
INTRODUCTION

Chemotherapeutic agents used to treat cancers often cause
diarrhea, nausea, vomiting, mucositis, hepatotoxicity, and
weight loss. These dose-limiting effects have a marked negative
impact on patients, resulting in chemotherapy schedule failure
(1, 2). Furthermore, these conditions are associated with
impaired quality of life and increased healthcare costs due to the
associated additive care (3). Therefore, it is crucial to manage
the chemotherapeutics-induced side effects to improve the
quality of life of patients with cancer. Although several studies
have assessed the prevention of chemotherapeutic agent-induced
mucositis, fundamental treatment approaches have not yet been
fully developed (4).

5-Fluorouracil (5-FU), a fluoropyrimidine widely used
chemotherapeutic agent in the treatment of various cancers, has
been reported to cause intestinal mucositis (1, 3).
Accumulating evidence shows that the sequential events in the
development of 5-FU-induced mucositis involve apoptosis of

the crypts, a suppressed proliferation of intestinal cells,
dysbiosis, and expression of inflammatory cytokines (5-7);
however, the exact underlying mechanisms have been poorly
investigated.

Patients with cancer often experience eating disorders with
chemotherapy, which results in weight loss and a decreased
median survival (8). Recently, several studies have
demonstrated the protective effects of glutamine (Gln) against
5-FU-induced mucositis (9-12). In addition, other amino acids,
such as arginine (12-14), glycine (15, 16), and cysteine (17),
also exhibit protective roles in several intestinal disorders,
including chemotherapy-induced intestinal mucositis.
Glutamate (Glu), a nonessential amino acid, is formed from
Gln via glutaminase in the enterocytes (18, 19). It is the most
abundant amino acid in dietary proteins in daily meals (20).
Moreover, Glu is the most important energy source in the small
intestine, plays several important roles in the intestine and is
the precursor of several molecules produced within the
intestinal mucosa, including amino acids (20). Dietary Glu in
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5-Fluorouracil (5-FU) is one of the most widely used chemotherapeutic agents; however, it often causes intestinal
mucositis with severe diarrhea. An efficient treatment strategy to reduce this side effect is lacking. Glutamate (Glu),
a nonessential amino acid, is the most important energy source in the small intestine and has been shown to maintain
intestinal morphology, barrier function, and antioxidative capacity. However, the effects of Glu on intestinal
mucositis induced by chemotherapeutic agents have not been explored. This study aimed to demonstrate the
alleviative effects of Glu on 5-FU-induced intestinal mucositis. Mucositis was induced in C57B/6N mice by
intraperitoneal injection of 5-FU (50 mg/kg) for 6 days and assessed by histological and physiological analyses. Glu
(500 or 1000 mg/kg) was orally administered as a pretreatment twice daily for 7 days before the initial treatment of
5-FU. Cellular proliferation and apoptosis were assessed using Ki-67 immunostaining and terminal deoxynucleotidyl
transferase dUTP nick end labeling (TUNEL) assay, respectively. Furthermore, fluorescein isothiocyanate-dextran
infiltration was assessed to measure intestinal permeability. In vitro experiments using rat intestinal epithelial cells
(IEC-6 cells) were performed to clarify the effect of Glu on 5-FU-induced barrier dysfunction. Glu alleviated 5-FU-
induced intestinal mucositis by reducing villi shortening, enhancing cell proliferation, and suppressing apoptosis. It
also alleviated the 5-FU-induced increased intestinal permeability. In vitro studies revealed significantly increased
trans-epithelial electrical resistance (TEER) in Glu-pretreated IEC-6 cells compared to that in 5-FU-treated and
control cells. In conclusion, the findings of this study provide evidence for the potential of Glu to protect against 5-
FU-induced intestinal mucositis in patients with cancer.
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the form of monosodium glutamate (MSG) dissociates in water
and acts similarly to free Glu. Over 90% of the dietary Glu is
metabolized in the first pass through the intestinal mucosa (21).
Interestingly, plasma Glu levels are not strongly affected by
dietary Glu; rather, they are tightly maintained at low
concentrations (22, 23). Glu maintains growth and health as a
major oxidative fuel (24), an important precursor of bioactive
molecules (25-27), and a regulator of gene expression and cell
signaling in the intestine (28). Although the beneficial effects
of Glu on intestinal morphology, barrier, and antioxidative
capacity has been reported (29, 30), its effects on intestinal
mucositis have seldomly been investigated. Therefore, we
hypothesized that evaluating the beneficial effects of Glu on
inflammation-induced epithelial damage can be promising not
only for maintaining the health of the intestine but also for the
nutritional state of the entire body.

