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Abstract. In this work, we establish pathwise functional Itô formulas for non-
smooth functionals of real-valued continuous semimartingales. Under finite (p, q)-
variation regularity assumptions in the sense of two-dimensional Young integration
theory, we establish a pathwise local-time decomposition

Ft(Xt) = F0(X0) +

∫ t

0

∇hFs(Xs)ds+

∫ t

0

∇wFs(Xs)dX(s)

− 1

2

∫ +∞

−∞

∫ t

0

(∇wx Fs)(xXs)d(s,x)`
x(s); 0 6 t 6 T.

Here, Xt = {X(s); 0 6 s 6 t} is the continuous semimartingale path up to
time t ∈ [0, T ], ∇h is the horizontal derivative, (∇wx Fs)(xXs) is a weak deriv-
ative of F with respect to the terminal value x of the modified path xXs and
∇wFs(Xs) = (∇wx Fs)(xXs)|x=X(s). The double integral is interpreted as a space-
time 2D-Young integral with differential d(s,x)`

x(s), where ` is the local-time of
X. Under less restrictive joint variation assumptions on (∇wx Ft)(xXt), functional
Itô formulas are established when X is a stable symmetric process. Singular cases
when x 7→ (∇wx Ft)(xXt) is smooth off random bounded variation curves are also
discussed. The results of this paper extend previous change of variable formulas in
Cont and Fournié (2013) and also Peskir (2005), Feng and Zhao (2006) and Elwor-
thy et al. (2007) in the context of path-dependent functionals. In particular, we
provide a pathwise path-dependent version of the classical Föllmer-Protter-Shiryaev
formula for continuous semimartingales given by Föllmer et al. (1995).
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1. Introduction

The celebrated Itô formula is the fundamental change of variables formula deeply
connected with the concept of quadratic variation of semimartingales. It was ini-
tially conceived by Kiyosi Itô and since then many authors have been extending his
formula either relaxing smoothness of the transformation or generalizing to more
general stochastic processes.

After Itô, perhaps the major contribution towards a change of variables formula
without C2 assumption was due to the classical works by Tanaka, Wang and Meyer
by making a beautiful use of the local time concept earlier introduced by Paul Lévy.
They proved that if F : R→ R is convex then

F (B(t)) = F (B(0)) +

∫ t

0

∇−F (B(s))dB(s) +
1

2

∫ ∞
−∞

`x(t)ρ(dx)

where B is the Brownian motion, `x(t) is the correspondent local time two-parame-
ter process at (t, x) ∈ R+×R and ρ is the Radon measure related to the generalized
second-order derivative of F . A different extension to absolutely continuous func-
tions with bounded derivatives is due to Bouleau and Yor (1981)

F (B(t)) = F (B(0)) +

∫ t

0

∇F (B(s))dB(s)− 1

2

∫ ∞
−∞
∇F (x)dx`

x(t) (1.1)

and later on extended by Föllmer et al. (1995) and Eisenbaum (2000) to func-

tions in the Sobolev space H1,2
loc(R) of generalized functions with weak derivatives

in L2
loc(R). In this case, the correction term in (1.1) is given by an dx`

x(t)-integral
in L2(P)-sense where P is the Wiener measure. See also Bardina and Rovira (2007)
for the case of elliptic diffusions and Russo and Vallois (1996) for the general semi-
martingale case composed with C1 functions.

Inspired by the two-dimensional Lebesgue-Stieltjes integration methodology of
Elworthy et al. (2007), a different pathwise argument was introduced by Feng and
Zhao (2006, 2008) based on Young/Rough Path (see e.g Friz and Victoir (2010))
integration theory. They proved that the local time curves x 7→ `x(t) of any con-
tinuous semimartingale X admits p-variation (p > 2) almost surely for any t > 0.

In this case, the pathwise rough path integral
∫ +∞
−∞ ∇−F (x)dx`

x(t) can be used as
the correction term in the change of variable formula for X as follows

F (X(t))− F (X(0)) =

∫ t

0

∇−F (X(s))dX(s)− 1

2

∫ ∞
−∞
∇−F (x)dx`

x(t), 0 6 t 6 T,

where F : R → R is an absolutely continuous function with left-continuous left
derivative ∇−F with finite p-variation where 1 6 p 6 3.

One important class of semimartingale transformations which cannot be recov-
ered by the previous methods is the following one

Xt 7→ Ft(Xt); t > 0 (1.2)

where Xt = {X(u); 0 6 u 6 t} is the semimartingale path up to time t and
Ft : C([0, t];R) → R; t > 0 is a functional defined on the space of real-valued
continuous functions C([0, t];R) on the intervals [0, t]; t > 0. Path-dependent trans-
formations of type (1.2) have been studied in the context of the so-called functional
stochastic calculus introduced by Dupire (2009) and systematically studied by Cont
and Fournié (2013, 2010). In fact, this approach has been recently studied by many
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authors in the context of path-dependent PDEs and path-dependent optimal sto-
chastic control problems. We refer the reader to e.g Ekren et al. (2014); Leão et al.
(2015); Cosso et al. (2014); Cosso and Russo (2014); Flandoli (1996); Buckdahn
et al. (2015); C. and Zhang (2016) for a detailed account on this literature. In
this case, the usual space-time derivative operators are replaced by the so-called
horizontal and vertical derivative operators, given by ∇hF and ∇vF , respectively.
Under suitable regularity conditions (C1,2 in the functional sense), one can show
that if X is a continuous semimartingale then

Ft(Xt) = F0(X0) +

∫ t

0

∇hFs(Xs)ds+

∫ t

0

∇vFs(Xs)dX(s)

+
1

2

∫ t

0

∇v,2Fs(Xs)d[X,X](s)

(1.3)

for t > 0, where ∇v,2F is the second order vertical derivative and [X,X] is the
standard quadratic variation of X. See Cont and Fournié (2013); Dupire (2009) for
further details.

Under weaker regularity assumptions, Leão et al. (2015) have extended (1.3) for
functionals F which do not admit second order vertical derivatives. By means of a
weaker version of functional calculus, the authors show that path dependent func-
tionals with rough regularity in the sense of (p, q)-variation are weakly differentiable
and, in particular, they satisfy

Ft(Bt) = F0(B0) +

∫ t

0

DFs(Bs)dB(s) +

∫ t

0

DF,hFs(Bs)ds

(1.4)

− 1

2

∫ t

0

∫ +∞

−∞
∂xFs(

xBs)d(s,x)`
x(s),

where the operators (DF,DF,hF ) are similar in nature to (∇vF (B),∇hF (B)). The
d(s,x)`

x(s)-integral in (1.4) is considered in the (p, q)-variation sense based on the
pathwise 2D Young integral (see Young (1938)) where ` is the Brownian local-time.
The integrand is a suitable space derivative of F composed with a “terminal value
modification” xBt defined by the following pathwise operation: For a given path
ηt : C([0, t];R)→ R, then

xηt(u) :=

{
η(u); if 0 6 u < t

x; if u = t.

In this work, our goal is to study a number of path-dependent Itô formulas F (X)
beyond the smooth case of functionals with C1,2-regularity, where X is an arbi-
trary semimartingale with continuous paths. Based on the framework of pathwise
functional calculus, we establish a pathwise local-time decomposition

Ft(Xt) = F0(X0) +

∫ t

0

∇hFs(Xs)ds+

∫ t

0

∇wFs(Xs)dX(s)

− 1

2

∫ +∞

−∞

∫ t

0

(∇wx Fs)(xXs)d(s,x)`
x(s) (1.5)

where (∇wx Fs)(xXs) is a weak derivative of F with respect to the terminal value
x of the modified path xXs and (∇wFs)(Xs) = (∇wx Fs)(xXs)|X(s)=x. The double
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integral is interpreted as a space-time 2D-Young integral with differential d(s,x)`
x(s)

where ` is the local time of X. We study differential representations of form (1.5)
under a set of assumptions related to rough variations in time and space:

Two-parameter Hölder control : For each L > 0, there exists a constant C such that

|∆i∆j(∇wx Fti)(xjcti)| ≤ C|ti − ti−1|1/p̃|xj − xj−1|1/q̃ (1.6)

for every partition {ti}Ni=0 × {xj}N
′

j=0 of [0, T ]× [−L,L] and c ∈ C([0, T ];R). Here,
∆j is the usual first difference operator and p̃, q̃ > 1 are constants such that

α+
1

p̃
> 1 and

(1− α)

2 + δ
+

1

q̃
> 1

for some α ∈ (0, 1) and δ > 0.

General (a, b)-variation: In the particular case when X is a continuous symmetric
stable process with index 1 < β 6 2, we establish formula (1.5) under general
(a, b)-variation regularity assumption

sup
π

{[
N ′∑
j=1

[ N∑
i=1

|∆i∆j(∇wx Fti)(xjcti)|a
] b
a

] 1
b
}
<∞; c ∈ C([0, T ];R) (1.7)

for 1 6 a < 2β
β+1 and 1 6 b < 2

3−β , where sup in (1.7) is computed over the set

of partitions π of [0, T ] × [−L,L] for each L > 0. Other types of singularities are
also discussed when x 7→ Ft(

xct) is smooth off path-dependent bounded variation
curves.

The formulas presented in this article extend previous versions of path-dependent
pathwise Itô formulas given by Cont and Fournié (2013) and Dupire (2009). In re-
lation to non-smooth path-dependent cases, we also extend Prop. 9.3 in Leão et al.
(2015) in the case when the path-dependent calculus is treated on the basis of func-
tionals with a priori (p, q)-variation regularity rather than processes. In Leão et al.
(2015), the authors show that Wiener functionals with finite (p, q)-regularity of the
form (1.6) are weakly differentiable. In the present work, in the context of pathwise
functional calculus, we show that this type of regularity also provides differential
representations for path-dependent functionals driven by generic continuous semi-
martingales.

The level of regularity that we impose on the path-dependent functionals can
be compared with the pioneering works of Elworthy et al. (2007), Peskir (2005)
and Feng and Zhao (2006, 2008) who obtain extensions of non-path dependent
change of variables formulas by means of pathwise arguments based on Lebesgue-
Stieltjes/Young/rough path type integrals. Our first result (Theorem 3.2) extends
the classical result due to Peskir (2005); Elworthy et al. (2007) for functionals
with singularity at path-dependent bounded variation curves. Applications to some
path-dependent payoffs in Mathematical Finance are briefly discussed. The change
of variable formulas under (a, b)-regularity (1.7) (Proposition 5.5) extend Feng and
Zhao (2006, 2008) with the restriction that the underlying noise is a continuous
symmetric stable process. The general semimartingale case is treated in Theorem
4.7 under more restrictive assumptions on ∇wF based on (1.6),
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One typical class of examples which fits into the assumptions of our theorems
can be represented by ∫ X(t)

−∞
Zt(Xt; y)dy

where X is the semimartingale noise which induces the underlying filtration and
Z = {Z(·;x) : C([0, t];R) → R; (t, x) ∈ [0, T ] × R} is a family of functionals
satisfying some two-parameter variation regularity of the forms (1.7) or (1.6). This
can be seen as a pathwise path-dependent version of the classical Föllmer-Protter-
Shiryaev formula (see Föllmer et al. (1995)) for continuous semimartingales.

