Multiscale modeling of heterogeneous catalysis in porous metal foam structures using particle-based simulation methods

Language
en
Document Type
Doctoral Thesis
Issue Date
2020-01-10
Issue Year
2019
Authors
Mühlbauer, Sebastian Josef
Editor
Publisher
FAU University Press
ISBN
978-3-96147-263-5
Abstract

In this work, we investigate and optimize heterogeneous catalysis in porous metal foams. First, we consider the gas dynamics together with the reaction and diffusion processes in individual foam pores on the mesoscale. Second, we condense the detailed simulation results on the mesoscale to relations between few, dimensionless numbers. Based on these relations, we follow a multiscale approach to derive an efficient, one-dimensional, macroscale model for metal foam filled catalytic converters. Due to its industrial relevance, we focus on the mass transfer limited regime. Finally, we develop a simple recipe to determine optimum pore size configurations.For realistic heat release values, the heat transfer out of the catalytic converter is critical. We show hat, in order to keep temperature fluctuations small, the optimum configuration consists of several, stacked foam segments with decreasing pore size along the main flow direction. For typical parameters, we observe that, compared to foam with constant pore size, the trade-off between chemical conversion and flow resistance can be increased significantly, while the required reactive surface area, i.e., the needed amount of catalytic material, is reduced substantially.

Abstract

Diese Arbeit befasst sich mit der Untersuchung und Optimierung heterogener Katalyse in porösen Metallschaumstrukturen. Zunächst betrachten wir die Strömungsverhältnisse sowie die Reaktions- und Diffusionsprozesse innerhalb einer einzelnen Schaumpore auf Mesoskala. Im Anschluss daran, kondensieren wir die detaillierten Simulationsergebnisse auf Mesoskala zu Zusammenhängen zwischen wenigen, dimensionslosen Kennzahlen. Darauf aufbauend wenden wir einen Multiskalenansatz an, um ein effizientes, eindimensionales, makroskopisches Modell zur Beschreibung heterogener Katalyse in offenporigen, porösen, Metallschäumen abzuleiten. Aufgrund seiner industriellen Bedeutung konzentrieren wir uns auf das Regime, in dem der Stofftransport den limitierenden Faktor darstellt. Abschließend erstellen wir eine einfache Anleitung, um die optimale Konfiguration für mit Metallschaum gefüllte Katalysatoren zu bestimmen. Für realistische Werte der Reaktionswärme ist die Wärmeableitung aus dem Katalysator entscheidend. Um Temperaturschwankungen gering zu halten, besteht die optimale Konfiguration in diesem Fall aus mehreren, aneinandergereihten Schaumsegmenten mit abnehmender Porengröße entlang der Hauptströmungsrichtung. Für typische Parameter zeigt sich, dass im Vergleich zur Konfiguration mit konstanter Porengröße der Trade-off zwischen chemischer Umwandlung und Strömungswiderstand deutlich verbessert werden kann, wobei gleichzeitig die erforderliche reaktive Oberfläche, d.h. die benötigte Menge an katalytischem Material, erheblich reduziert wird.

Series
FAU Forschungen, Reihe B, Medizin, Naturwissenschaft, Technik
Series Nr.
30
Notes
Parallel erschienen als Druckausgabe bei FAU University Press, ISBN: 978-3-96147-262-8
Faculties & Collections
Zugehörige ORCIDs