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Abstract. The purpose of this paper is to extend the investigation of the Fleming-
Viot process in discrete space started in a previous work to two specific examples.
The first one corresponds to a random walk on the complete graph. Due to its
geometry, we establish several explicit and optimal formulas for the Fleming-Viot
process (invariant distribution, correlations, spectral gap). The second example
corresponds to a Markov chain in a two state space. In this case, the study of the
Fleming-Viot particle system is reduced to the study of birth and death process
with quadratic rates.

1. Introduction

In discrete space, the Fleming-Viot particle system has been studied by many
authors Asselah et al. (2011, 2015+); Asselah and Thai (2012); Ferrari and Marić
(2007); Marić (2015). Such a system is a mean field particle system described in
the following way: we consider N copies of an absorbed Markov chain and, instead
of being absorbed, one chain jumps randomly on the state of another one. It is
well known that, when the number of copies tends to infinity, the empirical mea-
sure converges to the law of the initial chain conditioned not to be absorbed, see
for instance Cloez and Thai (2016); Del Moral and Miclo (2000); Groisman and
Jonckheere (2013); Villemonais (2014). Convergence to equilibrium as time goes
to infinity is less known. In Rousset (2006); Villemonais (2011), this question is
addressed for some models. Nevertheless, to our knowledge, there are few results
on the expression of the invariant distribution or on the explicit rates of conver-
gence. This paper is concerned with studying two specific models for which the
invariant distribution is explicit and extend the investigation started by Cloez and
Thai (2016). Let Q = (Qi,j ; i, j ∈ F ∗ ∪ {0}) be the transition rates matrix of an
irreducible and positive recurrent continuous time Markov process (Xt)t≥0 on a
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countable state space F = F ∗ ∪ {0}. We think of 0 as an absorbing state. Let µ
be the initial law of (Xt)t≥0 and let µTt be its law at time t conditioned on non
absorption up to time t. That is defined, for all non-negative function f on F ∗, by

µTtf =
µPtf

µPt1{0}c
=

∑
y∈F∗ Ptf(y)µ(y)∑

y∈F∗ Pt1{0}c(y)µ(y)
,

where (Pt)t≥0 is the semigroup associated with the transition matrix Q and we use
the convention f(0) = 0. For every x ∈ F ∗, k ∈ F ∗ and non-negative function f on
F ∗, we also set

Ttf(x) = δxTtf and µTt(k) = µTt1{k}, ∀t ≥ 0.

A quasi-stationary distribution (QSD) for Q is a probability measure νqs on F ∗

satisfying, for every t ≥ 0, νqsTt = νqs.
The particle system we are focusing on was initially introduced in Del Moral and

Guionnet (1999); Del Moral and Miclo (2000) for approximating the conditioned
semigroup (Tt)t≥0 and the QSD νqs. It is convenient to think of particles as being
indistinguishable, and to consider the occupation number η with, for k ∈ F ∗ ,
η(k) = η(N)(k) representing the number of particles at site k. The configuration
(ηt)t≥0 is a Markov process with state space E = E(N) defined by

E =

{
η : F ∗ → N |

∑
i∈F∗

η(i) = N

}
.

Applying its generator to a bounded function f gives

Lf(η) = L(N)f(η) =
∑
i∈F∗

η(i)

∑
j∈F∗

(f(Ti→jη)− f(η))

(
Qi,j +Qi,0

η(j)

N − 1

) ,
(1.1)

for every η ∈ E, where, if η(i) 6= 0, the configuration Ti→jη is defined by

Ti→jη(i) = η(i)− 1, Ti→jη(j) = η(j) + 1, and Ti→jη(k) = η(k) k /∈ {i, j}.
The present paper is a continuation of Cloez and Thai (2016) in which the

following limits are studied and quantified: where µN is the associated empirical

µNt
t→∞

  

N→∞

~~
µTt

t→∞
!!

µN∞

N→∞
}}

νqs

distribution of the particle system defined, for η ∈ E, by

µNt =
1

N

∑
k∈F∗

η(k)δ{k}.

For countable space F , the ergodicity of the Fleming-Viot process is not guaran-
teed. Cloez and Thai (2016) show that under some conditions, the particle system
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converges exponentially fast to equilibrium for a suitable Wasserstein coupling dis-
tance. Let us recall the different distances given by the authors. For η, η′ ∈ E, let
d be the distance defined by

d(η, η′) =
1

2

∑
j∈F
|η(j)− η′(j)|, (1.2)

and for any two probability measures µ and µ′ on E, let Wd(µ, µ
′) be the Wasser-

stein coupling distance between these two laws defined by

Wd(µ, µ
′) = inf

X∼µ
X∼µ′

E
[
d(X,X)

]
, (1.3)

where the infimum runs over all the couples of random variables with marginal laws
µ and µ′.

Theorem 1.1 (Theorem 1.1 of Cloez and Thai, 2016).

Let λ = inf
i,i′∈F∗

(
Qi,i′ +Qi′,i +

∑
j 6=i,i′

Qi,j ∧Qi′,j
)

and for i ∈ F ∗, p0(i) = Qi,0. If

ρ = λ− (sup(p0)− inf(p0)) then for any processes (ηt)t>0 and (η′t)t>0 generated by
(1.1), and for any t ≥ 0, we have

Wd(Law(ηt),Law(η′t)) ≤ e−ρtWd(Law(η0),Law(η′0)).

In particular, if ρ > 0 then there exists a unique invariant distribution νN satisfying
for every t ≥ 0,

Wd(Law(ηt), νN ) ≤ e−ρtWd(Law(η0), νN ).