This paper is organized as follows. Section 2 presents basic notations and some
preliminary results. In Section 3, we investigate Itô formulas for path-dependent
functionals which are regular off path-dependent bounded variation curves. Appli-
cations to some running maximum/minimum functionals arising in Mathematical
Finance are presented. Section 4 presents Itô formulas under (p, q)-variation as-
sumption of the particular form (1.6). Section 5 treats the general case (1.7) under
the assumption that the underlying driving noise is a symmetric stable process.

2. Functional Mollification

Throughout this paper we are given a stochastic basis (Ω,F,F ,P). Here, the set
Ω := {ω ∈ C([0,+∞);R);ω(0) = z} is the set of real-valued continuous paths on
R+ which starts at a given z ∈ R, X is the canonical process, F := (Ft)t>0 is the
natural filtration generated by X, F is a sigma-algebra such that Ft ⊂ F ∀t > 0
and P is the semimartingale measure on Ω. The usual quadratic variation will be
denoted by [X,X] and we recall the local time of X is the unique random field
{`x(t); (x, t) ∈ R× R+} which realizes∫ t

0

f(X(s))d[X,X](s) =

∫
R
`x(t)f(x)dx; t > 0

for every bounded Borel measurable function f : R → R. Throughout this article,
we choose a modification of the local time {`x(t); (x, t) ∈ R× R+} which is jointly
measurable in (ω, x, t) and right-continuous with left-hand limits (càdlàg) in the
spatial variable.

Frequently, localization procedures will be necessary to handle the path-depen-
dence. For this reason, for a given M > 0, we set

TM := inf{t > 0; |X(t)| > M} ∧ T
where 0 < T < +∞ is a fixed terminal time and a ∧ b := min{a, b}. The stopped
semimartingale will be denoted by XM (t) := X(TM ∧ t); 0 6 t 6 T . We denote
D([0, t];R) (C([0, t];R)) as the linear space of R-valued càdlàg (continuous) paths

on [0, t] and we set Λ := ∪06t6TD([0, t];R) and Λ̂ := ∪06t6TC([0, t];R). In order
to make clear the information encoded by a path x ∈ D([0, t];R) up to a given time
0 6 r 6 t, we denote xr := {x(s) : 0 6 s 6 r} and the value of x at time 0 6 u 6 t
is denoted by x(u). This notation is naturally extended to processes. Throughout
this paper, if f is a real-valued function defined on a metric space E, then

∆jf(xj) := f(xj)− f(xj−1)

for every sequence {xj}mj=0 ⊂ E. In particular, if ϕ : [0, T ]× R→ R then

∆j∆iϕ(ti, xj) := ϕ(ti, xj)− ϕ(ti−1, xj)−
(
ϕ(ti, xj−1)− ϕ(ti−1, xj−1)

)
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for any sequence {ti}mi=0 × {xk}
p
k=0 ⊂ [0, T ]× R.

For reader’s convenience, let us recall some basic objects of the pathwise func-
tional calculus. We refer the reader to Dupire (2009) and Cont and Fournié (2013,
2010) for further details. Throughout this article, if w ∈ Λ, then for a given γ > 0
and h ∈ R, we denote

wt,γ(s) := w(s ∧ t); 0 6 s 6 t+ γ.

The operation wt,γ is an horizontal extension of the path w (see Figure 1). If x ∈ R,
we denote

xwt(s) :=

{
w(s), 0 6 s < t

x, s = t.

A vertical perturbation of the path w (see Figure 1) is given by

wht (s) := w(t)+hwt(s).

Of course, xwt = wht if x = w(t) + h and, in general, they may not coincide.

Figure 2.1. The horizontal extension wt,γ is shown in green. The
vertical perturbation wht is shown in blue, h is the distance between
the empty ball (left limit) and the filled ball.

A natural metric on Λ is given by

d∞
(
(t, w); (s, v)

)
:= |t− s|+ sup

06u6T
|wt,T−t(u)− vs,T−s(u)|;

for (w, v) in Λ × Λ. Throughout this article, a functional F = {Ft; 0 6 t 6 T} is
a family of mappings Ft : D([0, t];R) → R indexed by t ∈ [0, T ]. In the sequel,
continuity of functionals is defined as follows (see e.g Cont and Fournié (2013)):

Definition 2.1. A functional F = {Ft; 0 6 t 6 T} is said to be Λ-continuous if it
is continuous in (t, w) under d∞.

We recall the vertical derivative of a functional F ∈ Λ is defined as

∇vFt(ct) := lim
h→0

Ft(c
h
t )− Ft(ct)
h

(2.1)

whenever the right-hand side of (2.1) exists for every c ∈ Λ. We define ∇v,(2)F :=
∇v(∇vF ) whenever this operation exists. The horizontal derivative is defined by
the following limit

∇hFt(ct) := lim
γ→0+

Ft+γ(ct,γ)− Ft(ct)
γ

(2.2)

whenever the right-hand side of (2.2) exists for every c ∈ Λ.
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An F-adapted continuous process Y may be represented by the identity

Y (t) = F̂t(Xt); 0 6 t 6 T, (2.3)

where F̂ = {F̂t; 0 6 t 6 T} is a functional, and each F̂t : C([0, t];R) → R is a
mapping representing the dependence of Y . We recall that we make use of the
notation Xt = {X(s); 0 6 s 6 t} so that Xt means the whole history of X over the
time interval [0, t] for each t > 0.

Since Y is non-anticipative, Y (ω, t) only depends on the restriction of ω over
[0, t]. In order to perform the standard pathwise functional calculus in the sense
of Dupire (2009) and Cont and Fournié (2013), one has to assume there exists a

functional F = {Ft; 0 6 t 6 T} defined on Λ which is consistent to F̂ in the sense
that

Ft(ct) = F̂t(ct) ∀c ∈ Λ̂.

Indeed, the concept of vertical derivative forces us to assume this. Throughout this
article, whenever we write Y = F (X) for F defined on Λ, it is implicitly assumed

that F is a consistent extension of a functional representation F̂ which realizes
(2.3). This motivates the following definition.

Definition 2.2. A non-anticipative functional is a family of mappings F = {Ft; 0 6
t 6 T} where

Ft : D([0, t];R)→ R; c 7→ Ft(ct)

is measurable w.r.t the canonical filtration Bt in D([0, t];R) for each t ∈ [0, T ].

In the sequel, let C1,2 be the space of functionals F which are Λ-continuous
and it has Λ-continuous derivatives ∇hF,∇v,(i)F for i = 1, 2. The above notion of
continuity is enough to apply the standard functional stochastic calculus techniques
in the smooth case F ∈ C1,2. However, in order to employ mollification techniques
to treat non-smooth dependence (in the sense of differentiation) of F w.r.t X, we
need the following notion of continuity.

Definition 2.3. We say that a family of functionals {Hx : Λ→ R;x ∈ R} is state-
dependent Λ-continuous at v ∈ Λ if there exists φ ∈ L1

loc(R) such that for every
ε > 0, there exists δ > 0 such that

d∞
(
(t′, c); (t, v)

)
< δ =⇒ |Hx

t′(ct′)−Hx
t (vt)| 6 εφ(x); ∀x ∈ R.

When the family {Hx;x ∈ R} is state-dependent Λ-continuous for every v ∈ Λ, we
say that it is state-dependent Λ-continuous.

Remark 2.4. If {Hx;x ∈ R} is state-dependent Λ-continuous,then it is Λ-continuous
for each x ∈ R.

Example: Let us give an example of a state-dependent Λ-continuous family of
functionals. In the sequel, (x)+ := max{x; 0}, x ∈ R. For a given constant K, we

consider Ft(ct) =
(

sup
06s6t

c(s)−K
)+

. Then, Ft(
xct) =

(
sup

06s6t

xc(s)−K
)+

for each

x ∈ R, c ∈ Λ and we readily see that the family c 7→ F (xc);x ∈ R is state-dependent
Λ-continuous.

For the remainder of this paper it will be convenient to use the following notation:
For a given functional F = {Ft; 0 6 t 6 T}, we define

Fxt (ct) := Ft(
xct) (2.4)
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for c ∈ Λ and x ∈ R. This notation will be useful to compute horizontal derivatives
from a state-dependent Λ-continuous family of the form {Fx;x ∈ R}.

The strategy to get functional Itô formulas under non-smooth conditions will be
based on path-dependent mollification techniques on the state of the functional.
Indeed, in this article we are only interested in relaxing vertical smoothness of
path-dependent functionals. In this case, it will be sufficient for us to deal with one
parameter mollification.

For a given non-negative smooth function ρ ∈ C∞c (R) such that supp ρ ⊂ (0, 2),∫
R ρ(x)ds = 1, we set ρn(x) := nρ(nx);x ∈ R;n > 1. If x 7→ Fxt (ct) ∈ L1

loc(R) for
every c ∈ Λ, then we define

Fnt (ct;x) :=
(
ρn ? F ·t(ct)

)
(x);x ∈ R, c ∈ Λ, t ∈ [0, T ], (2.5)

where ? denotes the usual convolution operation on the real line. From this convo-
lution operator, we define the following non-anticipative functional

Fnt (ct) :=

∫
R
ρn(c(t)− y)Fyt (ct)dy; 0 6 t 6 T.

One should notice that Fnt (xct) = Fn(ct;x); c ∈ Λ, x ∈ R. In the sequel, we need
a notion of boundedness to treat path-dependent functionals.

Definition 2.5. We say that a functional F = {Ft; 0 6 t 6 T} is boundedness-
preserving if for every compact subset K of R, there exist CK > 0 such that
|F·(c·)| 6 CK for every c· ∈ D([0, ·];K). A family of functionals Hx : Λ→ R; x ∈ R
is state boundedness-preserving if for every compact sets K1,K2 ⊂ R, there exists
a constant CK1,K2 > 0 such that

|Hx
· (c·)| 6 CK1,K2

∀c ∈ D([0, ·];K1) and ∀x ∈ K2.

Let us now introduce the following hypotheses

Assumption A1:
(i) The family of functionals {Fy; y ∈ R} is state-dependent Λ-continuous and
state-boundedness-preserving.
(ii) x 7→ Fxt (ct) is a continuous map for every c ∈ Λ and t ∈ [0, T ].
(iii) x 7→ Fxt (ct) has weak derivative for every c ∈ Λ and t ∈ [0, T ].

Assumption A2: For each y ∈ R, Fy has horizontal derivative ∇hFy(c) ∀c ∈ Λ.
Moreover, the family {∇hFy; y ∈ R} is state boundedness-preserving. The map
y 7→ ∇hFyt (ct) is continuous for every c ∈ Λ. The family of functionals {∇hFy; y ∈
R} is state-dependent Λ-continuous.

Throughout this paper, the weak derivative of x 7→ Fxt (ct) will be denoted by
(∇wx Ft)(xct) and we set

∇wFt(ct) := (∇wx Ft)(xct)|x=c(t); c ∈ Λ.

