Auto-Oxidation of a Volatile Silicon Compound: A Theoretical Study of the Atmospheric Chemistry of Tetramethylsilane

25 March 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Volatile silicon compounds (VOSiCs) are air pollutants present in both indoor and outdoor environments. Here, tetramethylsilane (TMS) is selected as a model to study the photochemical oxidation mechanisms for VOSiCs using ab initio and RRKM theory / master equation kinetic modelling. Under tropospheric conditions the TMS radical (CH3)3SiCH2• reacts with O2 to produce a stabilized peroxyl radical which is expected to ultimately yield the alkoxyl radical (CH3)3SiCH2O•. At combustion-relevant temperatures, however, a well-skipping reaction to (CH3)3SiO• + HCHO dominates. Importantly, the (CH3)3SiCH2O• radical is predicted to rearrange to (CH3)3SiOCH2• with a very low reaction barrier, enabling an auto-oxidation process involving addition of a second O2. Subsequent oxidation reaction mechanisms of (CH3)3SiOCH2• have been developed, with the major product predicted to be the ester (CH3)3SiOCHO, an experimentally observed TMS oxidation product. The production of substantially oxygenated compounds following a single radical initiation reaction has implications for the ability of VOSiCs to contribute to ozone and particle formation in both outdoor and indoor environments.

Keywords

Tetramethylsilane
photochemical oxidation
mechanism
kinetics
ester

Supplementary materials

Title
Description
Actions
Title
TMS supporting information combined
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.