Project of universal test stand for underwater vehicles’ thrusters

Authors

  • Filip Dudek AGH University of Science and Technology, Mickiewicza 30, 30-059, Cracow, Poland
  • Patrycja Lisak AGH University of Science and Technology, Mickiewicza 30, 30-059, Cracow, Poland
  • Piotr Makulec AGH University of Science and Technology, Mickiewicza 30, 30-059, Cracow, Poland
  • Tomasz Małachowski AGH University of Science and Technology, Mickiewicza 30, 30-059, Cracow, Poland
  • Krzysztof Piekorz AGH University of Science and Technology, Mickiewicza 30, 30-059, Cracow, Poland
  • Kacper Przybylski AGH University of Science and Technology, Mickiewicza 30, 30-059, Cracow, Poland
  • Bartłomiej Borkowski AGH University of Science and Technology, Mickiewicza 30, 30-059, Cracow, Poland

DOI:

https://doi.org/10.26408/113.03

Keywords:

thrusters, ROV, test stand, propellers, propulsion

Abstract

This article presents the design and implementation of the next stage of research conducted as part of the design and construction of an underwater inspection robot. Its purpose was to create a universal test stand for testing the parameters of underwater robots’ thrusters. Factors taken into account when constructing the station were, among others, the possibility of cavitation and its impact on the strength of the device's thruster system, as well as noise pollution of the underwater environment. The sensor system in which the dynamometer is equipped will automatically acquire a number of readings that will allow the design of propulsors to be tested taking into account many parameters. The collected data is sent and analysed using microcontrollers and dedicated, custom-written software. The proposed solution will accelerate and automate research work and allow quick modifications of the mathematical model for describing the underwater vehicle propulsion module.

References

Aktas, B., Atlar, M., Fitzsimmons, P., Shi, W., 2018, An Advanced Joint Time-Frequency Analysis Procedure to Study Cavitation-Induced Noise by Using Standard Series Propeller Data, Ocean Engineering, vol. 170, pp. 329–350.

2. Allegro MicroSystems, LLC 2019, Hall Sensor – Datasheet, Allegro MicroSystems, Manchester, New Hampshire, USA, https://www.pololu.com/file/0J497/ACS711.pdf, viewed 25 May 2019.

3. Andersen, P., Kappel, J.J., Spangenberg, E., 2009, Aspects of Propeller Developments for a Submarine, Proceedings of the First International Symposium on Marine Propulsors – smp’09, First International Symposium on Marine Propulsors, Trondheim, Norway, pp. 554–562.

4. ANSYS, Inc. 2013, ANSYS Fluent User's Guide, ANSYS INC., Canonsburg, Pennsylvania, USA, http://www.pmt.usp.br/ACADEMIC/martoran/NotasModelosGrad/ANSYS Fluent%..., viewed 2 December 2018.

5. Antonelli, G., 2016, Underwater Robots, Springer, Berlin, Germany.

6. Aquarian Hydrophones, 2019, H2a Hydrophone User’s Guide, Anacortes, Washington, USA, http://www.aquarianaudio.com/AqAudDocs/H2a_manual.pdf, viewed 25 May 2019.

7. Avia Semiconductor (Xiamen) Co., Ltd., 2012, HX711 – datasheet, Xiamen, China, https://cdn.sparkfun.com/datasheets/Sensors/ForceFlex/hx711_english.pdf, viewed 25 May 2019.

8. Blue Robotics, 2014, T100 Thruster – Blue Robotics, Blue Robotics, Torrance, California, https://www.bluerobotics.com/store/thrusters/t100-t200-thrusters/t100-th, viewed 26 May 2019.

9. Compaq Computer Corporation; Hewlett-Packard Company; Intel Corporation; Lucent Technologies Inc; Microsoft Corporation; NEC Corporation; Koninklijke Philips Electronics N.V., 2000, Universal Serial Bus Specification, USB Implementers Forum, Inc., n.p., https://www.usb.org/document-library/usb-20-specification, viewed 20 May 2019.

10. Electronicos Caldas, 2013, Loadcell – datasheet, Manizales, Colombia, https://www.electronicoscaldas.-com/datasheet/YZC-131A.pdf, viewed 25 May 2019.

11. Frigo, M., Johnson, S.G., 2019, BenchFFT, MIT, USA, http://www.fftw.org/benchfft/, viewed 15 May 2019.

12. Harris, F.J., 1987, Handbook of Digital Signal Processing, Chapter 3 – Multirate FIR Filters for Interpolating and Desampling', in DF Elliott (ed.), Academic Press, Anaheim, California, USA.

13. International Organization for Standarization/International Electrotechnical Commission, 2008, Programming languages - C - Extensions to support embedded processors, ISO/IEC TR 18037:2008, http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1169.pdf, viewed 27 May 2019.

14. Małachowski, T., Lisak, P., Dudek, F., Stemplewski, M., Przybylski, K., Piekorz, K., Makulec, P., Borkowski, B., 2019, Projekt wielozadaniowej hamowni napędów pojazdów podwodnych, Materiały konferencyjne XXIII Konferencji inżynierii akustycznej i biomedycznej, Kraków-Zakopane, Poland.

15. MATE, 2019, The Marine Advanced Technology Education Center, Monterey Peninsula College, Monterey, California, USA, https://www.marinetech.org/rov-competition-2/, viewed 28 May 2019.

16. Maxim Integrated, 2019, DS18B20 – Datasheet, San Jose, California, USA, https://datasheets.maximintegrated.com/en/ds/DS18B20.pdf, viewed 25 May 2019.

17. Richardson, W.J., Greene Jr., C.R., Malme, C.I., Thomson, D.H. 1995, Marine Mammals and Noise, Academic Press, San Diego, California, USA.

18. Shimana, 2019, UT372 Operating Manual, Digital Measurement Metrology, Inc., Ontario, Canada, http://www.processinstruments.ca/store/index.php?page=shop.getfile&file_, viewed 26 May 2019.

19. SJCam Limited, 2019, SJCam – Sklep internetowy, Shenzen, China, https://sjcamhd.com.pl/kamery-sjcam/kamera-sportowa-sjcam-m20-pl1.html, viewed 25 May 2019.

20. STMicroelectronics, 2016, Description of the STM32F446xC/E products, Geneva, Switzerland, https://www.st.com/resource/en/datasheet/stm32f446re.pdf, viewed 25 May 2019.

21. STMicroelectronics, 2017, Description of STM32F767xx devices, STMicroelectronics, Geneva, Switzerland, https://www.st.com/resource/en/datasheet/stm32f767zi.pdf, viewed 25 May 2019.

22. TE Connectivity, 2019, Vibration sensor – Datasheet, Schaffhausen, Switzerland, https://www.te.com/commerce/DocumentDelivery/DDEController?Action=showdo...¬7FENG_DS¬_Piezo¬_-Minisense_100-NM_A1.pdfCAT-PFS0011, viewed 25 May 2019.

23. YUKO Computer Plant, 2019, Standard interfejsu RS 232C (V.24), Zakład Komputerowy YUKO, Gliwice, Poland, http://www.yuko.com.pl/v24b11.pdf, viewed 20 May 2019.

Downloads

Published

2020-03-31

How to Cite

Dudek, F., Lisak, P., Makulec, P., Małachowski, T., Piekorz, K., Przybylski, K., & Borkowski, B. (2020). Project of universal test stand for underwater vehicles’ thrusters. Scientific Journal of Gdynia Maritime University, 1(113), 29–42. https://doi.org/10.26408/113.03

Issue

Section

Articles