Of course, (∇wx Ft)(·ct) ∈ L1
loc(R) is uniquely specified by the property∫

R
Fxt (ct)ϕ

′(x)dx = −
∫
R

(∇wx Ft)(xct)ϕ(x)dx; c ∈ Λ,

for every real-valued smooth function ϕ ∈ C1
c (R).
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If Assumptions A1.(iii) holds, then Fnt (·ct) ∈ C∞(R) ∀c ∈ Λ, t ∈ [0, T ], n > 1
and integration by parts yields

∇xFnt (xct) =

∫
R
ρn(x− y)(∇wy Ft)(yct)dy.

Moreover, the vertical derivative of functional mollification is given by

∇v,iFnt (ct) = ∇ixFnt (xct)|x=c(t)

for i = 1, 2. To compute the horizontal derivative of mollifiers, the following simple
lemma will be useful.

Lemma 2.6. Let A be a parameter set, and let f : A × R → R be a function,
continuous on the second variable and such that for each a ∈ A, there exists the
right derivative ∇+

x f(a, x);x ∈ R which is bounded on A × R. Suppose for each
(a, x) ∈ A×R, there exists ax ∈ A such that f(a, x+h) = f(ax, h). Then, the ratio
f(a,x+h)−f(a,x)

h is bounded over A × R × R+. The analogous result also holds for

the ratio f(a,x−h)−f(a,x)
−h under boundedness condition on ∇−f(a, x) over A× R.

Proof : Let us fix an arbitrary pair (a, x) ∈ A× R and we define the set

H(a, x) = {h > 0 : |f(a, x+ h)− f(a, x)| 6 Ch},

where C = 1 + supa∈A,x∈R |∇+
x f(a, x)|. The set H(a, x) is closed and it contains

a closed interval [0, la,x]. Let La,x be the length of the maximal interval of the
form [0, la,x] contained in H(a, x). Suppose La,x < ∞. Take h = La,x + k, where
k ∈ H(aLa,x , x), and aLa,x is such that f(a, La,x + y) = f(aLa,x , y), y ∈ R. We
have

|f(a, x+h)−f(a, x)| 6 |f(a, La,x+x+k)−f(a, La,x+x)|+|f(a, La,x+x)−f(a, x)|
= |f(aLa,x , x+ k)− f(aLa,x , x)|+ |f(a, x+La,x)− f(a, x)| 6 Ck+CLa,x = Ch.

Thus, La,x is not maximal and we have a contradiction. This implies that La,x =∞
and therefore, the ratio f(a,x+h)−f(a,x)

h is bounded on A× R × R+. The proof for
the ratio related to the left-derivative is obviously the same. �

Remark 2.7. Lemma 2.6 also holds for functions f : A×[A,B]→ R, where [A,B] ⊂
R. Indeed, extend the function f to the whole real line by setting f(a, x) = f(a,A)
for x < A and f(a, x) = f(a,B) for x > B.

Remark 2.8. Note that the horizontal derivative ∇hFt(ct) can be regarded as the
right derivative ∇+

γ Ft+γ(ct,γ) of the function γ 7→ Ft+γ(ct,γ) at point γ = 0, where
the pair (t, c) ∈ [0, T ]× Λ is interpreted as a parameter. The assumption f(a, x+
h) = f(ax, h) in Lemma 2.6 is interpreted in the setup of functional calculus as
follows:

Ft+γ+h(ct,γ+h) = F(t+γ)+h(c̃t+γ,h),

where c̃t+γ = ct,γ . The same remark holds for the functional Fyt (ct) with parameters
(t, c, y) ∈ [0, T ]× Λ× U in some bounded open subset U ⊂ R.

Lemma 2.9. Assume that for each y ∈ R, Fy is Λ-continuous, Fy has horizontal
derivative and the family {∇hFy; y ∈ R} is state boundedness-preserving. Then,
for each n > 1, t ∈ [0, T ], and c ∈ Λ taking values in a compact subset of R, we
have

∇hFnt (ct) =

∫
R
ρn(c(t)− y)∇hFyt (ct)dy =

(
ρn ?∇hF ·t(ct)

)
(c(t)). (2.6)
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Proof : We fix t ∈ [0, T ] and a path c ∈ Λ over [0, t] such that c(u) ∈ K; 0 6 u 6 t,
where K is a compact set. We also fix n > 1. Indeed, by the very definition

Fnt+γ(ct,γ)− Fnt (ct)

γ
=

∫ c(t)

c(t)− 2
n

ρn(c(t)− y)

[
Fyt+γ(ct,γ)−Fyt (ct)

γ

]
dy (2.7)

for γ > 0. We claim that the ratio
Fyt+γ(ct,γ)−Fyt (ct)

γ is bounded over (γ, y) ∈
[0, T − t] × [c(t) − 2

n , c(t)]. Indeed, we shall apply Lemma 2.6 to the function

γ 7→ Fyt+γ(ct,γ) defined on [0, T − t] regarding y ∈ [c(t) − 2
n , c(t)] as a parameter

(see Remark 2.8). From the Λ-continuity of Fy, one can easily check that

γ 7→ Fyt+γ(ct,γ)

is continuous over [0, T − t]. Extend the function γ 7→ Fyt+γ(ct,γ) to R by the
constant values that it attains at the end points of [0, T − t]. As we already men-
tioned in Remark 2.8, for each y ∈ R, the right derivative ∇+

γ F
y
t+γ(ct,γ) at γ0 is the

horizontal derivative ∇hFyt+γ0(ct,γ0) for γ0 ∈ [0, T − t]. By the state boundedness-

preserving assumption, ∇+
γ F

y
t+γ(ct,γ) is bounded over [0, T − t] × [c(t) − 2

n , c(t)].
Again, taking into account Remark 2.8, we conclude that we are in the situation
of Lemma 2.6. Bounded convergence theorem allows us to take the limit into the
integral sign in (2.7) as γ → 0 which provides (2.6). This completes the proof. �

Lemma 2.10. If F is a non-anticipative functional satisfying Assumptions A1(i)
and A2, then for each positive integer n > 1, we have

Fnt (Xt) = Fn0 (X0) +

∫ t

0

∇hFns (Xs)ds+

∫ t

0

∇vFns (Xs)dX(s)

(2.8)

+
1

2

∫ t

0

∇v,2Fns (Xs)d[X,X](s) a.s.

for 0 6 t 6 T.

Proof : Let us fix n > 1. By routine stopping arguments, we may assume that X
is bounded. Hence, we shall assume that all paths c ∈ Λ take values on a common
compact subset of R. First we show that Fn is Λ-continuous. Indeed, by the very
definition

Fnt (ct) =

∫ ∞
−∞

ρn(c(t)− y)Fyt (ct)dy.

Let us fix an arbitrary c ∈ Λ. The Λ-continuity of Fn follows immediately from the
state-dependent continuity of {Fy; y ∈ R} and the triangle inequality:

|Fnt (ct)− Fnt′ (wt′)| 6
∫
K

∣∣ρn(c(t)− y)− ρn(w(t′)− y
)∣∣|Fyt (ct)|dy

+

∫
K

∣∣ρn(w(t′)− y
)∣∣|Fyt (ct)−Fyt′(wt′)|dy.

for w ∈ Λ, where K is a compact set. By the very definition,

∇v,iFnt (ct) = ni+1

∫
R
ρ(i)
(
n(c(t)− y)

)
Fyt (ct)dy; 0 6 t 6 T
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for i = 1, 2. Similarly, the Λ-continuity of ∇v,iFn follows immediately from the
state-dependent continuity of {Fy; y ∈ R} and the triangle inequality:

|∇v,iFnt (ct)−∇v,iFnt′ (wt′)|

6 ni+1

∫
K

∣∣∣ρ(i)
(
n(c(t)− y)

)
− ρ(i)

(
n(w(t′)− y)

∣∣∣|Fyt (ct)|dy

+ ni+1

∫
K

∣∣ρ(i)
(
n(w(t′)− y)

)∣∣|Fyt (ct)−Fyt′(wt′)|dy.

By Lemma 2.9 and triangle inequality,

|∇hFnt (ct)−∇hFnt′ (wt′)| 6
∫
K

∣∣ρn(c(t)− y)− ρn(w(t′)− y
)∣∣|∇hFyt (ct)|dy

(2.9)

+

∫
K

∣∣ρn(w(t′)− y
)∣∣|∇hFyt (ct)−∇hFyt′(wt′)|dy.

Estimate (2.9), the local integrability of y 7→ ∇hFyt (ct) and the state-dependent
Λ-continuity of {∇Fy; y ∈ R} yield the Λ-continuity of ∇hFn.

Hence, Fn is C1,2. The functional Itô formula (see e.g Dupire (2009), Cont and
Fournié (2013)) applied to the semimartingale X yields

Fnt (Xt) = Fn0 (X0) +

∫ t

0

∇hFns (Xs)ds+

∫ t

0

∇vFns (Xs)dX(s)

+
1

2

∫ t

0

∇v,2Fns (Xs)d[X,X](s)

for 0 6 t 6 T. �

3. Path-dependent Itô formula with singularity at random curves

In this section, we will investigate a path-dependent Itô formula when the func-
tion x 7→ (∇wx Ft)(xct) is smooth off path-dependent continuous bounded variation
curves. The typical examples we have in mind are non-smooth functionals of the
running maximum/minimum found in path-dependent payoffs arising in Mathe-
matical Finance. Obtaining this type of Itô’s formula was inspired by Elworthy
et al. (2007) who derived (non-path dependent) Itô formulas where singularities
are encoded by deterministic bounded variation curves. See also Peskir (2005). At
first, we remark that the classical occupation time formula also holds with path-
dependent functions. We omit details of the proof which can be easily checked by
well-known arguments.

Lemma 3.1. Let X be a continuous semimartingale with the local time {`x(t);x ∈
R, t > 0}. If h : Ω× [0, T ]×R→ R is bounded and measurable, then for each ω ∈ Ω,
we have∫ t

0

h(s, ω,X(s, ω))d[X,X](s, ω) =

∫ ∞
−∞

da

∫ t

0

h(s, ω, a)ds`
a(s); 0 6 t 6 T.

Let γ = {γt; 0 6 t 6 T} be a family of non-anticipative functionals such that
for each c ∈ C([0, T ];R), t 7→ γt(ct) is a continuous bounded variation path. In the
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sequel, to keep notation simple, for a given M > 0, we set CM := C([0, T ]; [−M,M ])
and

GM := {(t, x, c) ∈ [0, T ]× [−M,M ]× CM}.
GγM := {(t, x, c) ∈ GM ;−M < x < γt(ct) or γt(ct) < x < M}.

Γc,t := (−∞, γt(ct)) ∪ (γt(ct),+∞); c ∈ CM , 0 6 t 6 T.

Throughout this section, for a given c ∈ CM , we write ∇xFt(xct) and ∇−x Ft(xct)
to denote the usual pointwise derivative and left derivative, with respect to x,
respectively. The second left derivative will be denoted by ∇−,2x . Since γ is non-
anticipative, then γ(X) is an adapted bounded variation process.