To test this hypothesis, in this study, we aimed to evaluate
the effects of Glu on 5-FU-induced intestinal mucositis in mice.

MATERIALS AND METHODS

Chemicals

5-FU was obtained from Sigma-Aldrich (St. Louis, MO,
USA), and sodium hydrogen L(+)-glutamate monohydrate was
obtained from Wako Pure Chemicals (Osaka, Japan). 5-FU was
dissolved in saline (Otsuka, Tokyo, Japan) to inject the animals.
To treat cells, 5-FU dissolved in dimethyl sulfoxide (DMSO;
Wako Pure Chemicals, Osaka, Japan) and L-glutamate (Wako
Pure Chemicals, Osaka, Japan) was used.

Animals

Male C57BL/6N mice aged 7–8 weeks were purchased from
Japan SLC, Inc., (Shizuoka, Japan). The mice were housed under
standard laboratory conditions with a 12 h light/dark cycle and
free access to water and food.

All experimental procedures were approved by the
Experimental Animal Ethics Committee of Ritsumeikan
University (No. 2018-039).

Mice model for chemotherapy-induced mucositis

Mice were randomly divided into three groups:
1) Control group (saline, intraperitoneally (i.p.) injection; and
water, gavaged orally (p.o.));
2) 5-FU group (50 mg/kg 5-FU, i.p., and water, p.o.); and
3) 5-FU + Glu group (50 mg/kg 5-FU, i.p., and 500 or 1000
mg/kg Glu, p.o.).

All mice in the treatment groups were administered 5-FU
(50 mg/kg, i.p.) once daily, while control mice were
administered saline. Glu (500 or 1000 mg/kg) was administered
twice daily for 13 days, starting 7 days before the initial
treatment with 5-FU. Disease severity was assessed daily among
the mice that were administered 5-FU treatments by measuring
the body weight and scoring the consistency of stool (on a scale
of 0–4) as previously described (5): 0, normal; 1, soft; 2, very
soft; 3, diarrhea; and 4, severe diarrhea.

Histological staining

Twenty-four hours after the final administration of 5-FU, the
mice were sacrificed by cervical dislocation. The ileum tissues
were excised and immersed overnight in 10% formalin. Tissue
samples were excised, embedded in paraffin, sectioned at 4 µm
with a microtome (Leica Microsystems, Nussloch, Germany),

and stained with hematoxylin and eosin (H&E). The length from
the top of the villus to the villus-crypt junction was measured
using a microscope (CX43; Olympus, Tokyo, Japan) at a
magnification of 10×0.25 (numerical aperture; NA).

Immunohistochemistry

Ileum tissue was fixed with 4% paraformaldehyde,
embedded with OCT compound (Sakura Finetek, Tokyo,
Japan), and sectioned (14 µm) at –15°C using a cryostat
micro-tome (Leica Microsystems, Nussloch, Germany).
Proliferative cells were detected with donkey anti-Ki-67
antibody (Abcam, Cambridge, USA; 1:400). Sections were
mounted using ProLong Glass Antifade Mountant with
NucBlue (Thermo Scientific, Waltham, MA, USA). Images
were acquired using a fluorescence microscope (BZ-X710
Keyence, Osaka, Japan) at a magnification of 10×0.3 (NA).
Apoptotic cells were detected using the terminal
deoxynucleotidyl transferase dUTP nick end labeling
(TUNEL) assay and an in situ Apoptosis Detection Kit
(Takara, Shiga, Japan) according to the manufacturer’s
instructions. Sections were mounted using a Mounting
Medium with 4’,6-diamidino-2-phenylindole (DAPI; Vector
Laboratories, Newark, CA, USA). Images were acquired using
a confocal laser scanning microscope (LSM900; Airyscan-
Carl Zeiss, Oberkochen, Germany) at a magnification of
10×0.8 (NA).