This theorem gives the existence and uniqueness of the invariant distribution, but
this one is not explicit. Actually, there are few models for which an explicit formula
of the invariant distribution is given. This observation is one of the motivations of
the present paper. So, it is interesting to consider and study a model satisfying the
previous point : the example of random walk on a complete graph. An interesting
point of the complete graph approach is that it permits to reduce the difficulties
of the Fleming-Viot to the interaction. Due to its simple geometry, several explicit
formulas are obtained such as the invariant distribution, the correlations and the
spectral gap. It seems to be new in the context of Fleming-Viot particle systems.
A second model for which the invariant distribution is explicit is the two point case,
the study of the particle system is then reduced to a birth and death process with
quadratic rates. The bound obtained in Theorem 1.1 is not optimal. Nevertheless,
the coupling introduced in Cloez and Thai (2016) in order to prove Theorem 1.1,
permits us to obtain the spectral gap as rate of convergence. Moreover, we show
that the spectral gap of the Fleming-Viot process is always bounded from below by
a positive constant not depending on the number of particles.

The remainder of the paper is as follows. Section 2 is dedicated to the study of
random walk on the complete graph and Section 3 to that of the two point case.

2. Complete graph dynamics

In all this section, we study the example of a random walk on the complete
graph. Let us fix K ∈ N∗, p > 0 and N ∈ N∗, the dynamics of this example is
as follows: we consider a model with N particles and K + 1 vertices 0, 1, . . . ,K.



340 B. Cloez and M.-N. Thai

The N particles move on the K vertices 1, . . . ,K uniformly at random and jump
to 0 with rate p. When a particle reaches the node 0, it jumps instantaneously over
another particle chosen uniformly at random. This particle system corresponds to
the model previously cited with parameters

Qi,j =
1

K
, ∀i, j ∈ F ∗ = {1, . . . ,K}, i 6= j and Qi,0 = p, ∀i ∈ F ∗.

The generator of the associated Fleming-Viot process is then given by

Lf(η) =

K∑
i=1

η(i)

 K∑
j=1

(f(Ti→jη)− f(η))

(
1

K
+ p

η(j)

N − 1

) , (2.1)

for every function f and η ∈ E.
A process generated by (2.1) is an instance of inclusion processes studied in

Giardinà et al. (2010); Grosskinsky et al. (2011, 2013). It is then related to models of
heat conduction. One main point of Giardinà et al. (2010); Grosskinsky et al. (2011)
is a criterion ensuring the existence and reversibility of an invariant distribution for
the inclusion processes. In particular, they give an explicit formula of the invariant
distribution of a process generated by (2.1) and we give this expression in Subsection
2.3. They also study different scaling limits which seem to be irrelevant for our
problems.

Another application of this example comes from population genetics. Indeed, this
model can also be referred as neutral evolution, see for instance Etheridge (2011);
Watterson (1976). More precisely, consider N individuals possessing one type in
F ∗ = {1, . . . ,K} at time t. Each pair of individuals interacts at rate p. Upon an
interacting event, one individual dies and the other one reproduces. In addition,
every individual changes its type (mutates) at rate 1 and chooses uniformly at
random a new type in F ∗. The measure µNt gives the proportions of types. The
kind of mutation we consider here is often referred as parent-independent or the
house-of-cards model.

In all this section, for any probability measure µ on E, we set in a classical

manner Eµ[·] =

∫
F∗

Ex[·]µ(dx) and Pµ = Eµ[1·]; similarly Covµ and Varµ are

defined with respect to Eµ.

2.1. The associated killed process. We define the process (Xt)t≥0 by setting

Xt =

{
Zt if t < τ
0 if t ≥ τ,

where τ is an exponential variable with mean 1/p and (Zt)t≥0 is the classical com-
plete graph random walk (i.e. without extinction) on {1, . . . ,K}. We have, for any
bounded function f ,

Ttf(x) = E [f(Xt) | X0 = x,Xt 6= 0] , t ≥ 0, x ∈ F ∗.

The conditional distribution of Xt is simply given by the distribution of Zt :

P(Xt = i | Xt 6= 0) = P(Zt = i).

The study of (Zt)t≥0 is trivial. Indeed, it converges exponentially fast to the uni-
form distribution πK on {1, . . . ,K}. We deduce that for all t ≥ 0 and all initial
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distribution µ,

dTV(µTt, πK) =

K∑
i=1

|Pµ(Xt = i | τ > t)− πK(i)| ≤ e−t.

Thus in this case, the conditional distribution of X converges exponentially fast
to the Yaglom limit πK .

2.2. Correlations at fixed time. The special form of L, defined at (2.1), makes the
calculation of the two-particle correlations at fixed time easy.

Theorem 2.1 (Two-particle correlations). For all k, l ∈ {1, . . . ,K}, k 6= l and any
probability measure µ on E, we have for all t ≥ 0

Covµ(ηt(k), ηt(l)) = Eµ [η0(k)η0(l)] e−
2K(N−1+p)

K(N−1)
t

+
−N + 1 + 2pN

K(N − 1 + 2p)
(Eµ [η0(k)] + Eµ [η0(l)])e−t

− Eµ [η0(k)]Eµ [η0(l)] e−2t +
−N2(p+ 1) +N

K2(N − 1 + p)
.

Remark 2.2 (Limit t→ +∞). By the previous theorem, we find for any probability
measure µ

lim
t→+∞

Covµ(ηt(k), ηt(l)) =
−N2(p+ 1) +N

K2(N − 1 + p)
= Cov(η(k), η(l)),

where η is distributed according to the invariant distribution; it exists since the state
space is finite, see the next section.

Remark 2.3 (Limit N → +∞). If Covµ (η0(k), η0(l)) 6= 0 then for all k, l ∈
{1, . . . ,K}, k 6= l and any probability measure µ, we have

Covµ

(
ηt(k)

N
,
ηt(l)

N

)
∼N e−2tCovµ

(
η0(k)

N
,
η0(l)

N

)
,

where uN ∼N vN iff lim
N→+∞

uN
vN

= 1.