Theorem 3.2. Let us assume that A1.(i,ii) and A2 hold and for each t ∈ [0, T ],
the function x 7→ Ft(

xct) is C1 on sets Γc,t for c ∈ C([0, T ];R), where ∇xFt(xct)
is bounded on the set GγM for every M > 0. We also assume that for each t ∈
[0, T ], there exist left and right limits of ∇xFt(xct) as x → γt(ct)±. Furthermore,
we assume that for any t ∈ [0, T ] and ct ∈ C([0, t],R), there exists the second
left derivative ∇−,2x Ft(

xct) on Γc,t which is bounded on Γc,t ∩ (−M,M) × CM for
every M > 0. Moreover, ∇−,2x Ft(

xct) has the left limit at γt(ct) for each c ∈ CM .
Finally, we assume that for any c ∈ C([0, T ];R), ∇xFt(γt(ct)−ct)−∇xFt(γt(ct)+ct)
is continuous in t. If X is a square-integrable continuous semimartingale, then

Ft(Xt) = F0(X0) +

∫ t

0

∇hFs(Xs)ds+

∫ t

0

∇−x Fs(X(s)Xs)dX(s)

+
1

2

∫ t

0

∇−,2x Fs(
X(s)−Xs)d[X,X](s)

+
1

2

∫ t

0

(∇xFs(γs(Xs)+Xs)−∇xFs(γs(Xs)−Xs))ds ˜̀0(s)

(3.1)

a.s for 0 6 t 6 T , where {˜̀x(s); (x, s) ∈ R × R+} is the local time of the semi-

martingale X̃ := X − γ(X).

Proof : The proof uses some of the ideas from Corollary 2.1 of Theorem 2.3 in
Elworthy et al. (2007). At first, we prove the result for the stopped process XM

where M is fixed. Let us fix t ∈ [0, T ]. Let Fn be the mollifier for F according to
(2.5). Since functional F satisfies the assumptions of Lemma 2.10, formula (2.8)
holds for Fn(XM ). In the sequel, we will study the limit of each term in (2.8) as
n→∞. By A1.(ii), Fnt (XM

t )→ Ft(X
M
t ) a.s as n→∞.

STEP 1: Let us prove the convergence∫ t

0

∇hFns (XM
s )ds→

∫ t

0

∇hFs(XM
s )ds a.s. (3.2)

Lemma 2.9 yields

∇hFns (XM
s ) =

∫ ∞
−∞

ρn(XM (s)− y)∇hFys (XM
s )dy; 0 6 s 6 T. (3.3)

By Assumption A2, y 7→ ∇hFys (XM
s ) is continuous a.s. for each s ∈ [0, T ] and

hence

lim
n→∞

∇hFns (XM
s ) = ∇hFX

M (s)(XM
s ) = ∇hFs(XM

s ) a, s; 0 6 s 6 T.
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From Assumption A2, {∇hFy; y ∈ R} is state boundedness-preserving. Then,
bounded convergence theorem yields

lim
n→∞

∫ t

0

∇hFn(XM
s )ds =

∫ t

0

∇hF (XM
s )ds a.s

STEP 2: Next, we will prove that∫ t

0

∇vFns (XM
s )dXM (s)→

∫ t

0

∇−x Fs(X
M (s)XM

s )dXM (s) in L2(P) (3.4)

as n → ∞. Firstly, we will show that under the assumptions of the theorem, for
each fixed (t, c, x) ∈ GM , ∇xFnt (xct) converges to ∇−x Ft(xct) as n → ∞. Fix a
path c ∈ C([0, t];R). At first, one should notice the left derivative ∇−x Ft(xct) is
well defined for x = γt(ct). Indeed, we shall represent the functional Ft(

xct) in the
following form

Ft(
xct) = F̂t(ct;x) + F̃t(ct;x) (3.5)

where

F̂t(ct;x) := Ft(
xct) + (∇xFt(γt(ct)−ct)−∇xFt(γt(ct)+ct))(x− γt(ct))+,

F̃t(ct;x) := (∇xFt(γt(ct)+ct)−∇xFt(γt(ct)−ct))(x− γt(ct))+.

It is easy to see that the function x 7→ F̂t(ct;x) is C1 in x ∈ [−M,M ]. But on

[−M,γc(t)], F̂t(ct;x) = Ft(
xct). Hence, ∇−x Ft(xct) exists at the point x = γt(ct),

and therefore, everywhere on [−M,M ]. From the assumptions of the theorem, it
is also clear that ∇−x Ft(xct) is bounded on GM . Thus, we verified the assumptions
of Lemma 2.6 with respect to the function h 7→ Ft(

x−hct) with (t, c, x) being a
parameter. This implies the boundedness of the ratios (Ft(

xct) − Ft(
x−hct))/h.

Hence, Lebesgue’s bounded convergence theorem yields ∇xFnt (xct) is the mollifier
for ∇−x Ft(xct):

∇xFnt (xct) =

∫ 2

0

ρ(y)∇−x Ft(x−
y
n ct)dy. (3.6)

From the assumptions of the theorem and the existence of ∇−x Ft(xct) at x =
γt(ct), we know that x 7→ ∇−x Ft(xct) is left continuous. By the boundedness of
∇−x Ft(xct) on GM and its left continuity in x, we obtain that for each (x, t, c) ∈ GM ,
∇xFnt (xct)→ ∇−x Ft(xct) as n→∞ by Lebesgue’s theorem.

Next, since ∇−x Ft(xct) is bounded on GM , its mollifier ∇xFnt (xct) is bounded on
GM by the same constant. In particular, there exists C such that |∇vFns (XM

s )| =
|∇xFns (X

M (s)XM
s )| 6 C for every (ω, s) ∈ Ω× [0, t]. Now the L2-convergence (3.4)

is implied by the semimartingale decomposition, Itô’s isometry, and the bounded
convergence theorem.

In the sequel, to shorten notation we write [XM ] = [XM , XM ].

STEP 3: Lastly, we investigate the limit of 1
2

∫ t
0
∇v,2Fns (XM

s )d[XM ](s) as n→∞.
By applying mollification (2.5) in (3.5), we obtain Fnt (xct) = F̂nt (ct;x) + F̃nt (ct;x),

where F̂nt (ct;x) := (ρn ? F̂t(ct; ·))(x) and F̃nt (ct;x) := (ρn ? F̃t(ct; ·))(x). Let us

define F̂nt (ct) := F̂nt (ct; c(t)) and F̃nt (ct) := F̃nt (ct; c(t)). We have:

1

2

∫ t

0

∇v,2Fns (XM
s )d[XM ](s) =

1

2

∫ t

0

∇v,2F̂ns (XM
s )d[XM ](s)
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+
1

2

∫ t

0

∇v,2F̃ns (XM
s )d[XM ](s). (3.7)

Note that F̂t(ct;x) is C1 in x on GM and the map x 7→ ∇xF̂t(ct;x) has on GγM
a bounded left derivative ∇−x∇xF̂t(ct;x). By Lemma 2.6 and Remark 2.7, x 7→
∇2
xF̂

n
t (ct, x) is the mollifier for x 7→ ∇−x∇xF̂t(ct, x) on [−M,γt(ct) − ε] for any

sufficiently small ε > 0, i.e.

∇2
xF̂

n
t (ct;x) =

∫ 2

0

ρ(y)∇−x∇xF̂t(ct;x−
y

n
)dy =

∫ 2

0

ρ(y)∇−,2x Ft(
x− yn ct)dy, (3.8)

for x ∈ [−M,γt(ct)−ε]. By assumption, x 7→ ∇−,2x Ft(
xct) is bounded on Γc,t and its

left limit exists at x = γt(ct). This implies that (3.8) holds for all x ∈ [−M,γt(ct)].
We note also that (3.8) holds for x ∈ (γt(ct) + 2

m ,M ] whenever n > m and m is
fixed arbitrary. By Lebesgue’s theorem, we pass to the limit in (3.8) as n → ∞
while x ∈ [−M,γt(ct)] ∪ (γt(ct) + 2

m ,M ] and (t, c) ∈ [0, T ]× C([0, T ],R) are fixed.

We obtain that for (x, c, t) ∈ [−M,γt(ct)] ∪ (γt(ct) + 2
m ,M ]× C([0, T ],R)× [0, T ]

lim
n→∞

∇2
xF̂

n
t (ct;x) = ∇−,2x Ft(

x−ct).

Since m is fixed arbitrary, the above equality holds for all (x, c, t) ∈ GM .
Therefore, we have

lim
n→∞

∇v,2F̂nt (XM
t ) = ∇−,2x Ft(

XM (t)−XM
t ) a.s,

and ∫ t

0

∇v,2F̂ns (XM
s )d[XM ](s)→

∫ t

0

∇−,2x Fs(
XM (s)−XM

s )d[XM ](s) a.s.

by bounded convergence.
Let us investigate the convergence of the last term in (3.7). It is convenient to

introduce the following notation: We define γM (s) := γs∧TM (XM
s ) and X̃M (s) :=

XM (s) − γM (s); 0 6 s 6 T. Let ϕns (x) be the mollifier of (x − γM (s))+ according
to formula (2.5), and let ϕn(x) be the mollifier of x+. It is easy to verify that
ϕns (x) = ϕn(x− γM (s)). Therefore,

F̃nt (XM
t ;x) =(∇Ft(γ

M (t)+XM
t )−∇Ft(γ

M (t)−XM
t ))ϕnt (x)

=(∇Ft(γ
M (t)+XM

t )−∇Ft(γ
M (t)−XM

t ))ϕn(x− γM (t)) a.s.

Note that ∇xϕn(x) =
∫∞
−∞ ρn(x − y)H(y)dy, where H is the Heaviside function,

and that ∇2
xϕ

n(x) =
∫∞
−∞ ρn(x − y)dH(y) = ρn(x). Note that since γ·(X·) has

continuous bounded variation paths, then [XM ](s) = [X̃M ](s) a.s; 0 6 s 6 T .

Now let ˜̀x
M be the local time of X̃M . By Lemma 3.1, we obtain:

1

2

∫ t

0

∇v,2F̃ns (XM
s )d[XM ](s) =

1

2

∫ t

0

∇2
xF̃

n
s (XM

s , X̃M (s) + γM (s))d[X̃M ](s)

=
1

2

∫ ∞
−∞

dx

∫ t

0

∇2
xF̃

n
s (XM

s ;x+ γM (s))ds ˜̀x
M (s)

=
1

2

∫ ∞
−∞
∇2
xϕ

n(x)dx

∫ t

0

(∇xFs(γ
M (s)+XM

s )−∇xFs(γ
M (s)−XM

s ))ds ˜̀x
M (s)
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=
1

2

∫ ∞
−∞

ρn(x)dx

∫ t

0

(∇xFs(γ
M (s)+XM

s )−∇xFs(γ
M (s)−XM

s ))ds ˜̀x
M (s)

→ 1

2

∫ t

0

(∇xFs(γ
M (s)+XM

s )−∇xFs(γ
M (s)−XM

s ))ds ˜̀0
M (s) a.s. as n→∞.

The above computations imply formula (3.1) at time t ∧ TM . Letting M go to
infinity, we obtain (3.1). �

The simplest application of Theorem 3.2 is a pathwise description of the running
maximum. A version of this formula appeared in Dupire (2009) but without a
rigorous proof.

