pakkathillam, "Super wideband printed monopole antenna for ultra wideband applications," International Journal of Microwave and Wireless Technologies, Vol. 9, No. 1, 133-141, 2017, doi:10.1017/S1759078715000951.
doi:10.1017/S1759078715000951

6. Meinke, H. and F. W. Gundlach, Taschenbuch der Hochfrequenztechnik, 531-535, Springer-Verlag, Berlin, New York, 1968.
doi:10.1007/978-3-662-13082-7

7. Wang, F. and T. Arslan, "A wearable ultra-wideband monopole antenna with flexible artificial magnetic conductor," 2016 Loughborough Antennas & Propagation Conference (LAPC), Nov. 14-15, 2016.

8. Phan, H. P., T. P. Vuong, P. Benech, P. Xavier, P. Borel, and A. Delattre, "Printed flexible wideband microstrip antenna for wireless applications," International Conference on Advanced Technologies for Communications (ATC), 12-14, Oct. 2016.

9. Bahrami, H., S. A. Mirbozorgi, R. Ameli, L. A. Rusch, and B. Gosselin, "Flexible, polarization-diverse UWB antennas for implantable neural recording systems," IEEE Trans. on Biom. Ckts and Sys., Vol. 10, No. 1, 38-48, 2016.
doi:10.1109/TBCAS.2015.2393878

10. Liu, X. Y., Y. H. Di, H. Liu, Z. T. Wu, and M. M. Tentzeris, "A planar Windmill-like broadband antenna equipped with artificial magnetic conductor for off-body communications," IEEE Antennas and Wireless Propag. Letters, Vol. 15, 64-67, 2016.
doi:10.1109/LAWP.2015.2429683

11. Hong, S., S. H. Kang, and C. W. Jung, "Transparent and flexible antenna for wearable glasses applications," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 7, 2797-2804, 2016.
doi:10.1109/TAP.2016.2554626

12. Chen, S. J., T. Kaufmann, D. C. Ranasinghe, and C. Fumeaux, "A modular textile antenna design using snap-on buttons for wearable applications," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 3, 894-903, 2016.
doi:10.1109/TAP.2016.2517673

13. Chen, Z. N., T. S. P. See, and X. Qing, "Small printed ultrawideband antenna with reduced ground plane effect," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 2, 383-388, Feb. 2007.
doi:10.1109/TAP.2006.889823

14. Varshini, K. and T. R. Rao, "Investigations on SAR and thermal effects of a body wearable microstrip antenna," Wireless Personal Communications, Springer, 2017, doi.10.1007/s11277-017-4059-9.

15. Karthik, V. and T. Rama Rao, "Estimation of specific absorption rate using infrared thermography for the biocompatibility of wearable wireless devices," Progress In Electromagnetics Research M, Vol. 56, 101-109, 2017.
doi:10.2528/PIERM17022603

16. Gabriel, C., "Compilation of the dielectric properties of body tissues at RF and microwave frequencies,", Report N.AL/OE-TR-1996-0037, Occupational and environmental health directorate, Radiofrequency Radiation Division, Brooks Air Force Base, Texas (USA), Jun. 1996.

17. Means, D. L. and K. W. Chan, "Evaluating compliance with FCC guidelines for human exposure to radiofrequency electromagnetic fields, supplement C edition 01-01 to OET bulletin 65 edition 97-01,", Office of Engineering and Technology, FCC, Washington, D.C. 20554, Jun. 2001.

18. Velan, S., E. F. Sundarsingh, M. Kanagasabai, A. K. Sarma, C. Raviteja, S. Ramprabhu, and J. K. Pakkathillam, "Dual-band EBG integrated monopole antenna deploying fractal geometry for wearable applications," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 249-252, 2015.
doi:10.1109/LAWP.2014.2360710

19. Mandal, B. and S. K. Parui, "Wearable tri-band SIW based antenna on leather substrate," Electronics Letters, Vol. 51, No. 20, 1563-1564, Oct. 1, 2015.
doi:10.1049/el.2015.2559

20. Zahran, S. R., M. A. Abdalla, and A. Gaafar, "How bending affects a flexible UWB antenna,", 1-6, www.mwrf.com, 2017.

21. Jose, A. and S. J. Kappan, "High gain coplanar feed ultra wide band wearable antenna using artificial magnetic conductors," 5th International Conf. on Advances in Computing and Comm., Sep. 2-4, 2015.