Proof of Theorem 2.1: For k, l ∈ {1, ..,K}, let ψk,l be the function η 7→ η(k)η(l).
Applying the generator (2.1) to ψk,l we obtain

Lψk,l(η) = −2K(N − 1 + p)

K(N − 1)
η(k)η(l) +

N − 1

K
(η(k) + η(l)).

So, for all t ≥ 0,

Lψk,l(ηt) = −2K(N − 1 + p)

K(N − 1)
ηt(k)ηt(l) +

N − 1

K
(ηt(k) + ηt(l)).

Using Kolmogorov’s equation, we have

∂tEµ(ηt(k)ηt(l)) = −2K(N − 1 + p)

K(N − 1)
Eµ(ηt(k)ηt(l))+

N − 1

K
(Eµ(ηt(k))+Eµ(ηt(l))).

(2.2)

Now if ϕk(η) = η(k) then Lϕk(η) =
N

K
− η(k). We deduce that, for every t ≥ 0,

∂tEµ(ηt(k)) =
N

K
− Eµ(ηt(k)) and Eµ(ηt(k)) = Eµ(η0(k))e−t +

N

K
.
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Solving equation (2.2) ends the proof. �

2.3. Properties of the invariant measure. As (ηt)t≥0 is an irreducible Markov chain
on a finite state space, it is straightforward that it admits a unique invariant mea-
sure. In fact, this invariant distribution is reversible and we know its expression.

Theorem 2.4 (Invariant distribution). The process (ηt)t≥0 admits a unique in-
variant and reversible measure νN , which is defined, for every η ∈ E, by

νN ({η}) = Z−1
K∏
i=1

η(i)−1∏
j=0

N − 1 +Kpj

j + 1
,

where Z is a normalizing constant.

This result is a slight generalisation of Giardinà et al. (2010, Section 4) and
Grosskinsky et al. (2011, Theorem 2.1).

Proof: A measure ν is reversible if and only if it satisfies the following balance
equation

ν({η})C(η, ξ) = ν({ξ})C(ξ, η) (2.3)

where ξ = Ti→jη and C(η, ξ) = L1ξ(η) = η(i)(K−1 + pη(j)(N − 1)−1).
Due to the geometry of the complete graph, it is natural to consider that ν has

the following form

ν({η}) =
1

Z

K∏
i=1

l(η(i)),

where l : {0, . . . , N} → [0, 1] is a function and Z is a normalizing constant. From
(2.3), we have

l(η(i))l(η(j))η(i)(N − 1 +Kpη(j))

= l(η(i)− 1)l(η(j) + 1)(η(j) + 1)(N − 1 +Kp(η(i)− 1)),

for all η ∈ E and i, j ∈ {1, . . .K}. Hence,

l(n)

l(n− 1)

n

N − 1 +Kp(n− 1)
=

l(m)

l(m− 1)

m

N − 1 +Kp(m− 1)
= u,

for every m,n ∈ {1, . . . , N} and some u ∈ R. Finally,

ν({η}) =

K∏
i=1

uη(i) η(i)−1∏
j=0

N − 1 +Kpi

i+ 1
l(0)


= l(0)KuN

K∏
i=1

η(i)−1∏
j=0

N − 1 +Kpj

j + 1
,

and Z = 1/(l(0)KuN ). �

In particular, we have directly

Corollary 2.5 (Invariant distribution when p = 1/K). If p = 1/K then the process
(ηt)t≥0 admits a unique invariant and reversible measure νN , which is defined, for
every η ∈ E, by

νN ({η}) = Z−1
K∏
i=1

(
N − 2 + η(i)

N − 2

)
,
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where Z is a normalizing constant given by

Z =

(
(K + 1)N −K − 1

KN −K − 1

)
.

Corollary 2.6 (Marginal laws when p = 1/K). If p = 1/K then for all i ∈
{1, . . . ,K} we have

PνN (η(i) = x) =
1

Z

(
N − 2 + x

N − 2

)(
KN −K − x

(K − 1)N −K

)
,

Proof: Firstly let us recall the Vandermonde binomial convolution type formula:

let n, n1, . . . , np be some non-negative integers satisfying

p∑
i=1

ni = n, we have

(
r − 1

n− 1

)
=

∑
r1+···+rp=r

p∏
j=1

(
rj − 1

nj − 1

)
.

The proof is based on the power series decomposition of z 7→ (z/(1− z))n =
p∏
i=1

(z/(1− z))ni . Using this formula, we find

PνN (η(i) = x) =
∑
x∈E1

PνN (η = (x1, . . . , xi−1, x, xi+1 . . . , xK))

=
1

Z

(
N − 2 + x

N − 2

) ∑
x∈E1

i−1∏
l=1

K∏
l=i+1

(
N − 2 + xl
N − 2

)
=

1

Z

(
N − 2 + x

N − 2

)(
(K − 1)(N − 1) +N − x− 1

(K − 1)(N − 1)− 1

)
,

where

E1 = {x = (x1, . . . , xi−1, xi+1 . . . , xK)|x1 + · · ·+ xi−1 + xi+1 · · ·+ xK = N − x} .

�

We are now able to express the particle correlations under this invariant measure.

Theorem 2.7 (Correlation estimates). For all i 6= j ∈ {1, . . . ,K}, we have

|CovνN (η(i)/N, η(j)/N)| ∼N
p+ 1

K2N
,

Proof: Let η be a random variable with law νN . As η(1), . . . , η(K) are identically

distributed and

K∑
i=1

η(i) = N we have

CovνN (η(i)/N, η(j)/N) = −VarνN (η(i)/N)

K − 1
.