Example 3.3. Let us apply formula (3.1) to the running maximum

Ft(ct) = max
s∈[0,t]

c(s); c ∈ Λ.

One immediately verifies that F satisfies the assumptions of Theorem 3.2. Let us
compute each term of (3.1). We have: ∇hFt(Xt) = 0, ∇−x Ft(xXt) = 0 if x 6 Ft(Xt)
and ∇−x Ft(xXt) = 1 if x > Ft(Xt). In particular, ∇−x Ft(X(t)Xt) = 0. Next, for
γt(ct) = Ft(ct), one can easily check that for each c ∈ C([0, T ];R), the function
x 7→ Ft(

xct) is C1 for x ∈ (−∞, γt(ct) ∪ (γt(ct),+∞) and ∇−,2x Ft(
xct) = 0 in this

open set. Finally, we notice that ∇xFt(γt(Xt)+Xt) − ∇xFt(γt(Xt)−Xt) = 1 for all
t ∈ [0, T ]. By formula (3.1),

sup
06s6t

X(s) = X(0) +
1

2
˜̀0(t),

where ˜̀ is the local time of the semimartingale X(t)− sup06s6tX(s); 0 6 t 6 T .

Let us now apply Theorem 3.2 to concrete path-dependent functionals arising in
Mathematical Finance.

Example 3.4. Similar to example 3.3, we shall also consider the payoff decompo-
sition of a standard lookback option with fixed strike K (see e.g Kwok (2008) for
further details). For a given constant K > 0, we consider Ft(ct) =

(
sup06s6t c(s)−

K
)+

for c ∈ Λ. In this case, a straightforward application of Theorem 3.2 yields(
sup

06s6t
X(s)−K

)+

=
(
X(0)−K

)+
+

1

2
˜̀0(t); 0 6 t 6 T

where ˜̀ is the local time of the semimartingale X(t)−max{sup06s6tX(s);K}; 0 6
t 6 T .

Example 3.5. For each non-negative path c ∈ Λ, let us consider

Ft(ct) =
(
c(t)− λ inf

T06s6t
c(s)

)+
where λ > 1 and 0 6 T0 < T are arbitrary constants. This functional is the payoff of
the so-called partial lookback european call option which allows lower investments
than derivative contracts based on the payoff given in Example 3.4 (see e.g Kwok
(2008)). Let us now apply Theorem 3.2 to give a novel representation for this
payoff. For simplicity, we set T0 = 0. Indeed, A1 (i), A1(ii) and A2 hold where
∇hFxt (ct) = 0 for every x ∈ R+ and a non-negative path c ∈ Λ. By the very
definition of F , it is apparent that the bounded variation functional which encodes
the whole singularity is γt(ct) = λ inf06s6t c(s); 0 6 t 6 T . Moreover, ∇−x Ft(xct) =
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0 if x 6 γt(ct) and ∇−x Ft(xct) = 1 for γt(ct) < x. In particular, ∇−Ft(X(t)Xt) =
11{X(t)>γt(Xt)}; 0 6 t 6 T . Moreover, ∇xFt(xct) = 0 if x < γt(ct) and ∇xFt(xct) =

1 if x > γt(ct). In particular, ∇−x Ft(γt(ct)−ct) = 0, ∇−x Ft(γt(ct)+ct) = 1 and
∇−,2x Ft(

xct) = 0 over (−∞, γt(ct)) ∪ (γt(ct),+∞). Finally, if X is a non-negative
square-integrable continuous semimartingale, then applying formula (3.1), we get(

X(t)− λ inf
06s6t

X(s)
)+

=

∫ t

0

11{X(s)>γs(Xs)}dX(s) +
1

2
˜̀0(t); 0 6 t 6 T,

where ˜̀ is the local time of the semimartingale X(t) − λ inf06s6tX(s); 0 6 t 6 T.

and
(
(1− λ)X(0)

)+
= 0.

4. (p, q)-bivariations and Functional Itô formulas

In this section, we provide an Itô formula in the sense of Young in the path-
dependent case. We refer the reader to the seminal work by Young (1938) for a
full treatment of double Lebesgue-Stieljes-type integrals for unbounded variation
functions. For a more simplified presentation, see e.g Ohashi and Simas (2014).

Before presenting the main results, we recall some basic results from deterministic
double integrals in the sense of Young (1938). Recall that if f : [a, b]→ R is a real-
valued function and p > 1, then

‖f‖p[a,b];p := sup
Π

∑
xi∈Π

|f(xi)− f(xi−1)|p <∞

where sup is taken over all partitions Π of a compact set [a, b] ⊂ R. The following
notion is originally due to Young (1938) and it will play a key role in this section:

Definition 4.1. We say that h : [a, b]× [c, d]→ R has (p, q)-bivariation for p, q > 1
if

‖h‖1;p := sup
y1,y2∈[c,d]2

‖h(·, y1)− h(·, y2)‖[a,b];p <∞,

and

‖h‖2;q := sup
x1,x2∈[a,b]2

‖h(x1, ·)− h(x2, ·)‖[c,d];q <∞.

The importance of (p, q)-bivariation lies in the following result, which is a par-
ticular case of Theorem 6.3 due to Young (1938).

Theorem 4.2 (Theorem 6.3 in Young (1938)). Let h,G : [a, b] × [c, d] → R be
two functions, where h vanishes on the lines x = a and y = c and has bounded
(p, q)-bivariation, and G satisfies |∆i∆jG(xi, yj)| ≤ C|xi − xi−1|1/p̃|yj − yj−1|1/q̃,
for some constant C > 0, and p̃, q̃ > 1. If there exists α ∈ (0, 1) such that

α/p+ 1/p̃ > 1 and (1− α)/q + 1/q̃ > 1,

then, the 2D Young integral
∫ b
a

∫ d
c
h(x, y)d(x,y)G(x, y) exists.

Remark 4.3. We stress that there exists a related literature on 2D-Young integral
based on joint variations (see e.g Friz and Victoir (2010, 2011)) and related norms
(see e.g Towghi (2002b)), rather than the bivariation concept. Indeed, one can check
that ‖h‖1;p 6 RV p,p[a,b]×[c,d](h) and ‖h‖2;q 6 RV q,q[a,b]×[c,d](h) and these inequalities

may be strict. See Section 5 for the definition of the norm RV .
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Remark 4.4. In general, we only know that generic continuous semimartingales
admit local times with finite (1, 2 + δ)-bivariation (for every δ > 0) rather than
joint variation (see Lemma 2.1 in Feng and Zhao (2006)). In some particular cases,
the local time of a semimartingale admits joint variation. See Section 5 for details
about symmetric stable processes.

4.1. Functional Itô formula. Throughout this section, δ > 0 and p, p̃, q̃ > 1 are
constants such that 1

p + 1
2+δ > 1 and there exists α ∈ (0, 1) such that

α+
1

p̃
> 1 and

(1− α)

2 + δ
+

1

q̃
> 1

Lemma 4.5. Let ϕ : Ω× [0, T ]×R→ R be a stochastic process such that (t, x) 7→
∇2
xϕ(ω, t, x) ∈ C([0, T ]×R;R) for each ω ∈ Ω and ∇2

xϕ is bounded on Ω× [0, T ]×
[−M,M ] for each M > 0. Then,∫ t

0

∇2
xϕ(s,XM (s))d[XM , XM ](s) =

∫
R

(∫ t∧TM

0

∇2
xϕ(s, y)ds`

y(s)
)
dy

(4.1)

= −
∫ t∧TM

0

∫
R
∇xϕ(s, x)d(s,x)`

x(s) a.s

for 0 6 t 6 T . In (4.1), the double integral is interpreted as a 2D Young integral
in the sense of Young (1938).

Proof : Let us fix M > 0, t ∈ [0, T ] and ω ∈ Ω. In the sequel, we omit the variable
ω in the computations. At first, we recall that if ∇2

xϕ : Ω× [0, T ]× [−M,M ]→ R
is bounded, then Lemma 3.1 yields∫ t

0

∇2
xϕ(s,XM (s))d[XM , XM ](s) =

∫
R

(∫ t∧TM

0

∇2
xϕ(s, y)ds`

y(s)
)
dy. (4.2)

Let 0 = t1 < t2 < . . . 6 tm+1 = t ∧ TM and −L = x1 < x2 < . . . < xn+1 = L
where [−L,L] is a compact set. Let us fix ω ∈ Ω. Since the local-time has compact
support, we stress that we can always add some points in the partition in such way
that `x1(tj , ω) = 0 and `xn+1(tj , ω) = 0 for every j = 1, . . . ,m. To keep notation
simple, we write ϕ = ϕ(ω) and ` = `(ω). Mean value theorem allows us to argue
just like in Remark 1 in Feng and Zhao (2006) to get the following identity

m∑
i=1

n∑
j=1

∇xϕ(tj , xi)
(
∆j`

xi+1(tj+1)−∆i`
xi(tj+1)

)
= −

m∑
i=1

n∑
j=1

∇2
xϕ(tj , yi)

(4.3)

× ∆j`
xi+1(tj+1)(xi+1 − xi)

where xi < yi < xi+1; i = 1, . . . ,m. Let K be the compact support of x 7→ `x(T ).
We notice that the function x 7→

∑
j ϕ(tj , x)∆j`

x(tj+1) is càdlàg and hence almost
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everywhere continuous. The boundedness assumption yields

lim
n→∞

lim
m→∞

m∑
i=1

n∑
j=1

∇2
xϕ(tj , yi)∆j`

xi+1(tj+1)(xi+1 − xi)

= lim
n→∞

∫
K

n∑
j=1

∇2
xϕ(tj , x)×∆j`

x(tj+1)dx

=

∫
R

∫ t

0

∇2
xϕ(s, x)d`xsdsdx.

From (4.3), we conclude the proof. �

Let us now assume additional hypotheses on the functional F to shift quadratic
variation to local-time integrals.

Assumption B: The spatial weak derivative (∇wx Ft)(xct) satisfies: For every L >
0, there exists a constant C such that

|∆i∆j(∇wx Fti)(xjcti)| ≤ C|ti − ti−1|1/p̃|xj − xj−1|1/q̃ (4.4)

for every partition {ti}Ni=0 ×{xj}N
′

j=0 of [0, T ]× [−L,L] and c ∈ C([0, T ];R). More-
over,

sup
06t6T

‖(∇wx Ft)(·ct)‖[−L,L];p <∞ (4.5)

for every c ∈ C([0, T ];R).
In the sequel, we provide a mild hypothesis to get convergence of local-time and

stochastic integrals.

Assumption C: We assume piecewise uniform left-continuity in the following
sense: For every ε > 0,M > 0 and c ∈ C([0, T ]; [−M,M ]) there exists {xi}n+1

i=0 ,
−M = x0 < x1 < . . . < xn < xn+1 = M such that

sup
06t6T

|(∇wy Ft)(yct)− (∇wx Ft)(xct)| < ε

whenever x0 6 y 6 x 6 x1 or xi < y 6 x 6 xi+1; i = 1, . . . , n.

An immediate consequence of Lemma 4.5 is the following remark.