Analysis of intestinal permeability

Fluorescein isothiocyanate-dextran (FD-4, Sigma-Aldrich,
St. Louis, MO, USA) at 15 mg/0.2 mL/mouse was dissolved in
water and administered p.o. 4 h before tissue and blood sample
collection. The concentration of FD-4 in the serum was
calculated using a standard curve and a microplate reader (SH-
9500Lab; Corona Electric, Ibaragi, Japan). The ileum tissues
were snap-frozen with OCT compound and sectioned (14 µm) at
–15°C using a cryostat microtome. Images were acquired using
a microscope (CX43) at a magnification of 10×0.25 (NA).

Cell culture

Rat intestinal epithelial cells (IEC-6 cells, Riken, yokohama,
Japan) were cultured in Dulbecco’s Modified Eagle Medium
(Nacalai Tesque, Kyoto, Japan) containing 5% fetal bovine
serum (MP Biomedicals, Irvine, CA, USA), 1% penicillin-
streptomycin (Nacalai Tesque, Kyoto, Japan) and 0.1 IU/mL
insulin (Wako Pure Chemicals, Osaka, Japan).

Trans-epithelial electrical resistance (TEER) measurement

IEC-6 cells were cultured on a transwell membrane
(Corning, Kennebunk, ME, USA), and complete confluent cells
that were incubated for more than 10 days were used as IEC-6
monolayers for experiments. The cells were treated with 1 mM
Glu for 24 h before treating with 100 µM 5-FU; the control was
treated with DMSO. TEER values were measured using a
Millicel-ERS2 Volt ohmmeter (Millipore, Bedford, MA, USA).

Statistical analysis

Data are reported as mean ±standard error (SE) for 4–6
animals per group and 3 experiments per group. Data were
analyzed with GraphPad Prism version 8 (La Jolla, CA, USA)
using one-way analysis of variance (ANOVA) followed by
Dunnett’s multiple comparison test. Statistical significance was
set at p<0.05.
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RESULTS

Effect of glutamate on 5-fluorouracil-induced body weight loss
and diarrhea

The experimental schedule for the induction of intestinal
mucositis by 5-FU and pretreatment with Glu (500 and 1000
mg/kg) to examine the effect of Glu on 5-FU-induced mucositis
in mice is shown in Fig. 1A. Repeated administration of 5-FU
caused significant weight loss beginning on day 4, with mean
body weight decreasing to 87.3±2.0% on day 6 compared to
100% on day 0. Pretreatment with Glu (500 and 1000 mg/kg) did
not affect the 5-FU-induced body weight loss, with mean body
weight decreasing to 85.9±2.4 and 86.4±0.8% on day 6
compared to that on day 0 (100%), respectively (Fig. 1B). As
shown in Fig. 1C, a significant difference in stool consistency
was observed between the 5-FU (red) and 5-FU+Glu (1000
mg/kg) group (blue), with mean diarrhea scores of 3.0±0.3 and
2.0±0.3 on day 6, respectively. Although Glu 1000 mg/kg (blue)
improved 5-FU-induced diarrhea (red) significantly only on day
6, the diarrhea score in 5-FU+Glu groups (green and blue) was
higher than that in the control (black). Glu 500 mg/kg (green)
showed slightly better effects at other time points. These
findings suggest that pretreatment with Glu had no significant
effect on 5-FU-induced body weight loss; however, it
ameliorated 5-FU-induced diarrhea.

Effect of glutamate on histological changes caused by 5-
fluorouracil

Compared to the crypt structure in the control group of mice,
that in the 5-FU (50 mg/kg) group of mice was severely damaged
(Fig. 2A). However, the structure of crypts in the intestine was

improved in the 5-FU+Glu (1000 mg/kg) group compared to that
in the 5-FU group, but comparable to that of the control group 24
h after the final administration of 5-FU. The villus length in the
5-FU group was significantly shortened (117.5±4.9 µm)
compared to that of the control group (174.0±11.0 µm) (Fig. 2B).
In contrast, Glu significantly improved the 5-FU-induced
reduction in villus length (146.3±4.6 µm; p<0.05). These findings
suggest that pretreatment with Glu protects against 5-FU-induced
histological changes.