Using the results of Section 2.4, we have

L(η(i)2) = η(i)2
[
−2− 2p

N − 1

]
+ η(i)

[
2N

K
+

2pN

N − 1
+
K − 2

K

]
+
N

K
.
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Using the fact that

∫
L(η(i)2)dνN = 0 and

∫
η(i)dνN =

N

K
, we deduce that∫

η(i)2dνN =
N [(2N +K − 2)(N − 1) + 2KNp+K(N − 1)]

2K2(N − 1 + p)
.

Finally,

VarνN (η(i)) =

∫
η(i)2dνN −

(∫
η(i)dνN

)2

=
N(K − 1)(Np+N − 1)

K2(N − 1 + p)
,

and thus, for i 6= j,

|CovνN (η(i)/N, η(j)/N)| ∼N
p+ 1

K2N
.

�

Remark 2.8 (Proof through coalescence methods). Maybe we can use properties
of Kingman’s coalescent type process (which is a dual process) to recover some
of our results (as for instance the previous correlation estimates). Indeed, after
an interacting event, all individuals evolve independently and it is enough to look
when the first mutation happens (backwards in time) on one of the genealogical
tree branches. Nevertheless, we prefer to use another approach based on Markovian
techniques.

Remark 2.9 (Number of sites). Theorem 2.7 gives the rate of the decay of corre-
lations with respect to the number of particles, but we also have a rate with respect
to the number of sites K. For instance when p = 1/K and if η is distributed under
the invariant measure, then

|CovνN (η(i)/N, η(j)/N)| ∼K
1

K(K − 1)N
.

The previous theorem shows that the occupation numbers of two distinct sites
become non-correlated when the number of particles increases. In fact, Theorem
2.7 leads to a propagation of chaos:

Corollary 2.10 (Convergence to the QSD). We have

EνN
[
dTV(µN , πK)

]
≤
√
K(p+ 1)

N
,

where πK is the uniform measure on {1, . . . ,K}.

Proof: By the Cauchy-Schwarz inequality, we have

EνN
[∣∣∣∣η(k)

N
− 1

K

∣∣∣∣] ≤
(
EνN

[∣∣∣∣η(k)

N
− 1

K

∣∣∣∣2
]) 1

2

= VarνN

(
η(k)

N

)1/2

≤
√

(K − 1)(p+ 1)

K2N
.

Summing over {1, . . . ,K} ends the proof. �

Cloez and Thai (2016, Theorem 1.2) and its corollaries states that there exist
C, θ > 0 such that

EνN
[
dTV(µN , πK)

]
≤ C

Nθ
.
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All constants are explicit and we have θ < 1/2. The last corollary then gives a
better bound. To our knowledge, it is the first time that this rate of convergence is
obtained for the Fleming-Viot process in discrete space. With spectral arguments,
this type of result was obtained for diffusion processes in Rousset (2006). This
bound is achieved because of the absence of bias term. Indeed,

∀k ∈ F ∗, EνN [µN (k)] =
1

K
= πK(k).

The bad term in Cloez and Thai (2016, Theorem 1.2) comes from, with the nota-
tions of its proof, the estimation of |uk(t)− vk(t)| and Gronwall Lemma.

Remark 2.11 (Parameters depending on N). A nice application of explicit rates
of convergence is to consider parameters depending on N . For instance, we can now
consider that p = pN depends on N , this does not change neither the conditioned
semi-group nor the QSD but this changes the dynamics of our interacting-particle
system. The last corollary gives that if lim

N→∞
pN/N = 0 then the empirical measure

converges to the uniform measure.

2.4. Long time behavior and spectral analysis of the generator. In this subsection,
we point out the optimality of Theorem 1.1 in this special case. Conditions in
Theorem 1.1, which seems to be a bit strong, are tight in the complete graph
dynamics. In that case, λ = ρ = 1 and the bound obtained is optimal in terms of
contraction. Moreover, the obtained rate is exactly the spectral gap.

Corollary 2.12 (Wasserstein contraction). For any processes (ηt)t>0 and (η′t)t>0

generated by (2.1), and for any t ≥ 0, we have

Wd(Law(ηt),Law(η′t)) ≤ e−tWd(Law(η0),Law(η′0)).

In particular, when (η′0) follows the invariant distribution νN associated to (2.1),
we get for every t ≥ 0

Wd(Law(ηt), νN ) ≤ e−tWd(Law(η0), νN ).

In particular, if λ1 is the smallest positive eigenvalue of −L, defined at (2.1),
then we have

1 = ρ ≤ λ1.
Indeed, on the one hand, let us recall that, as the invariant measure is reversible,
λ1 is the largest constant such that

lim
t→+∞

e2λt‖Rtf − νN (f)‖2L2(νN ) = 0, (2.4)

for every λ < λ1 and f ∈ L2(νN ), where (Rt)t≥0 is the semigroup generated by L.
See for instance Bakry (1994); Saloff-Coste (1997). On the other hand, if λ < 1
then, by Theorem 1.1, we have

e2λt‖Rtf − νN (f)‖2L2(νN ) = e2λt
∫
E

((δηRt)f − (νNRt)f)
2
νN (dη)

≤ 2e2λt‖f‖2∞
∫
E

Wd(δηRt, νNRt)
2νN (dη)

≤ 2e2(λ−1)t‖f‖2∞
∫
E

Wd(δη, νN )2νN (dη),
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and then (2.4) holds. Now, the constant functions are trivially eigenvectors of L
associated with the eigenvalue 0, and if, for k ∈ {1, . . . ,K}, l ≥ 1 we set ϕ

(l)
k : η 7→

η(k)l then the function ϕ
(1)
k satisfies

Lϕ(1)
k = N/K − ϕ(1)

k .