Corollary 4.6. If F satisfies Assumptions A1(i) and A2, then for each M > 0
and n > 1,

Fnt (XM
t ) = Fn0 (XM

0 ) +

∫ t

0

∇hFns (XM
s )ds+

∫ t∧TM

0

∇vFns (Xs)dX(s)

− 1

2

∫ t∧TM

0

∫
R
∇xFns (xXs)d(s,x)`

x(s)

a.s. for 0 6 t 6 T.

Proof : Let us fix M > 0 and n > 1. In one hand, ρ(2) has compact support and
xXM
· ∈ D([0, T ]; [−M,M ]) a.s, then we shall use Assumption A1(i), to state that

(ω, t, x) 7→ ∇2
xF

n
t (xXM

t (ω)) is a bounded measurable process on Ω×[0, T ]×[M,M ].
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On the other hand, ∇v,2Fnt (XM
t ) = ∇2

xF
n
t (xXM

t )|x=XM (t) so that (4.1) in Lemma
4.5 yields∫ t

0

∇v,2Fns (XM
s )d[XM , XM ](s) = −

∫ t∧TM

0

∫
R
∇xFns (xXM

s )d(s,x)`
x(s)

= −
∫ t∧TM

0

∫
R
∇xFns (xXs)d(s,x)`

x(s) a.s

for 0 6 t 6 T . Lemma 2.10 allows us to conclude the proof. �

Now we are able to present the main result of this section. It extends Feng
and Zhao (2006) in the context of path-dependent functionals as well as Th. 8.1
in Leão et al. (2015) in the context of generic semimartingales. In particular, it
complements the results given in section 3 when x 7→ (∇wx Ft)(xct) has bounded
variation.

Theorem 4.7. Let F be a functional satisfying Assumptions A1, A2, B and C.
Then

Ft(Xt) = F0(X0) +

∫ t

0

∇hFs(Xs)ds+

∫ t

0

∇wFs(Xs)dX(s)

(4.6)

− 1

2

∫ +∞

−∞

∫ t

0

(∇wx Fs)(xXs)d(s,x)`
x(s) a.s

for 0 6 t 6 T .

Proof : Let M > 0 be such that supp ρ ⊂ [−M,M ]. To keep notation simple, we set
tM := t∧TM and k(dz) = ρ(z)dz. At first, we claim that the following convergence
holds∫ tM

0

∫
[−M,M ]

∇xFn(xXs)d(s,x)`
x(s)→

∫ tM

0

∫
[−M,M ]

(∇wx Fs)(xXs)d(s,x)`
x(s)

(4.7)
almost surely as n→∞, for each t ∈ [0, T ]. Indeed, by making a change of variable

∇xFnt (xXt)− (∇wx Ft)(xXt) =

∫ M

−M

(
(∇wx Ft)(x−z/nXt)− (∇wx Ft)(xXt)

)
k(dz) a.s

(4.8)
for every (t, x) ∈ [0, T ] × [−M,M ]. Let us fix ω ∈ Ω. By Assumption C, we then
have

sup
(x,t)∈[−M,M ]×[0,T ]

∣∣∇xFnt (xXt(ω))− (∇wx Ft)(xXt(ω))
∣∣→ 0 (4.9)

as n → ∞. Moreover, for any partition {ti}Ni=0 × {xj}N
′

j=0 of [0, t] × [−M,M ], we
have

|∆j∆i∇xFnti(
xjXti)| 6

∫ M

−M
|∆j∆i(∇wx Fti)(xj−

z
nXti)|k(dz) a.s. (4.10)

Let us now fix an arbitrary partition {ti}Ni=0 × {xj}N
′

j=0 of [0, t] × [−M,M ]. Let
P[−Q,Q] be the set of all partitions of the interval [−Q,Q] for 0 < Q < ∞. We
notice that for each z ∈ [0,M ] the set {xj − z/n; j = 0, . . . , N ′} is a partition of

[−M − z/n,M − z/n]. In particular, [−M − z
n ,M −

z
n ] ⊂ [−M − M

n ,M + M
n ] for
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every z ∈ [0,M ] and n > 1. Then we shall find a compact set [−2M, 2M ] such that
[−M − M

n ,M + M
n ] ⊂ [−2M, 2M ] ∀n > 1. More importantly. we shall add finitely

many points in the set {xj − z/n; j = 0, . . . ,M, z ∈ [0,M ]} in such way that this
can be viewed as a subset of P[−2M,2M ]. A similar argument holds for z ∈ [−M, 0].
Therefore, Assumption B and (4.10) yield the existence of a positive constant C
which only depends on M > 0 such that

|∆j∆i∇xFnti(
xjXti)| 6

∫ M

−M
|∆j∆i(∇wx Fti)(xj−

z
nXti)|k(dz)

6 C|ti − ti−1|1/p̃|xj − xj−1|1/q̃ a.s (4.11)

for every n > 1. Let us fix ω ∈ Ω∗ and t ∈ [0, T ], where P(Ω∗) = 1. We may
suppose that `−M (·, ω) = 0 and we obviously have `·(0, ω) = 0. Then, we shall
apply Th 6.4 in Young (1936) to state that

lim
n→∞

∫ tM (ω)

0

∫ M

−M
`x(ω, s)d(s,x)∇xFns (xXs(ω)) =

∫ tM (ω)

0

∫ M

−M
`x(ω, s)

(4.12)

d(s,x)(∇wx Fs)(xXs(ω)).

Moreover,

∆j∇xFntM (ω)(
xjXtM (ω)(ω)) =

∫ M

−M

[
(∇wx FtM (ω))(

xj−z/nXtM (ω)(ω))

− (∇wx FtM (ω))(
xj−1−z/nXtM (ω)(ω))

]
k(dz).

Since
∫ 2

0
ρ(z)dz = 1, we shall apply Jensen inequality to get

|∆j∇xFntM (ω)(
xjXtM (ω)(ω))|p 6

∫ M

−M
|∆j(∇wx FtM (ω))(

xj−z/nXtM (ω)(ω))|pk(dz).

(4.13)
The same argument used in (4.11) also applies here. In this case, by applying (4.5)
into (4.13), we can find a compact set [−Q,Q] such that

N
′∑

j=0

|∆j∇xFntM (ω)(
xjXtM (ω)(ω))|p

6
∫ M

−M

N
′∑

j=0

|∆j(∇wx FtM (ω))(
xj−z/nXtM (ω)(ω))|pk(dz)

6
∫ M

−M
‖(∇wx FtM (ω))(

·XtM (ω)(ω))‖p[−Q,Q];pk(dz)

= ‖(∇wx FtM (ω))(
·XtM (ω)(ω))‖p[−Q,Q];p

(4.14)

for every n > 1. Estimate (4.14) yields

‖∇xFntM (ω)(
·XtM (ω)(ω))‖p[−M,M ];p 6 ‖(∇

w
x FtM (ω))(

·XtM (ω)(ω))‖p[−Q,Q];p (4.15)
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for every n > 1. Estimate (4.15) together with (4.9) allow us to use Proposition
6.12 in e.g Friz and Victoir (2010) to get

lim
n→∞

∫ M

−M
`x(tM (ω))dx∇xFntM (ω)(

xXtM (ω)(ω))

=

∫ M

−M
`x(tM (ω))dx(∇wx FtM (ω))(

xXtM (ω)(ω)).

(4.16)

By writing∫ tM (ω)

0

∫ M

−M
∇xFns (xXs(ω))d(s,x)`

x(s) =

∫ tM (ω)

0

∫ M

−M
`x(ω, s)d(s,x)∇xFns (xXs(ω))

−
∫ M

−M
`x(tM (ω))dx∇xFntM (ω)(

xXtM (ω)(ω))

and using (4.16) and (4.12), we conclude that (4.7) holds. From Assumptions A1(ii),
we know that limn→∞ Fnt (XM

t ) = Ft(X
M
t ) a.s; 0 6 t 6 T . From Corollary 4.6, it

only remains to check that∫ t

0

∇hFns (XM
s )ds→

∫ t

0

∇hFs(XM
s )ds (4.17)∫ tM

0

∇vFns (Xs)dX(s)→
∫ tM

0

∇wFs(Xs)dX(s) (4.18)

in probability as n → ∞. We have already checked that convergence (4.17) holds
in the proof of Theorem 3.2.

From (4.9), we know that for each ω ∈ Ω

sup
06t6T

|∇vFnt (Xt(ω))−∇wFt(Xt(ω))| → 0

as n→∞ so that∫ tM

0

|∇vFns (Xs)−∇wFs(Xs)|2d[X,X](s)→ 0

in probability as n → ∞. This shows that (4.18) holds. Summing up the above
result together with Corollary 4.6, we get

FtM (XtM ) = F0(X0) +

∫ t

0

∇hFs(XM
s )ds+

∫ tM

0

∇wFs(Xs)dX(s)

− 1

2

∫ M

−M

∫ tM

0

(∇wx Fs)(xXs)d(s,x)`
x(s)

a.s for 0 6 t 6 T . By letting M → ∞ and using the fact that (x, t) 7→ `x(t) has
compact support a.s, then we recover (4.6). �

Example 4.8. We consider an example studied by Leão et al. (2015) given by

Ft(ct) =

∫ c(t)

−∞

∫ t

0

ϕ(c(s), y)dsdy; 0 6 t 6 T,

for c ∈ Λ, where ϕ : R2 → R is a two-parameter Hölder continuous function
satisfying the following hypotheses:
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(i) For every compact set K ⊂ R, there exist constants M1 and M2 such that for
every a, z ∈ K,

|ϕ(a, x)− ϕ(a, y)| 6M1|x− y|γ1 ,

and

|ϕ(c, z)− ϕ(d, z)| 6M2|c− d|γ2 ,

where γ1 ∈
(

1+δ
2+δ , 1

]
, γ2 ∈ (0, 1] and δ > 0.

(ii) For every compact set V1 ⊂ R there exists a compact set V2 such that {x;
ϕ(a, x) 6= 0} ⊂ V2 for every a ∈ V1.

(iii) For every continuous path c ∈ C([0, T ];R),
∫

[0,T ]×R |ϕ(c(s), y)|dsdy <∞.

This example was studied in Leão et al. (2015) in the Brownian filtration context
where the authors show that it is a weakly differentiable process. One can easily
check if (i, ii, iii) are in force, then this functional satisfies the assumptions in
Theorem 4.7. In particular, if X is a continuous semimartingale, the following
decomposition holds

Ft(Xt) = F0(X0) +

∫ t

0

∫ s

0

ϕ(X(r), X(s))drdX(s) +

∫ t

0

∫ X(s)

−∞
ϕ(X(s), y)dyds

− 1

2

∫ t

0

∫ +∞

−∞

∫ s

0

ϕ(X(r), x)drd(s,x)`
x(s); a.s, 0 6 t 6 T.

One can also think in more general functionals of the form∫ c(t)

−∞
Zt(ct; y)dy; c ∈ Λ

where Z = {Zt(·;x) : C([0, t];R)→ R; x ∈ R; 0 6 t 6 T} is a family of functionals
with suitable two-parameter Hölder regularity. See Example 5.8.

