تحلیل تغییرات زمانی شدت جزیره حرارتی شبانه شهر تهران

نوع مقاله : مقاله پژوهشی

نویسنده

استادیار اقلیم شناسی گروه جغرافیا، دانشکده علوم انسانی و اجتماعی، دانشگاه مازندران

چکیده

پژوهش پیش رو سعی دارد تا با بهره‌گیری از تصاویر ماهواره‌ای MODIS، درجه حرارت شبانه سطح زمین را در شهر تهران و حومه آن مورد واکاوی قرار دهد. بدین منظور ویژگی‌های درجه حرارت شبانه در شهر تهران و حومه آن از طریق داده‌های MOD11A2 نسخه 6 به صورت میانگین‌های 8 روزه برای شب (22:30) با قدرت تفکیک 1 کیلومتر طی سال‌های 2000 تا 2021 جمع‌آوری شدند. سری زمانی درجه حرارت سطح زمین در مرکز و حومه شهر تهران بدست آمد و از طریق آن سری زمانی شدت جزیره حرارتی سطح زمین طی شب محاسبه گردید. یافته‌های پژوهش نشان داد که روند تغییرات درجه حرارت شبانه در مرکز شهر تهران کاملا متفاوت از حومه آن است بدین صورت که همزمان با افزایش معنادار درجه حرارت شبانه سطح زمین در حومه شهر، روند معناداری در درجه حرارت شبانه سطح زمین در مرکز شهر مشاهده نمی‌شود. از این رو آهنگ شتابان افزایش درجه حرارت شبانه در حومه شهر نسبت به مرکز آن، روند نزولی جزیره حرارتی سطح شهر را سبب شده است بدین صورت که در مقیاس فصلی و سالانه روند کاهشی شدت جزیره حرارتی سطح شهر در سطح اطمینان 99 درصد معنادار بوده است. با توجه به نتایج بدست آمده می توان اظهار داشت، اگرچه در سال‌های اخیر زمین گرمتر شده است ولی میزان گرم شدن مرکز شهر و حومه آن به یک اندازه نبوده است بنابراین شدت جزیره حرارتی شبانه سطح زمین در تهران یک روند کاهشی معنادار را به صورت فصلی و سالانه ثبت کرده است.

کلیدواژه‌ها


عنوان مقاله [English]

Temporal analysis of nighttime surface urban heat island intensity in Tehran

نویسنده [English]

  • Taher Safarrad
Assistant Professor of Climatology, Geography and Urban Planning Department, University of Mazandaran, Babolsar
چکیده [English]

This research tries to investigate the nighttime land surface temperature (NLST) (22:30) in Tehran City and its suburbs by using MODIS satellite images from 2000 to 2021. In this regard, NLST characteristics in the urban and suburbs of Tehran were obtained through the MOD11A2 Version 6 product. These data provide an average 8-day per-pixel land surface temperature with a 1-kilometer spatial resolution in a 1200 by 1200 km grid. The NLST time series were obtained for the urban and suburbs, through which the nighttime surface urban heat island (NSUHI) time series were calculated. The results showed that the trend of NLST in the urban is completely different from suburbs. Although NLST shows a significant declining trend in the suburbs, it does not show any significant trend in the urban, Hence the further increase of NLST in the suburbs has caused the downward trend of NSUHI. The results of Mann-Kendall showed that the NSUHI time series had experienced a decreasing trend seasonally and annually, which is significant at the 99% confidence level. Although the earth has become warmer in recent years, the rate of warming in the urban and suburbs has not been the same, so NSUHI in Tehran has recorded a significant downward trend seasonally and annually.