Changes in 5-fluorouracil-induced intestinal proliferation

Immunohistochemical analysis of the ileum tissues 24 h
after the final administration of 5-FU identified Ki-67 positive
cells, mainly in intestinal crypts. As shown in Fig. 3A and 3B, 5-
FU significantly decreased the proliferation of the intestinal cells
(1.1±0.2 cells/crypt) compared to the control (9.3±0.8
cells/crypt). The administration of Glu significantly inhibited the
decrease in cell proliferation induced by 5-FU (3.1±0.3
cells/crypt). This finding suggests that Glu hinders the decrease
of cell proliferation caused by 5-FU, maintaining intestinal
morphology.

Effect of glutamate on 5-fluorouracil-induced intestinal crypt
apoptosis

A marked increase of TUNEL-positive apoptotic cells
induced by 5-FU (50 mg/kg) was observed on day 1 (24 h after
the initial treatment with 5-FU) (31). As shown in Fig. 4A and
4B, the number of TUNEL-positive apoptotic cells was
significantly higher in the 5-FU-treated group (3.3±0.4 apoptotic
cells/crypt) than that in the control group (0.5±0.2 apoptotic
cells/crypt). On the contrary, pretreatment with Glu (1000
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Fig. 1. Effect of glutamate (Glu) on 5-fluorouracil (5-FU)-induced intestinal mucositis. Body weight and diarrhea scores were checked
daily during the 5-FU (50 mg/kg) treatment. (A): Experimental schedule for the induction of intestinal mucositis by 5-FU and
pretreatment with Glu (500 and 1000 mg/kg). (B): Body weight as a percentage of the body weight on day 0 (day of 5-FU initial
treatment). (C): Diarrhea was scored daily using a 5-grade scale (0–4) during the 5-FU treatment.
Values are expressed as mean ±SE (n=5 for each group). Data were analyzed as *p<0.05 vs. 5-FU group.



mg/kg) significantly decreased the number of apoptotic cells
induced by 5-FU (1.8±0.4 apoptotic cells/crypt). These findings
suggest that Glu inhibits the induction of apoptosis by 5-FU.

Effect of glutamate on intestinal barrier dysfunction caused by
5-fluorouracil

FD-4 was administered p.o. 4 h before blood sample
collection on day 6 to investigate intestinal permeability.
Compared with the control group (0.4±0.1 µg/mL), the FD-4
concentration in the plasma of the 5-FU group (3.7±0.5 µg/mL)
was significantly elevated (p<0.05). Although Glu (1000 mg/kg)
treatment reduced the plasma FD-4 concentration (3.1±0.3
µg/mL) compared to that of the 5-FU (50 mg/kg) treatment, the
decline was not significant (p>0.05; Fig. 5A).

Consistent with the results of the FD-4 concentrations in the
plasma, infiltration of FD-4 in the small intestine was observed.

5-FU treatment increased FD-4 infiltration in the submucosal
layers in the 5-FU group compared to that in the control group
(Fig. 5B). However, a decrease in the infiltration of FD-4 in the
ileum was observed in the 5-FU+Glu group compared to that in
the 5-FU group.

To further clarify the effect of Glu on 5-FU-induced barrier
dysfunction, we performed an in vitro assay using IEC-6 cells.
TEER values measured in IEC-6 monolayers with or without
Glu pretreatment after 24 h of 5-FU treatment revealed that 5-
FU treatment for 24 h significantly decreased TEER values,
wherein Glu pretreatment maintained higher TEER value than
that in control (Fig. 5C). Taken together, the in vivo
experiments suggest that Glu partially prevents the 5-FU-
induced intestinal barrier dysfunction, wherein in vitro Glu
improves the in 5-FU-induced alterations in cell permeability.
These results suggest that Glu strengthens the barrier function
in the small intestine.
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Fig. 2. Effect of Glu on 5-FU-induced histological changes in the small intestine. Ileum tissue was removed 24 h after the end of 5-
FU (50 mg/kg) treatment for 6 days. Glu (1000 mg/kg) was administered twice daily for 13 days, starting 7 days before the initial
treatment with 5-FU. (A): Hematoxylin and eosin (H&E) stained sections and (B): the length from the top of the villus to the villus-
crypt junction as measured using light microscopy. Three of the most representative villi for each mouse were used for measurements.
Values are expressed as mean ±SE (n=5 for each group). Data were analyzed as *p<0.05 vs. 5-FU group. Scale bar, 200 µm (upper)
and 50 µm (lower). 