5. Functional Itô formula for symmetric stable processes under joint
variation conditions

In this section, we investigate Itô formulas under different (and somewhat weaker)
assumptions from the particular 2D-control given by (4.4) in Assumption B. In the
language of rough path theory, assumption (4.4) precisely says that if q̃ = p̃ = β

then ∇xFt(xXt) admits a 2D-control ω([t1, t2]× [x1, x2]) = |t1 − t2|
1
β |x1 − x2|

1
β so

that (4.4) trivially implies that (t, x) 7→ ∇xFt(xXt) has (β, β)-joint variation in the
sense of Friz and Victoir (2010). If the semimartingale local time {`x(t);−L 6 x 6
L, 0 6 t 6 T} admits joint variation over compact sets [−L,L] × [0, T ] a.s. (see
Definition 5.1), then (4.4) and (4.5) in Assumption B can be weakened to more
general types of controls.

To our best knowledge, it is only known that local-times associated to general
continuous semimartingales admit finite (1, 2 + δ)-bivariation a.s.for any δ > 0.
This result is due to Feng and Zhao (2006). In the sequel, we study joint variation
of local-times of semimartingales in the following sense.
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Definition 5.1. Let p, q, r, s ∈ [1,∞), −∞ < a1 < a2 < +∞ and −∞ < b1 < b2 <
∞. A function H : [a1, a2]× [b1, b2]→ R has joint right finite (p, q)-variation when

RV p,q[a1,a2]×[b1,b2](H) := sup
π

{[
n∑
i=1

[ m∑
j=1

|∆i∆jH(ti, xj)|p
] q
p

] 1
q
}
<∞.

It has joint left finite (r, s)-variation when

LV r,s[a1,a2]×[b1,b2](H) := sup
π

{[
m∑
j=1

[ n∑
i=1

|∆i∆jH(ti, xj)|r
] s
r

] 1
s
}
<∞

where sup varies over all partitions π := {a1 = t1 6 t2 6 . . . 6 tn = a2} × {b1 =
x0 6 x1 . . . 6 xm = b2} of [a1, a2]× [b1, b2].

See Towghi (2002a) for more details on this variation concept. When p = q, this
type of variation has been studied in the context of Gaussian rough paths (see e.g
Cass et al. (2015) and Cass et al. (2009)). The following result is an immediate
consequence of a fundamental estimate due to Marcus and Rosen (1992) in Lemma
3.3.

Lemma 5.2. Let X be a real-valued symmetric stable process with exponent 1 <
β 6 2. Then for every natural number p > 1, there exists a positive number C wich
only depends on (β, p) such that

‖`x(t)− `y(t)−
(
`x(s)− `y(s)

)
‖L2p(P) 6 C|x− y|

β−1
2 |t− s|

β−1
2β (5.1)

for any list of numbers (t, s, x, y) ∈ R2
+ × R2.

Proof : From Lemma 3.3 in Marcus and Rosen (1992), we know there exists a
constant C > 0 which only depends on (p, β) such that(

E|`x(t)− `y(t)|2p
) 1

2p

6 C|x− y|(
β−1
2 )t

β−1
2β (5.2)

for every (t, x, y) ∈ R+×R2. Let θt : Ω→ Ω be the standard shift operator defined
by the relation Y ◦ θt := Y (θt); t > 0 for any random variable Y . Since X is a
Markov process, then we know that the associated local-time process {`x(t); (x, t) ∈
R×R+} is an additive functional. Hence, by using the Markov property and (5.2),
if (s, t, x, y) ∈ R2

+ × R2, then

‖`x(t)− `y(t)−
(
`x(s)− `y(s)

)
‖2pL2p(P) = E|`x(t)− `y(t)− `x(s) + `y(s)|2p ◦ θs

=

∫ +∞

−∞
E|`x−v(t− s)− `y−v(t− s)|2pPX(s)(dv)

6 C|x− y|(
β−1
2 )2p|t− s|(

β−1
2β )2p

where PX(s) is the law of X(s). �

We are now able to show the following result.

Lemma 5.3. Let X be a stable symmetric process with exponent 1 < β 6 2.
Then for every compact subset [−L,L] ⊂ R, the associated local time process ` of
X satisfies RV α1,α2

[0,T ]×[−L,L](`) + LV α2,α1

[0,T ]×[−L,L](`) < ∞ a.s. for any α1 >
2

β−1 and

α2 >
2β
β−1 .
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Proof : Let us fix a compact set [−L,L] ⊂ R and let p > 1 be an arbitrary positive
integer. Theorem 3.1 from Hu and Le (2013) and Lemma 5.2 imply that for every
γ1 and γ2 satisfying

γ1 <
β − 1

2
− 1

2p
and γ2 <

β − 1

2β
− 1

2p
(5.3)

there exists a non-negative random variable Cp(ω), which depends on p, such that

|`x(ω, t)− `y(ω, t)− (`x(ω, s)− `y(ω, s))| 6 Cp(ω)|x− y|γ1 |t− s|γ2 (5.4)

for every s, t ∈ [0, T ] and almost all ω ∈ Ω. In other words, for each pair of positive
constants γ1 and γ2 satisfying

γ1 <
β − 1

2
and γ2 <

β − 1

2β

there exists p > 1 which realizes (5.3) and a non-negative random variable Cp(ω),
depending on p, such that (5.4) holds.

Now let (α1, α2) be any pair of numbers satisfying α1 >
2

β−1 and α2 >
2β
β−1 .

Inequality (5.4) is fulfilled for γ1 = α−1
1 and γ2 = α−1

2 and for a non-negative
random variable Cp(ω). For a given partition, π = {−L = x0 6 x1 . . . 6 xm =
L} × {0 = t1 6 t2 6 . . . 6 tn = T} of [−L,L]× [0, T ], we then have

m∑
j=1

|∆j∆i`
xj (ω, ti)|α1 6 2LCp(ω)α1 |ti − ti−1|γ2α1 ,

and hence,[ n∑
i=1

[ m∑
j=1

|∆j∆i`
xj (ω, ti)|α1

]α2
α1

] 1
α2 6 (2L)

1
α1 T

1
α2 Cp(ω) for almost all ω ∈ Ω.

This shows that RV α1,α2

[0,T ]×[−L,L](`) < ∞ a.s. for any α1 > 2
β−1 and α2 > 2β

β−1 .

The above argument also shows that LV α2,α1

[0,T ]×[−L,L](`) < ∞ a.s. This allows us to

conclude the proof. �

In the sequel, we denote ∆f(t, s;x, y) := f(t, x)− f(t, y)−
(
f(s, x)− f(s, y)

)
for

(t, s, x, y) ∈ [0, T ]2 ×R2. A routine manipulation yields the following interpolation
result. We omit the details of the proof.

Lemma 5.4. Let f : [0, T ] × [−M,M ] → R be a function such that, for a, b > 1,

LV a,b[0,T ]×[−M,M ](f) <∞. If a < a′ and b′ = a′

a b, then

LV a
′,b′

[0,T ]×[−M,M ](f) 6 sup
t,s∈[0,T ];

x,y∈[−M,M ]

|∆f(t, s;x, y)|
a′−a
a′ sup

π

[
m∑
j=1

[ n∑
i=1

|∆i∆jf(ti, xj)|a
] b
a

] 1
b′

.

Similarly, if RV p,q[0,T ]×[−M,M ](f) <∞ for p, q > 1 and p < p′ and q′ = p′

p q, then

RV p
′,q′

[0,T ]×[−M,M ](f) 6 sup
t,s∈[0,T ];

x,y∈[−M,M ]

|∆f(t, s;x, y)|
p′−p
p′ sup

π

[
n∑
i=1

[ m∑
j=1

|∆i∆jf(ti, xj)|p
] q
p

] 1
q′

,

where sup varies over all partitions π := {0 = t1 6 t2 6 . . . 6 tn = T} × {−M =
x0 6 x1 . . . 6 xm = M} of [0, T ]× [−M,M ].
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In the sequel, for a compact set [0, T ]× [−M,M ], we denote

‖f‖a,b;[0,T ]×[−M,M ]

:= LV a,b[0,T ]×[−M,M ](f) + ‖f(0, ·))‖[−M,M ];b + ‖f(·,−M)‖[0,T ];a + |f(0,−M)|

where a, b > 1. We define LWa,b([0, T ] × [−M,M ]) as the set of all functions
f : [0, T ]× [−M,M ]→ R such that ‖f‖a,b;[0,T ]×[−M,M ] <∞.

For p, q > 1, we also denote

|f |p,q;[0,T ]×[−M,M ]

:= RV p,q[0,T ]×[−M,M ](f) + ‖f(0, ·))‖[−M,M ];q + ‖f(·,−M)‖[0,T ];p + |f(0,−M)|

and RWp,q([0, T ] × [−M,M ]) is the set of all functions f : [0, T ] × [−M,M ] → R
such that |f |p,q;[0,T ]×[−M,M ] <∞. We refer the reader to Towghi (2002a) for details
on this joint variation concept.

Assumption D(i) There exists 1 6 a < 2β
β+1 such that

supx∈K ‖∇wF·(xc·)‖a;[0,T ] < ∞ for every c ∈ C([0, T ];R) and a compact subset
K ⊂ R.

Assumption D(ii) There exists 1 6 b < 2
3−β such that

sup06t6T ‖∇wFt(·ct)‖b;[−M,M ] <∞ for every c ∈ C([0, T ];R) and M > 0.

Proposition 5.5. Let X be a stable symmetric process with index 1 < β 6 2.
Assume that F is a functional which satisfies Assumptions A1, A2, C and D(i). If
for each c ∈ C([0, T ];R), (t, x) 7→ (∇wx Ft)(xct) ∈ LWa,b([0, T ]× [−M,M ]) for every

M > 0 with 1 6 a < 2β
β+1 , 1 6 b < 2

3−β and 1 6 a 6 b, then

Ft(Xt) = F0(X0) +

∫ t

0

∇hFs(Xs)ds+

∫ t

0

∇wFs(Xs)dX(s)

(5.5)

− 1

2

∫ +∞

−∞

∫ t

0

(∇wx Fs)(xXs)d(s,x)`
x(s) a.s

for 0 6 t 6 T .