In particular ϕ
(1)
k −N/K is an eigenvector and 1 is an eigenvalue of −L. This gives

λ1 ≤ 1 and finally λ1 = 1 is the smallest eigenvalue of −L. By the reversibility, we
have a Poincaré (or spectral gap) inequality

∀t ≥ 0, ‖Rtf − νN (f)‖2L2(νN ) ≤ e
−2t‖f − νN (f)‖2L2(νN ).

Remark 2.13 (Complete graph random walk). If (ai)1≤i≤K is a sequence such

that

K∑
i=1

ai = 0 then the function

K∑
i=1

ϕ
(1)
i is an eigenvector of L. However, if L is

the generator of the classical complete graph random walk, La = −a and then a is
also an eigenvector of L with the same eigenvalue.

Let us finally give the following result on the spectrum of L:

Lemma 2.14 (Spectrum of −L). The spectrum of −L is included in{
K∑
i=1

λli | l1, . . . , lK ∈ {0, . . . , N}

}
,

where

∀l ∈ {0, . . . , N}, λl = l +
l(l − 1)p

N − 1
.

Proof: For every k ∈ {1, . . . ,K} and l ∈ {0, . . . , N}, we have

Lϕ(l)
k (η) = −λlϕ(l)

k (η) +Ql−1(η),

where Ql−1 is a polynomial whose degree is less than l − 1. A straightforward re-

currence shows that whether there exists or not a polynomial function ψ
(l)
k , whose

degree is l, satisfying Lψ(l)
k = −λlψ(l)

k (namely ψ
(l)
k is an eigenvector of L). Indeed,

it is possible to have ψ
(l)
k = 0 since the polynomial functions are not linearly inde-

pendent (F is finite). More generally, for all l1, . . . , lK ∈ {1, . . . , N}, there exists
a polynomial Q with K variables, whose degree with respect to the ith variable is

strictly less than li, such that the function φ : η 7→
K∏
i=1

η(ki)
li +Q(η) satisfies

Lφ = −λφ where λ =

K∑
i=1

λli .

Again, provided that φ 6= 0, φ is an eigenvector and λ an eigenvalue of −L. Finally,
as the state space is finite, using multivariate Lagrange polynomial, we can prove
that every function is polynomial and thus we capture all the eigenvalues. �

Remark 2.15 (Cardinal of E). As card(F ∗) = K, we have

card(E) =

(
N +K − 1

K − 1

)
=

(N +K − 1)!

N !(K − 1)!
.

In particular, the number of eigenvalues is finite and less than card(E).
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Remark 2.16 (Marginals). For each k, the random process (ηt(k))t≥0, which is a
marginal of a process generated by (2.1), is a Markov process on NN = {0, . . . , N}
generated by

Gf(x) = (N − x)

(
1

K
+

px

N − 1

)
(f(x+ 1)− f(x))

+ x

(
K − 1

K
+
p(N − x)

N − 1

)
(f(x− 1)− f(x)),

for every function f on NN and x ∈ NN. We can express the spectrum of this
generator. Indeed, let ϕl : x 7→ xl, for every l ≥ 0. The family (ϕl)0≤l≤N is
linearly independent as can be checked with a Vandermonde determinant. This
family generates the L2−space associated to the invariant measure since this space
has a dimension equal to N + 1. Now, similarly to the proof of the previous lemma,
we can prove the existence of N+1 polynomials, which are eigenvectors and linearly
independent, whose eigenvalues are λ0, λ1, . . . , λN .

3. The two point space

In all this section we denote by p0 the function i ∈ F ∗ 7→ Qi,0. We consider
a Markov chain defined on the states {0, 1, 2} where 0 is the absorbing state. Its
infinitesimal generator G is defined by

G =

 0 0 0
p0(1) −a− p0(1) a
p0(2) b −b− p0(b),


where a, b > 0, p0(1), p0(2) ≥ 0 and p0(1) + p0(2) > 0. The generator of the
Fleming-Viot process with N particles applied to bounded functions f : E → R
reads

Lf(η) = η(1)

(
a+ p0(1)

η(2)

N − 1

)
(f(T1→2η)− f(η))

+ η(2)

(
b+ p0(2)

η(1)

N − 1

)
(f(T2→1η)− f(η)). (3.1)

3.1. The associated killed process. The long time behavior of the conditioned pro-
cess is related to the eigenvalues and eigenvectors of the matrix:

M =

[
−a− p0(1) a

b −b− p0(2)

]
.

Indeed see Méléard and Villemonais (2012, section 3.1). Its eigenvalues are given
by

λ+ =
−(a+ b+ p0(1) + p0(2)) +

√
(a− b+ p0(1)− p0(2))2 + 4ab

2
,

λ− =
−(a+ b+ p0(1) + p0(2))−

√
(a− b+ p0(1)− p0(2))2 + 4ab

2
,

and the corresponding eigenvectors are respectively given by

v+ =

(
a

−A+
√
A2 + 4ab

)
and v− =

(
a

−A−
√
A2 + 4ab

)
,
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where A = a− b+ p0(1)− p0(2). Also set ν = v+/(v+(1) + v+(2)). From these
properties, we deduce that

Lemma 3.1 (Convergence to the QSD). There exists a constant C > 0 such that
for every initial distribution µ, we have

∀t ≥ 0, dTV(µTt, ν) ≤ Ce−(λ+−λ−)t.

Proof: See Méléard and Villemonais (2012, Theorem 7) and Méléard and Villemon-
ais (2012, Remark 3). �

Note that

λ+ − λ− =
√

(a+ b)2 + 2(a− b)(p0(1)− p0(2)) + (p0(1)− p0(2))2

and ρ = a+b−(sup(p0)−inf(p0)) defined in Theorem 1.1. We have then λ+−λ− > ρ
when sup(p0) > inf(p0). In particular Theorem 1.1 seems not optimal.