 

 

   

 

 

  

Fig. 3. Effect of Glu on the 5-FU-induced decrease in intestinal proliferation. Ileum tissue was removed 24 h after the end of 5-FU
(50 mg/kg) treatment for 6 days. Glu (1000 mg/kg) was administered twice daily for 13 days, starting 7 days before the initial treatment
with 5-FU. (A): Proliferative cells detected by immunostaining with Ki-67 antibody (green). (B): Number of Ki-67 positive cells
counted in three of the most representative crypts from each section. Values are expressed as mean ±SE (n=5 for each group). Data
were analyzed as *p<0.05 vs. 5-FU group. Scale bar, 250 µm.



DISCUSSION

In this study, we demonstrate the effects of Glu on 5-FU-
induced intestinal mucositis. The pretreatment duration and dose
of Glu used in this study were based on our previous study and
Animal Equivalent Dose (AED), respectively. In our previous
study, we have shown that pretreatment with 1% MSG for 5 days
recovered non-steroidal anti-inflammatory drug (NSAID)-
induced small intestinal lesions in rats (32). Therefore, in this
study, we followed the scheme of 7 days of pretreatment to
ensure the intestine was in good condition before administering
the aggressive anticancer medicine, 5-FU. Glu constitutes up to

8–10% of amino acid content in the human diet, with a daily
intake of about 10–20 g/day in adults (20). Conversion of these
doses using the AED calculation formula (33; shown in equation
1) revealed that the doses used in this study (1000 mg/kg/day ×2
doses) are equivalent to the recommended daily intake of
humans (with an average weight of 60 kg; 10–20 g/day).
AED (mg/kg) = Human dose (mg/kg) × Km ratio 
[equation 1];
(Km ratio; human Km/mouse Km; human Km=37, mouse Km=3)

Similarly, the clinical dose of 5-FU depends on the regimen
of the cancer treatment; 5–15 mg/kg/day is repeatedly
administered to humans. According to the AED calculation, the
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Fig. 4. Effect of Glu on 5-FU-induced intestinal crypt apoptosis. Ileum tissue was removed 24 h after the end of 5-FU (50 mg/kg)
treatment for 1 day. Glu (1000 mg/kg) was administered twice daily for 8 days, starting 7 days before treatment with 5-FU. (A):
Apoptotic cells detected using TUNEL staining (green). (B): TUNEL-positive cells were counted in three of the most representative
crypts from each section. Values are expressed as mean ±SE (n=4–5 for each group). Data were analyzed as *p<0.05 vs. 5-FU group.
Scale bar, 100 µm.

 

 
 

   

 

Fig. 5. Effect of Glu on the 5-FU-induced increment in intestinal permeability. Blood samples and ileum tissue were collected 24 h
after the end of 5-FU (50 mg/kg) treatment for 6 days. Glu (1000 mg/kg) was administered twice daily for 13 days, starting 7 days
before the initial treatment with 5-FU. Changes in TEER values in IEC-6 monolayers were measured 24 h after 5-FU treatment. (A):
Intestinal permeability evaluated by measuring fluorescein isothiocyanate-dextran (FD-4) concentration in the plasma (B) and
observing infiltrated FD-4 using fluorescence microscopy. (C): The TEER value determined on the day of 5-FU treatment was set as
100%. Values are expressed as mean ±SE (n=5–6 for each group or n=3 for independent experiments). Data were analyzed as *p<0.05
vs. 5-FU group. Scale bar, 250 µm.



equivalent doses of 5-FU for humans (5–15 mg/kg/day) are
61.5–184.5 mg/kg for mice. Based on this calculation, the
selected dose of 5-FU (50 mg/kg dose) corresponds to a low
dose of 4.1 mg/kg in humans.