Proof : In the sequel, we fix M > 0 and to shorten notation, we omit [0, T ] ×
[−M,M ] and we write ‖ ·‖a,b and LWa,b. We also write ‖ ·‖γ for the one-parameter
Hölder norm over a compact set. Throughout this section, C is a generic constant
which may differ from line to line. From Boylan (1964), we know that {`x(s); (s, x) ∈
R+×R} has jointly continuous paths a.s. From Lemma 5.3 and Th 1.2 (b) in Towghi
(2002a), we know that the following integral process∫ t

0

∫ M

−M
(∇wFs)(xXs)d(s,x)`

x(s); 0 6 t 6 T, (5.6)

exists if for any c ∈ C([0, T ];R), (t, x) 7→ (∇wx Ft)(xct) ∈ LWa,b where

1 6 a <
α2

α2 − 1
, 1 6 b <

α1

α1 − 1
and α1 >

2

β − 1
, α2 >

2β

β − 1
. (5.7)

Since 2
3−β = sup{ α1

α1−1 ;α1 >
2

β−1} and 2β
β+1 = sup{ α2

α2−1 ;α2 >
2β
β−1}, then (5.6)

exists whenever ∇wF (c) ∈ LWa,b for any a < 2β
β+1 and b < 2

3−β .
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From Assumptions A1-A2 and Corollary 4.6, the following decomposition holds

Fnt (XM
t ) = Fn0 (XM

0 ) +

∫ t

0

∇hFns (XM
s )ds+

∫ t∧TM

0

∇vFns (Xs)dX(s)

−
∫ t∧TM

0

∫ M

−M
∇xFn(xXs)d(s,x)`

x(s)

a.s for 0 6 t 6 T, n > 1. From Assumptions A1, A2 and C, we have already proved
(See convergence in (4.17) and (4.18)) that limn→∞ Fnt (XM

t ) = Ft(X
M
t ) a.s and

lim
n→∞

(∫ t

0

∇hFns (XM
s )ds+

∫ t∧TM

0

∇vFns (Xs)dX(s)
)

=

∫ t

0

∇hFs(XM
s )ds+

∫ t∧TM

0

∇wFs(Xs)dX(s)

(5.8)

in probability for each t ∈ [0, T ]. It only remains to check∫ t∧TM

0

∫ M

−M
∇xFns (xXs)d(s,x)`

x(s)→
∫ t∧TM

0

∫ M

−M
(∇wx Fs)(xXs)d(s,x)`

x(s) (5.9)

a.s. as n → ∞ for every t ∈ [0, T ]. To shorten notation, let us denote Φns (x) :=
∇xFns (xXs) − (∇wx Fs)(xXs); (s, x) ∈ [0, T ] × [−M,M ]. Let us fix an arbitrary
t ∈ [0, T ]. In the sequel, we take ε > 0 small enough such that a′ = a + ε and

b′ = a′

a b satisfy a′ < 2β
β+1 and b′ < 2

3−β . We claim that

‖Φn‖a′,b′ → 0 a.s as n→∞. (5.10)

A simple one parameter interpolation estimate (similar to Lemma 5.4) yields

‖Φn0‖b′ 6 sup
x,y∈[−M,M ]2

|Φn0 (x)− Φn0 (y)|1− b
b′ ‖Φn0‖

b
b′
b a.s (5.11)

and

‖Φn· (−M)‖a′ 6 sup
s,t∈[0,T ]2

|Φnt (−M)− Φns (−M)|1− a
a′ ‖Φn0‖

a
a′
a a.s (5.12)

where (4.9) yields supx,y∈[M,M ]2 |Φn0 (x)−Φn0 (y)|1− b
b′ → 0 a.s as n→∞. Moreover,

m∑
j=1

|∆j∇xFn0 (xjX0)|b 6
∫ 2

0

ρ(z)

m∑
j=1

|∇j∇wF0

(xj− z
nX0

)
|bdz 6 C‖∇wF0(·X0)‖bb

so that supn>1 ‖∇xFn0 (·X0)‖bb 6 C‖∇wF0(·X0)‖bb a.s. Triangle inequality then

allows us to conclude that supn>1 ‖Φn0‖
b
b′
b 6 C‖∇wF0(·X0)‖

b
b′
b a.s. Then (5.11)

yields

lim
n→+∞

‖Φ0‖b′ = 0 a.s. (5.13)

Similarly, by D(i),

k∑
i=1

|∆i∇xFnti(
−MXti)|a 6

∫ 2

0

ρ(z)

k∑
i=1

|∆i∇wFti
(−M− z

nXti

)
|adz

6 C sup
−2M6x60

‖∇wF·(xX·)‖aa
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so that supn>1 ‖Fn· (−MX·)‖aa 6 sup−2M6x60 ‖∇wF·(xX·)‖aa a.s. Triangle inequal-
ity, (5.12) and (4.9) yield

lim
n→+∞

‖Φn· (−M)‖a′ = 0 a.s. (5.14)

Summing up (5.13) and (5.14) and invoking again (4.9), we conclude that

lim
n→+∞

(
|Φn0 (−M)|+ ‖Φn0‖b′ + ‖Φn(−M)‖a′

)
= 0 a.s. (5.15)

Now, we take b
a > 1 and Jensen inequality yields

m∑
j=1

( k∑
i=1

|∆i∆j∇xFnti(
xjXti)|a

) b
a

6
∫ 2

0

m∑
j=1

( k∑
i=1

|∆i∆j(∇wFti)(xj−
z
nXti)|a

) b
a

ρ(z)dz

(5.16)

a.s. for every n > 1 and partition π of [0, T ]× [−M,M ]. Lemma 5.4 yields

LV a
′,b′(Φn) 6 sup

t,s∈[0,T ]
x,y∈[−M,M ]

|∆Φn(t, s;x, y)|
a′−a
a′ × sup

π

{[
m∑
j=1

[ k∑
i=1

|∆i∆jΦ
n
ti(xj)|

a
] b
a

] 1
b′
}

6 C sup
t,s∈[0,T ]

x,y∈[−M,M ]

|∆Φn(t, s;x, y)|
a′−a
a′ × sup

π

{[
m∑
j=1

[ k∑
i=1

|∆i∆jF
n
ti(

xjXti)|a
] b
a

] 1
b′
}

+ C sup
t,s∈[0,T ]

x,y∈[−M,M ]

|∆Φn(t, s;x, y)|
a′−a
a′ × sup

π

{[
m∑
j=1

[ k∑
i=1

|∆i∆j(∇wFti)(xjXti)|a
] b
a

] 1
b′
}

a.s. for every n > 1. Then (4.9), (5.15) and (5.16) allow us to state that (5.10)
holds true. Lastly, we take (α1, α2) such that a′ < α2

α2−1 , b
′ < α1

α1−1 for α1 >
2

β−1

and α2 >
2β
β−1 . By Th. 1.2 in Towghi (2002a), we know there exists a constant C

such that∣∣∣ ∫ t∧TM

0

∫ M

−M
Φns (x)d(s,x)`

x(s)
∣∣∣ 6 C‖Φn‖(a′,b′) × LV α2,α1(`) (5.17)

a.s. for every n > 1 and hence Lemma 5.3, (5.17) and (5.10) allow us to conclude
that decomposition (5.5) holds over the stochastic set [0, t∧TM ]. By takingM →∞,
we may conclude the proof. �

A complete similar proof also yields the symmetric result of Corollary 5.5 as
follows.

Corollary 5.6. Let X be a stable symmetric process with index 1 < β 6 2. Assume
that F is a functional which satisfies Assumptions A1, A2, C and D(ii). If for each
c ∈ C([0, T ];R), (t, x) 7→ (∇wx Ft)(xct) ∈ RWp,q([0, T ]× [−M,M ]) for every M > 0

with 1 6 p < 2
3−β , 1 6 q < 2β

β+1 and 1 6 p 6 q, then

Ft(Xt) = F0(X0) +

∫ t

0

∇hFs(Xs)ds+

∫ t

0

∇wFs(Xs)dX(s)

(5.18)
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− 1

2

∫ +∞

−∞

∫ t

0

(∇wx Fs)(xXs)d(s,x)`
x(s) a.s

for 0 6 t 6 T .

Example 5.7 (Path-dependent cylindrical functionals). Let {0 = t0 < t1 < t2 <
· · · < tn = T} be a partition of [0, T ]. Consider a continuous function f : Rn → R
weakly differentiable in each variable. Let us assume that for each k and for each
i > k, the ith weak partial derivative

x 7→ ∇wi f(c(t1−), c(t2−), . . . , c(tk−), x, . . . , xi, . . . , x)
∣∣
xi=x

, (5.19)

evaluated at x, is left continuous and is of bounded q-variation on [−M,M ] for each
M > 0 and for some q ∈ [1, 2

3−β ). For every c ∈ Λ, define the functional Ft by the

formulas:

F (c) = f(c(t1−), c(t2−), . . . , c(tn−)) and Ft(ct) = F (ct,T−t). (5.20)

Let us prove that Itô’s formula (5.18) holds the functional Ft. Let us notice that
the functional Fx, defined by (2.4), takes the form:

Fxt (ct) =

n−1∑
k=0

f(c(t1−), c(t2−), . . . , c(tk−), x, . . . , x) I{tk6t<tk+1}. (5.21)

From this formula one immediately verifies that the family Fxt (ct) is state bound-
edness preserving and that ∇hFxt (ct) = 0. For the weak derivative we obtain:

∇wxFxt (c(t1−), c(t2−), . . . , c(tk−), x, . . . , x)

=

n−1∑
k=0

I{tk6t<tk+1}

n∑
i=k+1

∇wi f(c(t1−), c(t2−), . . . , c(tk−), x, . . . , xi, . . . , x)
∣∣
xi=x

.

(5.22)

This immediately implies that Assumptions C and D(ii) are fulfilled. We also
remark that (t, x) 7→ (∇wxFxt )(ct) ∈ LWp,q([0, T ] × [−M,M ]), where q is the same
number as of the q-variation of (5.19), and p is arbitrary.

We further note that the family Fx fails to be state-dependent Λ-continuous.
However, one immediately verifies that it is state-dependent Λ-continuous on each
interval [ti−1, ti − ε] for any sufficiently small ε.

Therefore, on the interval [0, t1−ε] all assumptions of Proposition 5.5 are fulfilled,
and therefore,

Ft(Xt) = F0(X0) +

∫ t1−ε

0

∇hFs(Xs)ds+

∫ t1−ε

0

∇wFs(Xs)dX(s)

− 1

2

∫ +∞

−∞

∫ t1−ε

0

(∇wx Fs)(xXs)d(s,x)`
x(s).

Passing to the limit as ε→ 0, we obtain (5.5) for any t ∈ [0, t1]. By the same argu-
ment, (5.5) holds on each interval [ti−1, ti] with the initial condition Fti−1

(Xti−1
).

This implies (5.5) for every t ∈ [0, T ].

Example 5.8. Let us now summarize Theorem 4.7, Proposition 5.5 and Corollary
5.6. One typical class of examples which can be treated by using the results of
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Sections 4.1 and 5 is the following pathwise path-dependent version of the classical
formula given by Föllmer et al. (1995)

Ft(Xt) =

∫ X(t)

−∞
Zt(Xt; y)dy

where Z = {Zt(·;x) : C([0, t];R)→ R; 0 6 t 6 T, x ∈ R} can be chosen in such way
that

∇wFt(xXt) = Zt(Xt;x) and ∇hFt(Xt) =

∫ X(t)

−∞
∇hZs(Xs; y)dy

satisfy the set of assumptions (A1, A2, C, D(i)) or (A1, A2, B). For a concrete case,
see Example 4.8. In this case, the following formula holds

Ft(Xt) = F0(X0) +

∫ t

0

∫ X(s)

−∞
∇hZs(Xs; y)dyds+

∫ t

0

Zs(Xs;X(s))dX(s)

− 1

2

∫ +∞

−∞

∫ t

0

Zs(Xs;x)d(s,x)`
x(s)

a.s. for 0 6 t 6 T.
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