کلیدواژه‌ها [English]

  • Nighttime Urban Heat Island
  • Nighttime Land Surface Temperature
  • MODIS
  • Tehran
  1. درویشی بلورانی علی، علوی پناه سیدکاظم، ملکی محمد، بیات رضا،‌هاشمی دره بادامی سیروس، ۱۳۹۷. تحلیل تغییرات جزیره حرارتی سطوح شهری در روز و شب با استفاده از محصولات چند زمانه سنجنده مادیس (مطالعه موردی: کلانشهر تهران)، فصلنامه تحقیقات کاربردی علوم جغرافیایی، ۱۹(۵۲)، ۱۱۳-۱۲۸.
  2. رحیم زاده، فاطمه، 1390. روشهای آماری در مطالعات هواشناسی و اقلیم‌شناسی، انتشارات آب و هوا، تهران.
  3. ساسان پور فرزانه، ضیاییان پرویز، بهادری مریم، ۱۳۹۲. بررسی رابطه کاربری و پوشش اراضی و جزایر حرارتی شهر تهران، فصلنامه جغرافیا، ۱۱(۳۹)، ۲۵۷.
  4. صادقی نیا علیرضا، علیجانی بهلول، ضیاییان فیروزآبادی پرویز، ۱۳۹۱. تحلیل فضایی- زمانی جزیره حرارتی کلان شهر تهران با استفاده از سنجش از دور و سیستم اطلاعات جغرافیایی، نشریه جغرافیا و مخاطرات محیطی، ۱(۴)، ۱.
  5. صفرراد طاهر، منصوری نیا مهران، انتظامی هیرش، 1398. بیلان تابش و کاربری اراضی شهری). نمونه‌موردی: شهر کرمانشاه (نشریه تحقیقات کاربردی علوم جغرافیایی، ۱۹ (۵۳) :۲۳۱-۲۱۷.
  6. علی طالشی محمدصالح، ستوده احد، صبوحی مرتضی، نیازی یعقوب، ۱۳۹۳. ارزیابی اثرات پوشش زمین بر دمای سطح زمین با کاربرد سنجش از دور حرارتی مطالعه موردی: در تهران، مجله پژوهشهای محیط زیست، ۵(۱۰)، ۶۹.
  7. مجنونی توتاخانه علی، رمضانی محمد ابراهیم، ۱۳۹۸. بررسی و ارزیابی وضعیت جزیره حرارتی کلان شهر تهران با استفاده از تصاویر ماهواره ای، نشریه محیط زیست طبیعی، ۷۲(۱)، ۲۹-۴۳.
  8. Bjurström, A., and Polk, M. 2011. Physical and economic bias in climate change research: a scientometric study of IPCC Third Assessment Report. Climatic Change, 108(1-2), 1-22.
  9. Chandler, T.J. 1967. Night-time temperatures in relation to Leicester's urban form. Meteorol. Mag., 96, 244-250.
  10. Chandler, T.J. 1976. The climate of towns. The climate of the British Isles, 307-329.
  11. Earl, N., Simmonds, I., and Tapper, N. 2016. Weekly cycles in peak time temperatures and urban heat island intensity. Environmental Research Letters, 11(7), 074003.
  12. Holderness, T., Barr, S., Dawson, R., and Hall, J. 2013. An evaluation of thermal Earth observation for characterizing urban heatwave event dynamics using the urban heat island intensity metric. International journal of remote sensing, 34(3), 864-884.
  13. Howard, L. 1833. The climate of London: deduced from meteorological observations made in the metropolis and at various places around it (Vol. 3). Harvey and Darton, J. and A. Arch, Longman, Hatchard, S. Highley [and] R. Hunter.
  14. Kammuang-Lue, N., Sakulchangsatjatai, P., Sangnum, P., and Terdtoon, P. 2015. Influences of population, building, and traffic densities on urban heat island intensity in Chiang Mai City, Thailand. Thermal Science, 19(suppl. 2), 445-455.
  15. Kim, Y.H., and Baik, J.J. 2002. Maximum urban heat island intensity in Seoul. Journal of applied meteorology, 41(6), 651-659.
  16. Li, D., Bou-Zeid, E., and Oppenheimer, M. 2014. The effectiveness of cool and green roofs as urban heat island mitigation strategies. Environmental Research Letters, 9(5), 055002.
  17. Li, D., Sun, T., Liu, M., Yang, L., Wang, L., and Gao, Z. 2015. Contrasting responses of urban and rural surface energy budgets to heat waves explain synergies between urban heat islands and heat waves. Environmental Research Letters, 10(5), 054009.
  18. Liu, X., Zhou, Y., Yue, W., Li, X., Liu, Y., and Lu, D. 2020. Spatiotemporal patterns of summer urban heat island in Beijing, China using an improved land surface temperature. Journal of Cleaner Production, 257, 120529.
  19. Manoli, G., Fatichi, S., Schläpfer, M., Yu, K., Crowther, T.W., Meili, N., ... and Bou-Zeid, E. 2019. Magnitude of urban heat islands largely explained by climate and population. Nature, 573(7772), 55-60.
  20. Memon, R.A., Leung, D.Y., and Liu, C.H. 2009. An investigation of urban heat island intensity (UHII) as an indicator of urban heating. Atmospheric Research, 94(3), 491-500.
  21. Oke, T. R. 1973. City size and the urban heat island. Atmospheric Environment (1967), 7(8), 769-779.
  22. Oke, T.R. 1976. The distinction between canopy and boundary‐layer urban heat islands. Atmosphere, 14(4), 268-277.
  23. Oke, T. R. 1982. The energetic basis of the urban heat island. Quarterly Journal of the Royal Meteorological Society, 108(455), 1-24.
  24. Oke, T.R. 1984. Methods in urban climatology. Applied Climatology, 14, 19-29.
  25. Ramamurthy, P., Li, D., and Bou-Zeid, E. 2017. High-resolution simulation of heatwave events in New York City. Theoretical and applied climatology, 128(1-2), 89-102.
  26. Ritchie, H., and Roser, M. 2018. Urbanization. Our world in data.
  27. Runnalls, K.E., and Oke, T.R. 2000. Dynamics and controls of the near-surface heat island of Vancouver, British Columbia. Physical Geography, 21(4), 283-304.
  28. Scott, A.A., Waugh, D.W., and Zaitchik, B.F. 2018. Reduced Urban Heat Island intensity under warmer conditions. Environmental Research Letters, 13(6), 064003.
  29. Stewart, I. D., Krayenhoff, E.S., Voogt, J.A., Lachapelle, J A., Allen, M.A., and Broadbent, A. M. 2021. Time Evolution of the Surface Urban Heat Island. Earth's Future, 9(10), e2021EF002178.

 

  1. Van Hove, L.W.A., Jacobs, C.M.J., Heusinkveld, B.G., Elbers, J.A., Van Driel, B.L., and Holtslag, A.A.M. 2015. Temporal and spatial variability of urban heat island and thermal comfort within the Rotterdam agglomeration. Building and Environment, 83, 91-103.
  2. Wan, Z., Hook, S., and Hulley, G. 2015. MOD11A2 MODIS/Terra Land Surface Temperature/Emissivity 8-Day L3 Global 1km SIN Grid V006 [Data set]. NASA EOSDIS Land Processes DAAC. Accessed 2021-09-28 from https://doi.org/10.5067/MODIS/MOD11A2.006.
  3. Weng, Q., Rajasekar, U., and Hu, X. 2011. Modeling urban heat islands and their relationship with impervious surface and vegetation abundance by using ASTER images. IEEE Transactions on Geoscience and Remote Sensing, 49(10), 4080-4089.
  4. Yamamoto, Y. 2006. Measures to mitigate urban heat islands. NISTEP Science & Technology Foresight Center.
  5. Yang, L., Qian, F., Song, D. X., and Zheng, K. J. 2016. Research on urban heat-island effect. Procedia Engineering, 169, 11-18.
  6. Yao, R., Wang, L., Huang, X., Niu, Z., Liu, F., and Wang, Q. 2017. Temporal trends of surface urban heat islands and associated determinants in major Chinese cities. Science of the Total Environment, 609, 742-754.
  7. Zhou, B., Rybski, D., and Kropp, J.P. 2013. On the statistics of urban heat island intensity. Geophysical research letters, 40(20), 5486-5491.
  8. https://www.amar.org.ir
  9. https://www.tehran-agri.ir