Wu LM, Fan TJ, Wei SR, Xu YJ, Zhang Y et al. All-optical logic devices based on black arsenic–phosphorus with strong nonlinear optical response and high stability. Opto-Electron Adv 5, 200046 (2022). doi: 10.29026/oea.2022.200046
Citation: Wu LM, Fan TJ, Wei SR, Xu YJ, Zhang Y et al. All-optical logic devices based on black arsenic–phosphorus with strong nonlinear optical response and high stability. Opto-Electron Adv 5, 200046 (2022). doi: 10.29026/oea.2022.200046

Original Article Open Access

All-optical logic devices based on black arsenic–phosphorus with strong nonlinear optical response and high stability

More Information
  • These authors contributed equally to this work

  • Corresponding author: H Zhang, E-mail: hzhang@szu.edu.cn
  • The Kerr nonlinearity in two-dimensional (2D) nanomaterials is emerging as an appealing and intriguing research area due to their prominent light processing, modulation, and manipulation abilities. In this contribution, 2D black arsenic-phosphorus (B-AsP) nanosheets (NSs) were applied in nonlinear photonic devices based on spatial self-phase modulation (SSPM) method. By applying the Kerr nonlinearity in 2D B-AsP, an all-optical phase-modulated system is proposed to realize the functions of “on” and “off” in all-optical switching. By using the same all-optical phase-modulated system, another optical logic gate is proposed, and the logical “or” function is obtained based on the 2D B-AsP NSs dispersions. Moreover, by using the SSPM method, a 2D B-AsP/SnS2 hybrid structure is fabricated, and the result illustrates that the hybrid structure possesses the ability of the unidirectional nonlinear excitation, which helps in obtaining the function of spatial asymmetric light propagation. This function is considered an important prerequisite for the realization of diode functionalization, which is believed to be a factor in important basis for the design of isolators as well. The initial investigations indicate that 2D B-AsP is applicable for designing optical logical devices, which can be considered as an important development in all-optical information processing.
  • 加载中
  • [1] Paredes-Barato D, Adams CS. All-optical quantum information processing using rydberg gates. Phys Rev Lett 112, 040501 (2014). doi: 10.1103/PhysRevLett.112.040501

    CrossRef Google Scholar

    [2] Larger L, Soriano MC, Brunner D, Appeltant L, Gutierrez JM et al. Photonic information processing beyond Turing: an optoelectronic implementation of reservoir computing. Opt Express 20, 3241–3249 (2012). doi: 10.1364/OE.20.003241

    CrossRef Google Scholar

    [3] Wang C, Chen QY, Chen HL, Liu J, Song YF et al. Boron quantum dots all-optical modulator based on efficient photothermal effect. Opto-Electron Adv 4, 200032 (2021).

    Google Scholar

    [4] Zheng JL, Tang X, Yang ZH, Liang ZM, Chen YX et al. Few-layer phosphorene-decorated microfiber for all-optical thresholding and optical modulation. Adv Opt Mater 5, 1700026 (2017). doi: 10.1002/adom.201700026

    CrossRef Google Scholar

    [5] Wu LM, Huang WC, Wang YZ, Zhao JL, Ma DT et al. 2D tellurium based high-performance all-optical nonlinear photonic devices. Adv Funct Mater 29, 1806346 (2019). doi: 10.1002/adfm.201806346

    CrossRef Google Scholar

    [6] Liao K, Chen Y, Yu ZC, Hu XY, Wang XY et al. All-optical computing based on convolutional neural networks. Opto-Electron Adv 4, 200060 (2021).

    Google Scholar

    [7] Lu L, Wang WH, Wu LM, Jiang XT, Xiang YJ et al. All-optical switching of two continuous waves in few layer bismuthene based on spatial cross-phase modulation. ACS Photonics 4, 2852–2861 (2017). doi: 10.1021/acsphotonics.7b00849

    CrossRef Google Scholar

    [8] Wu YL, Wu Q, Sun F, Cheng C, Meng S et al. Emergence of electron coherence and two-color all-optical switching in MoS2 based on spatial self-phase modulation. Proc Natl Acad Sci USA 112, 11800–11805 (2015). doi: 10.1073/pnas.1504920112

    CrossRef Google Scholar

    [9] Ji W, Chen WZ, Lim S, Lin JY, Guo ZX. Gravitation-dependent, thermally-induced self-diffraction in carbon nanotube solutions. Opt Express 14, 8958–8966 (2006). doi: 10.1364/OE.14.008958

    CrossRef Google Scholar

    [10] Wu R, Zhang YL, Yan SC, Bian F, Wang WL et al. Purely coherent nonlinear optical response in solution dispersions of graphene sheets. Nano Lett 11, 5159–5164 (2011). doi: 10.1021/nl2023405