Diarrhea is frequently observed in patients with cancer
undergoing chemotherapy, and it can be life-threatening (34).
Furthermore, in a previous study, we have shown that 5 FU at 50
mg body weight (i.p.) induces body weight loss and diarrhea in
mice (5). Although the detailed mechanism of the development
of diarrhea induced by 5-FU is complicated and not fully
understood, 5-FU may damage the intestinal mucosa, leading to
apoptosis of the crypt cells and mucin hypersecretion, resulting
in diarrhea (5). This study demonstrated that pretreatment with
Glu did not significantly affect body weight loss but inhibited
diarrhea induced by 5-FU treatment. Although bodyweight loss
and diarrhea are common symptoms of chemotherapeutic-
induced mucositis, studies have shown that diarrhea and
mucositis occur via independent mechanisms (35). Interactions
between epithelial cells and the microbiota greatly affect
nutrition and health through the metabolism of dietary
components (18). Changes in the microbiota (5, 36) and water
transport proteins (37, 38) also result in diarrhea in
chemotherapeutic-induced mucositis. Moreover, dietary proteins
or amino acids profoundly affect the profile and function of the
gut microbiota (39, 40). In particular, poly-gamma-glutamate, an
anionic polymer of Glu, has been shown to modulate the
microbiota by increasing the abundance of Lactobacillales and
reducing the abundance of Clostridiales (41). Together with
these studies, it can be inferred that the alleviative effect of Glu
on 5-FU-induced intestinal mucositis is related to the regulation
of intestinal microbiota.

We have previously reported that 5-FU-induced TUNEL-
positive apoptotic cells in crypts were mainly observed 24 h after
5-FU treatment (5, 31). Although it has been reported that Glu
may regulate cell proliferation in the small intestine (42), the
effect of Glu on the induction of apoptosis has not been explored.
This study shows that Glu inhibited the shortening of villus
length caused by 5-FU related to cell proliferation and apoptosis.
Based on previous reports, the mechanism of ameliorative effects
of Glu against 5-FU-induced mucositis is thought to be
associated with the activation of mTOR signaling. 5-FU induces
downregulation of Akt/mTOR pathways, wherein Glu increases
metabotropic glutamate receptors (mGluR) (43) and activates
mGlu through phosphorylation of mTOR (44). Moreover, Glu
has been reported to attenuate lipopolysaccharide (LPS) induced
intestinal injury by regulating mTOR and suppressing TLR4 and
NOD signaling pathways in weanling pigs (45). These studies
indicate that Glu might be able to activate mTOR signaling
against 5-FU-induced intestinal mucositis. It is reported that
some new factors are involved in process of proliferation and
apoptosis of intestinal cells have beneficial effects on cancer cells
(46). Additionally, Glu is absorbed from the luminal side of the
intestine through a sodium-dependent transporter and
metabolized into other amino acids, and dietary supplementation
of a composite of amino acids has been shown to suppress
intestinal apoptosis (47, 48). However, it is currently unknown
whether Glu directly or indirectly regulates 5 FU-induced
intestinal apoptosis; therefore, further research is required to
elucidate the underlying mechanisms.

Long-term chemotherapy changes the gut microbiota and
increases intestinal permeability, resulting in what is known as a
leaky gut (49). In this study, we confirmed significant FD-4
infiltration, which implies that 5-FU causes an increase in
intestinal permeability. A dysfunctional intestinal barrier
facilitates bacteria translocation and inflammation, which might
be implicated in cancer progression. Therefore, inhibition of
leaky gut caused by chemotherapeutic agents could protect

against not only intestinal mucositis but also anticancer effects.
Glu upregulates the expression of tight junction proteins (21)
and attenuates intestinal barrier injury induced by
lipopolysaccharides (50). While chemotherapy typically causes
intestinal barrier dysfunction by altering (mainly reducing) the
expression of tight junction proteins, the alteration depends on
the type and dosage of chemotherapy (51, 52). The findings of
this study suggest that Glu improves the barrier dysfunction
caused by 5-FU in the small intestine. Salmenkari reported that
angiotensin-converting enzyme inhibitors and angiotensin
receptor blockers alleviate intestinal inflammation associated
with experimental colitis (53). Since whether such
pharmacological agents protect against chemotherapeutic agent-
induced intestinal mucositis is not considered, testing the effect
of such pharmacological agents on 5-FU-induced mucositis is of
our great interest for our further study of the role of Glu.

In summary, our study demonstrated that repeated
administration of 5-FU shortened the villi, disrupted intestinal
crypts, increased apoptosis in the crypts, and reduced intestinal
barrier function. Pretreatment with Glu for 7 days significantly
suppressed the histological changes, decreased intestinal cell
proliferation loss, and apoptosis induced by 5-FU. Therefore,
daily administration of Glu may help suppress the intestinal
damage caused by chemotherapeutic agents such as 5-FU.
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