3.2. Explicit formula of the invariant distribution. Firstly note that, as

∀η ∈ E, η(1) + η(2) = N,

each marginal of (ηt)t≥0 is a Markov process:

Lemma 3.2 (Markovian marginals). The random process (ηt(1))t≥0, which is a
marginal of a process generated by (3.1), is a Markov process generated by G defined
by

Gf(n) = bn(f(n+ 1)− f(n)) + dn(f(n− 1)− f(n)), (3.2)

for any function f and n ∈ NN = {0, . . . , N}, where

bn = (N − n)

(
b+ p0(2)

n

N − 1

)
and dn = n

(
a+ p0(1)

N − n
N − 1

)
.

Proof: For every η ∈ E, we have η = (η(1), N − η(1)) thus the Markov property
and the generator are easily deducible from the properties of (ηt)t≥0. �

From this result and the already known results on birth and death processes
Chafäı and Joulin (2013); Chen (2004), we deduce that (ηt(1))t≥0 admits an invari-
ant and reversible distribution π given by

π(n) = u0

n∏
k=1

bk−1
dk

and u−10 = 1 +

N∑
k=1

b0 · · · bk−1
d1 · · · dk

,

for every n ∈ NN. This gives

π(n) = u0

(
N

n

) n∏
k=1

b(N − 1) + (k − 1)p0(2)

a(N − 1) + (N − k)p0(1)
,

and

u−10 = 1 +

N∏
k=1

b(N − 1) + kp0(2)

a(N − 1) + kp0(1)
.

Similarly, as ηt(2) = N − ηt(1), the process (ηt(2))t≥0 is a Markov process whose
invariant distribution is also easily calculable. The invariant law of (ηt)t≥0, is then
given by

νN ((r1, r2)) = π ({r1}) , ∀(r1, r2) ∈ E.
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Note that if p0 is not constant then we can not find a basis of orthogonal polynomials
in the L2 space associated to νN . It is then very difficult to express the spectral
gap or the decay rate of the correlations.

3.3. Rate of convergence. Applying Theorem 1.1, in this special case, we find:

Corollary 3.3 (Wasserstein contraction). For any processes (ηt)t>0 and (η′t)t>0

generated by (3.1), and for any t ≥ 0, we have

Wd(Law(ηt),Law(η′t)) ≤ e−ρtWd(Law(η0),Law(η′0)),

where ρ = a+ b− (sup(p0)− inf(p0)). In particular, when (η′0) follows the invariant
distribution νN of (3.1), we get for every t > 0

Wd(Law(ηt), νN ) ≤ e−ρtWd(Law(η0), νN ).

This result is not optimal. Nevertheless, the error does not come from the
coupling choice of Cloez and Thai (2016) but it comes from how the distance is
estimated. Indeed, this coupling induces a coupling between two processes gener-
ated by G defined by (3.2). More precisely, let L = LQ + Lp be the generator of
the coupling introduced in the proof of Cloez and Thai (2016, Theorem 1.1) in this
special case. We set G = GQ + Gp, where for any n, n′ ∈ NN and f on E × E,

LQf((n,N − n), (n′, N − n′)) = GQϕf (n, n′),

Lpf((n,N − n), (n′, N − n′)) = Gpϕf (n, n′),

and ϕf (n, n′) = f((n,N − n), (n′, N − n′)). It satisfies, for any function f on NN

and n′ > n two elements of NN,

GQf(n, n′) = na (f(n− 1, n′ − 1)− f(n, n′))

+ (N − n′)b (f(n+ 1, n′ + 1)− f(n, n′))

+ (n′ − n)b (f(n+ 1, n′)− f(n, n′))

+ (n′ − n)a (f(n, n′ − 1)− f(n, n′)) ,

and

Gpf(n, n′) = p0(1)
n(N − n′)
N − 1

(f(n− 1, n′ − 1)− f(n, n′))

+ p0(2)
n(N − n′)
N − 1

(f(n+ 1, n′ + 1)− f(n, n′))

+ p0(1)
n(n′ − n)

N − 1
(f(n− 1, n′)− f(n, n′))

+ p0(2)
(N − n′)(n′ − n)

N − 1
(f(n, n′ + 1)− f(n, n′))

+ p0(2)
n(n′ − n)

N − 1
(f(n+ 1, n′)− f(n, n′))

+ p0(1)
(N − n′)(n′ − n)

N − 1
(f(n, n′ − 1)− f(n, n′)) .

Now, for any sequence of positive numbers (uk)k∈{0,...,N−1}, we introduce the dis-
tance δu defined by

δu(n, n′) =

n′−1∑
k=n

uk,
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for every n, n′ ∈ NN such that n′ > n. For all n ∈ NN\{N}, we have Gδu(n, n+1) ≤
−λuδu(n, n+ 1) where

λu = min
k∈{0,...,N−1}

[
dk+1 − dk

uk−1
uk

+ bk − bk+1
uk+1

uk

]
,

and thus, by linearity, Gδu(n, n′) ≤ −λuδu(n, n′), for every n, n′ ∈ NN. This implies
that for any processes (Xt)t≥0 and (X ′t)t≥0 generated by G , and for any t ≥ 0,

Wδu(Law(Xt),Law(X ′t)) ≤ e−λutWδu(Law(X0),Law(X ′0)).

Note that, for every n, n′ ∈ NN, we have

min(u)d((n,N − n), (n′, N − n′)) ≤ δu(n, n′) ≤ max(u)d((n,N − n), (n′, N − n′)),

and then for any processes (ηt)t≥0 and (η′t)t≥0 generated by (3.1), and for any t ≥ 0,
we have

Wd(Law(ηt),Law(η′t)) ≤
max(u)

min(u)
e−λutWd(Law(η0),Law(η′0)).