    CrossRef Google Scholar

    [11] Wang GZ, Zhang SF, Umran FA, Cheng X, Dong NN et al. Tunable effective nonlinear refractive index of graphene dispersions during the distortion of spatial self-phase modulation. Appl Phys Lett 104, 141909 (2014). doi: 10.1063/1.4871092

    CrossRef Google Scholar

    [12] Li LK, Yu YJ, Ye GJ, Ge QQ, Ou XD et al. Black phosphorus field-effect transistors. Nat Nanotechnol 9, 372–377 (2014). doi: 10.1038/nnano.2014.35

    CrossRef Google Scholar

    [13] Liu H, Neal AT, Zhu Z, Luo Z, Xu XF et al. Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano 8, 4033–4041 (2014). doi: 10.1021/nn501226z

    CrossRef Google Scholar

    [14] Liu H, Du YC, Deng YX, Ye PD. Semiconducting black phosphorus: synthesis, transport properties and electronic applications. Chem Soc Rev 44, 2732–2743 (2015). doi: 10.1039/C4CS00257A

    CrossRef Google Scholar

    [15] Hao CX, Wen FS, Xiang JY, Yuan SJ, Yang BC et al. Liquid-exfoliated black phosphorous nanosheet thin films for flexible resistive random access memory applications. Adv Funct Mater 26, 2016–2024 (2016). doi: 10.1002/adfm.201504187

    CrossRef Google Scholar

    [16] Han ST, Hu L, Wang XD, Zhou Y, Zeng YJ et al. Black phosphorus quantum dots with tunable memory properties and multilevel resistive switching characteristics. Adv Sci 4, 1600435 (2017). doi: 10.1002/advs.201600435

    CrossRef Google Scholar

    [17] Zheng JL, Yang ZH, Si C, Liang ZM, Chen X et al. Black phosphorus based all-optical-signal-processing: toward high performances and enhanced stability. ACS Photonics 4, 1466–1476 (2017). doi: 10.1021/acsphotonics.7b00231

    CrossRef Google Scholar

    [18] Wang K, Chen YX, Zheng JL, Ge YQ, Ji JH et al. Black phosphorus quantum dot based all-optical signal processing: ultrafast optical switching and wavelength converting. Nanotechnology 30, 415202 (2019). doi: 10.1088/1361-6528/ab31b4

    CrossRef Google Scholar

    [19] Qiu M, Wang D, Liang WY, Liu LP, Zhang Y et al. Novel concept of the smart NIR-light–controlled drug release of black phosphorus nanostructure for cancer therapy. Proc Natl Acad Sci USA 115, 501–506 (2018). doi: 10.1073/pnas.1714421115

    CrossRef Google Scholar

    [20] Tao W, Zhu XB, Yu XH, Zeng XW, Xiao QL et al. Black phosphorus nanosheets as a robust delivery platform for cancer theranostics. Adv Mater 29, 1603276 (2017). doi: 10.1002/adma.201603276

    CrossRef Google Scholar

    [21] Hu W, Lin L, Yang C, Dai J, Yang JL. Edge-modified phosphorene nanoflake heterojunctions as highly efficient solar cells. Nano Lett 16, 1675–1682 (2016). doi: 10.1021/acs.nanolett.5b04593

    CrossRef Google Scholar

    [22] Dai J, Zeng XC. Bilayer phosphorene: effect of stacking order on bandgap and its potential applications in thin-film solar cells. J Phys Chem Lett 5, 1289–1293 (2014). doi: 10.1021/jz500409m

    CrossRef Google Scholar

    [23] Abbas AN, Liu BL, Chen L, Ma YQ, Cong S et al. Black phosphorus gas sensors. ACS Nano 9, 5618–5624 (2015). doi: 10.1021/acsnano.5b01961

    CrossRef Google Scholar

    [24] Wu LM, Guo J, Wang QK, Lu SB, Dai XY et al. Sensitivity enhancement by using few-layer black phosphorus-graphene/TMDCs heterostructure in surface plasmon resonance biochemical sensor. Sens Actuators B Chem 249, 542–548 (2017). doi: 10.1016/j.snb.2017.04.110

    CrossRef Google Scholar

    [25] Zhang JD, Yu XF, Han WJ, Lv BS, Li XH et al. Broadband spatial self-phase modulation of black phosphorous. Opt Lett 41, 1704–1707 (2016). doi: 10.1364/OL.41.001704

    CrossRef Google Scholar

    [26] Xu YH, Wang WX, Ge YQ, Guo HY, Zhang XJ et al. Stabilization of black phosphorous quantum dots in pmma nanofiber film and broadband nonlinear optics and ultrafast photonics application. Adv Funct Mater 27, 1702437 (2017). doi: 10.1002/adfm.201702437

    CrossRef Google Scholar

    [27] Doganov RA, O’Farrell ECT, Koenig SP, Yeo YT, Ziletti A et al. Transport properties of pristine few-layer black phosphorus by van der Waals passivation in an inert atmosphere. Nat Commun 6, 6647 (2015). doi: 10.1038/ncomms7647