Finally, using Chen (2004, Theorem 9.25), there exists a positive sequence v such
that λv = max

u
λu > 0 is the spectral gap of the birth and death process (ηt(1))t≥0.

These parameters depend on N and so we should write the previous inequality as

Wd(Law(ηt),Law(η′t)) ≤ C(N)e−λN tWd(Law(η0),Law(η′0)), (3.3)

where C(N) and λN are two constants depending on N . In conclusion, the coupling
introduced in Theorem 1.1 gives the optimal rate of convergence but we are not
able to express a precise expression of λN and C(N). Nevertheless, in the section
that follows, we will prove that, whatever the value of the parameters, the spectral
gap is always bounded from below by a positive constant not depending on N .

3.4. A lower bound for the spectral gap. In this subsection, we study the evolution
of (λN )N≥0. Calculating λN for small value of N (it is the eigenvalue of a small
matrix) and some different parameters show that, in general, this sequence is not
monotone and seems to converge to λ+−λ−. We are not able to prove this, but as
it is trivial that for all N ≥ 0, λN > 0, we can hope that it is bounded from below.
The aim of this section is to prove this fact.

Firstly, using similar arguments of subsection 2.4, we have λN ≥ ρ, for every
N ≥ 0. This result does not give us information in the case ρ ≤ 0. However, we can
use Hardy’s inequalities Ané et al. (2000, Chapter 6) and mimic some arguments
of Miclo (1999) to obtain:

Theorem 3.4 (A lower bound for the spectral gap). If ρ ≤ 0 then there exists
c > 0 such that

∀N ≥ 0, λN > c.

The rest of this subsection aims to prove this result. Hardy’s inequalities are
mainly based on the estimation of the quantities BN,+ and BN,− defined for every
i ∈ N by

BN,+(i) = max
x>i

 x∑
y=i+1

1

π(y)dy

π([x,N ]), (3.4)



Fleming-Viot processes: two explicit examples 351

and

BN,−(i) = max
x<i

(
i−1∑
y=x

1

π(y)by

)
π([1, x]).

We recall that π = πN is the invariant distribution defined in Subsection 3.2 and
jumps rates b and d also depend on N .

More precisely, Miclo (1999, Proposition 3) shows that if one wants to get a
“good” lower bound of the spectral gap, one only needs to guess an “adequate
choice” of i and to apply the estimate

λN ≥
1

4 max{BN,+(i), BN,−(i)}
.

So, we have to find an upper bound for these two quantities. Before to give it, let
us prove that the invariant distribution π is unimodal. Indeed, it will help us to
choose an appropriate i.

Lemma 3.5 (Unimodality of π). The sequence (π(i+ 1)/π(i))i≥0 is decreasing.

Proof of Lemma 3.5: For all i ∈ {1, . . . , N}, we set

g(i) =
π(i+ 1)

π(i)
=

(N − i)(b(N − 1) + ip0(2))

(i+ 1)((a+ p0(1))(N − 1)− ip0(1))
.

It follows that

g(i+ 1)− g(i)

=
ΛN (i)

(i+ 1)((a+ p0(1))(N − 1)− ip0(1))(i+ 2)((a+ p0(1))(N − 1)− (i+ 1)p0(1))

where

ΛN (i)

= (N − i− 1)(b(N − 1) + (i+ 1)p0(2))(i+ 1)((a+ p0(1))(N − 1)− ip0(1))

− (N − i)(b(N − 1) + ip0(2))(i+ 2)((a+ p0(1))(N − 1)− (i+ 1)p0(1))

= − [b(N − 1)− p0(2)] [(N + 1) (a(N − 1)− p0(1)) + p0(1)(N − i)(N − i− 1)]

− p0(2)
(
i2 + 3i+ 2

)
(a(N − 1)− p0(1))

≤ 0.

We deduce the result. �

Proof of Theorem 3.4: Without less of generality, we assume that p0(1) ≥ p0(2)
and we recall that ρ ≤ 0. We would like to know where π reaches its maximum
i∗ since it will be a good candidate to estimate BN,+(i∗) and BN,−(i∗). From the
previous lemma, to find it, we look when π(i+ 1)/π(i) is close to one. We have, for
all i ∈ {1, . . . , N},

π(i+ 1)

π(i)
=

bi
di+1

= 1 +
(p0(1)− p0(2))(i− i1)(i− i2)

(i+ 1) ((a+ p0(1))(N − 1)− ip0(1))
, (3.5)

where i1 and i2 are the two real numbers given by

i1 =
N(a+ b+ p0(1)− p0(2))− (a+ b+ 2p0(1))−

√
∆

2(p0(1)− p0(2))
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and

i2 =
N(a+ b+ p0(1)− p0(2))− (a+ b+ 2p0(1)) +

√
∆

2(p0(1)− p0(2))
,

where

∆ = [N(a+ b+ p0(1)− p0(2))− (a+ b+ 2p0(1))]2

− 4(N − 1)(bN − a− p0(1))(p0(1)− p0(2)).

In particular, 1 ≤ i1 ≤ N ≤ i2. Furthermore, if b.c denotes the integer part then

π(bi1c+ 2)

π(bi1c+ 1)
≤ 1 ≤ π(bi1c+ 1)

π(bi1c)
.

Let us define mN = bi1c+ 1 and lN = 2(b
√
Nc+ 1). Using a telescopic product,

we have

π(mN + lN )

π(mN )
=
π(mN + lN − b

√
Nc − 1)

π(mN )

b
√
Nc+1∏
j=1

π(mN + lN − j + 1)

π(mN + lN − j)
,

Using Lemma 3.5 and the previous calculus, we have that the sequences (π(i))i≥mN

and (π(i+ 1)/π(i))i≥0 are decreasing and then

π(mN + lN )

π(mN )
≤

(
π(mN + lN − b

√
Nc)

π(mN + lN − b
√
Nc − 1)

)b√Nc+1

.

Now using (3.5) and some equivalents, there exists a constant δ1 > 0 (not de-
pending on N) such that

π(mN + lN − b
√
Nc)

π(mN + lN − b
√
Nc − 1)

≤ 1− δ1√
N
.

Using the fact that 1−x ≤ e−x for all x ≥ 0, we finally obtain π(mN+lN )/π(mN ) ≤
e−δ1 . Similar arguments entail the existence of δ2 > 0 (also not depending on N)
such that π(mN − lN )/π(mN ) ≤ e−δ2 . In conclusion, using Lemma 3.5, we have
shown that for all i ≥ mN and j ≤ mN , the following inequalities holds:

π(i+ lN ) ≤ e−δ1π(i) and π(j − lN ) ≤ e−δ2π(j).

We are now armed to evaluate BN,+(mN ) defined in (3.4). Firstly, using the ex-
pressions of the death rate d and mN , there exist γ > 0 (not depending on N)
and N0 ≥ 0 such that for all N ≥ N0 and all i ≥ mN + 1, di ≥ γN . Let us fix
x ≥ mN + 1, using that (π(i))i≥mN

is decreasing, we have

x∑
y=mN+1

1

π(y)
=

∑
{i,k|mN+1≤k−ilN≤x}

1

π(k − ilN )

≤
∑

{i,k|mN+1≤k−ilN≤x}

e−δ1i

π(k)

≤ 1

1− e−δ1

x∑
k=x−lN+1

1

π(k)

≤ lN
π(x)

1

1− e−δ1
.
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Similarly, we have

π([x,N ]) =
∑

{k,i|x≤k+ilN≤N}

1{x+ilN≤N}ΠN (k + ilN ) ≤ lNπ(x)

1− e−δ1
.

Using these three estimates, we deduce that, for every N ≥ N0,

BN,+(mN ) ≤ 1

γN

(
lN

1− e−δ1

)2

≤ 1

γN

(
2(
√
N + 1)

1− e−δ1

)2

≤ 16

γ(1− e−δ1)
.

The study of BN,−(mN ) is similar. �

Figure 3.1. Evolution of the spectral gap with respect to the
number of particles. Details are described in Subsection 3.5

3.5. Simulation and evolution of the spectral gap (of the Fleming-Viot process). As
stated in Lemma 3.1, the rate of convergence λ of the conditioned semi-group to
the QSD is explicit. For a fixed N ≥ 1, the Fleming-Viot process is a reversible
Markov chain (for this example) on a finite space, it then converges to equilibrium
at rate λN , where λN is the eigenvalue of its generator closer to 0.
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Theorem 3.4 shows that the rate of convergence to equilibrium of the Fleming-
Viot process is uniformly bounded. Nevertheless, there is some natural questions
such as the convergence of λN to λ or the monotonicity of this sequence. Also, do
we have λN ≤ λ or λN ≥ λ?

When there are few particles, the generator of the Fleming-Viot process is a
square matrix of size 2N and one can explicitly calculate its spectrum (with the help
of a computer). In figure 3.1, each graphic represents, with different parameters,
the evolution of the spectral gap of the conditioned process λ = λ+ − λ− (detailed
in Lemma 3.1), of the Fleming Viot particle system λN and of the upper-bound ρ
in Theorem 1.1, with respect to the number of particles N .

Graphics (i) and (ii) illustrate that when osc(p0) = p0(2) − p0(1) remains con-
stant for two parameter choices then the Fleming-Viot dynamics are different al-
though the conditioned semi-groups are the same. More p0(1) is large more jumps
there are; these graphics seem to show that the rate of convergence is dragged down
by the interactions. Graphic (iii) shows that λN is neither increasing nor decreas-
ing and neither upper nor lower than λ. Graphic (iv) shows that when osc(p0) is
small then all curves are close.

In any case, it seems that λN converges to λ but this point remains an open
question.

3.6. Correlations. Using Cloez and Thai (2016, Theorem 2.6), we have

Corollary 3.6 (Correlations). If (ηt)t≥0 is a process generated by (3.1) then we
have for all t ≥ 0,

Cov(ηt(k)/N, ηt(l)/N) ≤ 2

N2

1− e−2ρt

ρ

(
N(a ∨ b) + sup(p0)

N2

N − 1

)
.

If ρ ≤ 0, the right-hand side of the previous inequality explodes as t tends to
infinity whereas these correlations are bounded by 1. Nevertheless, using Cloez and
Thai (2016, Theorem 2.6 and Remark 2.7), and Inequality (3.3), we can prove that
there exists two constants C ′(N), depending on N , and K, which does not depend
on N , such that

sup
t≥0

Cov(ηt(k)/N, ηt(l)/N) ≤ C ′(N) =
KC(N)

NλN
,

where C(N) is defined in (3.3). Even if Theorem 3.4 gives an estimate of λN , C(N)
is not (completely) explicit and we do not know if the right-hand side of the previous
expression tends to 0 as N tends to infinity. This example shows the difficulty of
finding explicit and optimal rates of the convergence towards equilibrium and the
decay of correlations.
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Lectures on probability theory (Saint-Flour, 1992), volume 1581 of Lecture Notes
in Math., pages 1–114. Springer, Berlin (1994). MR1307413.
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N. Marić. Fleming-Viot particle system driven by a random walk on N. J. Stat.
Phys. 160 (3), 548–560 (2015). MR3366092.
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