    CrossRef Google Scholar

    [28] Favron A, Gaufrès E, Fossard F, Phaneuf-L’Heureux AL, Tang NYW et al. Photooxidation and quantum confinement effects in exfoliated black phosphorus. Nat Mater 14, 826–832 (2015). doi: 10.1038/nmat4299

    CrossRef Google Scholar

    [29] Wood JD, Wells SA, Jariwala D, Chen KS, Cho E et al. Effective passivation of exfoliated black phosphorus transistors against ambient degradation. Nano Lett 14, 6964–6970 (2014). doi: 10.1021/nl5032293

    CrossRef Google Scholar

    [30] Guo ZN, Chen S, Wang ZZ, Yang ZY, Liu F et al. Metal-ion-modified black phosphorus with enhanced stability and transistor performance. Adv Mater 29, 1703811 (2017). doi: 10.1002/adma.201703811

    CrossRef Google Scholar

    [31] Tang X, Liang WY, Zhao JL, Li ZJ, Qiu M et al. Fluorinated phosphorene: electrochemical synthesis, atomistic fluorination, and enhanced stability. Small 13, 1702739 (2017). doi: 10.1002/smll.201702739

    CrossRef Google Scholar

    [32] Zhao YT, Wang HY, Huang H, Xiao QL, Xu YH et al. Surface coordination of black phosphorus for robust air and water stability. Angew Chem Int Ed 55, 5003–5007 (2016). doi: 10.1002/anie.201512038

    CrossRef Google Scholar

    [33] Liu BL, Köpf M, Abbas AN, Wang XM, Guo QS et al. Black arsenic–phosphorus: layered anisotropic infrared semiconductors with highly tunable compositions and properties. Adv Mater 27, 4423–4429 (2015). doi: 10.1002/adma.201501758

    CrossRef Google Scholar

    [34] Long MS, Gao AY, Wang P, Xia H, Ott C et al. Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus. Sci Adv 3, e1700589 (2017). doi: 10.1126/sciadv.1700589

    CrossRef Google Scholar

    [35] Yuan SF, Shen CF, Deng BC, Chen XL, Guo QS et al. Air-stable room-temperature mid-infrared photodetectors based on hBN/Black arsenic phosphorus/hBN heterostructures. Nano Lett 18, 3172–3179 (2018). doi: 10.1021/acs.nanolett.8b00835

    CrossRef Google Scholar

    [36] Amani M, Regan E, Bullock J, Ahn GH, Javey A. Mid-wave infrared photoconductors based on black phosphorus-arsenic alloys. ACS Nano 11, 11724–11731 (2017). doi: 10.1021/acsnano.7b07028

    CrossRef Google Scholar

    [37] Qiao JS, Kong XH, Hu ZX, Yang F, Ji W. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat Commun 5, 4475 (2014). doi: 10.1038/ncomms5475

    CrossRef Google Scholar

    [38] Keyes RW. The electrical properties of black phosphorus. Phys Rev 92, 580–584 (1953). doi: 10.1103/PhysRev.92.580

    CrossRef Google Scholar

    [39] Warschauer D. Electrical and optical properties of crystalline black phosphorus. J Appl Phys 34, 1853–1860 (1963). doi: 10.1063/1.1729699

    CrossRef Google Scholar

    [40] Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54, 11169–11186 (1996). doi: 10.1103/PhysRevB.54.11169

    CrossRef Google Scholar

    [41] Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett 77, 3865–3868 (1996). doi: 10.1103/PhysRevLett.77.3865

    CrossRef Google Scholar

    [42] Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59, 1758–1775 (1999).

    Google Scholar

    [43] Durbin SD, Arakelian SM, Shen YR. Laser-induced diffraction rings from a nematic-liquid-crystal film. Opt Lett 6, 411–413 (1981). doi: 10.1364/OL.6.000411

    CrossRef Google Scholar

    [44] Wu LM, Dong YZ, Zhao JL, Ma DT, Huang WC et al. Kerr nonlinearity in 2D graphdiyne for passive photonic diodes. Adv Mater 31, 1807981 (2019). doi: 10.1002/adma.201807981

    CrossRef Google Scholar

    [45] Wu JJ, Tao YR, Wu XC, Chun Y. Nonlinear optical absorption of SnX2 (X=S, Se) semiconductor nanosheets. J Alloys Compd 713, 38–45 (2017). doi: 10.1016/j.jallcom.2017.04.177

    CrossRef Google Scholar

    [46] Ye GL, Gong YJ, Lei SD, He YM, Li B et al. Synthesis of large-scale atomic-layer SnS2 through chemical vapor deposition. Nano Res 10, 2386–2394 (2017). doi: 10.1007/s12274-017-1436-3

    CrossRef Google Scholar

  • Supplementary information for All optical logic devices based on black arsenic–phosphorus with strong nonlinear optical response and high stability
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Article Metrics

Article views(5719) PDF downloads(1266) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint