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Abstract. We study the interface of the symmetric multitype contact process on
Z. In this process, each site of Z is either empty or occupied by an individual of
one of two species. Each individual dies with rate 1 and attempts to give birth
with rate 2Rλ; the position for the possible new individual is chosen uniformly at
random within distance R of the parent, and the birth is suppressed if this position
is already occupied. We consider the process started from the configuration in
which all sites to the left of the origin are occupied by one of the species and all
sites to the right of the origin by the other species, and study the evolution of the
region of interface between the two species. We prove that, under diffusive scaling,
the position of the interface converges to Brownian motion.

1. Introduction

The multitype contact process is a stochastic process that can be seen as a
model for the evolution of different biological species competing for the occupation
of space. It was introduced in Neuhauser (1992) as a modification of Harris’ (single-
type) contact process (Harris, 1974).

Let us give the definition of the multitype contact process (ξt)t≥0 on Zd with (at
most) two types. We will need the parameters: R1, R2 ∈ N∗ and δ1, δ2, λ1, λ2 > 0.
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(ξt)t≥0 is then the Markov process with state space {0, 1, 2}Zd and generator given
by L = L1 + L2, with

(Lif)(ξ) =
∑
x∈Zd:
ξ(x)=i

δi·[f(ξ0→x)−f(ξ)]+
∑
x∈Zd:
ξ(x)=0

∑
y∈Zd:

|x−y|≤Ri,
ξ(y)=i

λi·[f(ξi→x)−f(ξ)], i = 1, 2,

(1.1)

where f : {0, 1, 2}Zd → R is a function that depends only on finitely many coordi-
nates, | · | is the `∞ norm and

ξi→x(y) =

{
ξ(y) if y 6= x;
i if y = x,

i = 0, 1, 2. (1.2)

We will adopt throughout the paper the following terminology: vertices are
called sites, sites in state 0, 1 and 2 are respectively said to be empty or to have

a type 1 or type 2 occupant (or individual), and elements of {0, 1, 2}Zd are called
configurations. Additionally, δ1, δ2 are called death rates, R1, R2 are ranges and
λ1, λ2 are birth rates (or sometimes infection rates).

Let us now explain the dynamics in words. Two kinds of transitions can occur.
First, an individual of type i dies with rate δi, leaving its site empty. Second, given
a pair of sites x, y with |x − y| ≤ Ri, ξ(x) = i (with i = 1 or 2) and ξ(y) = 0, the
occupant of x gives birth at y with rate λi, so that a new individual of type i is
placed at y. Note that, under these rules, births only occur at empty sites, so that
the state of a site can never change directly from 1 to 2 or from 2 to 1.

In case only one type (say, type 1) is present, this reduces to the contact process
introduced in Harris (1974), to be denoted here by (ζt)t≥0 in order to distinguish it
from the multitype version. We refer the reader to Liggett (1999) for an exposition
of the contact process and the statements about it that we will gather in this
Introduction and in Section 2.

Let (ζ
{0}
t )t≥0 be the (one-type) contact process with rates δ1 = δ = 1, λ1 = λ >

0, R1 = R ∈ Z∗+ and the initial configuration in which only the origin is occupied.
Denote by 0 the configuration in which every vertex is empty, and note that this
is a trap state for the dynamics. There exists λc = λc(Zd, R) (depending on the
dimension d and the range R) such that

P
[
there exists t > 0 such that ζ

{0}
t = 0

]
= 1 if and only if λ ≤ λc. (1.3)

This phase transition is the most fundamental property of the contact process.
The process is called subcritical, critical and supercritical respectively in the cases
λ < λc, λ = λc and λ > λc.

In this paper, we will consider the multitype contact process (ξt) on Z with
parameters

δ1 = δ2 = 1, R1 = R2 = R, λ1 = λ2 = λ > λc(Z, R). (1.4)

We emphasize that the quantity λc(Z, R) that appears here is the one associated to
the one-type process, as in (1.3). We will be particularly interested in the ‘heaviside’
initial configuration,

ξh0 (x) =

{
1 if x ≤ 0;

2 if x > 0.
(1.5)
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We will denote by (ξht )t≥0 the process with parameters (1.4) and initial configuration
ξh0 . We let

rt = sup{x : ξht (x) = 1}, `t = inf{x : ξht (x) = 2}, it = (rt + `t)/2. (1.6)

The interval delimited by rt and `t is called the interface at time t, and it is the
position of the interface at time t. The choice of the middle point of the interval as
the position of the interface is somewhat arbitrary and will not matter for all the
results obtained in this paper.

In case R = 1, it follows readily from inspecting the generator in (1.1) that
rt < `t for all t. If R > 1, both rt < `t and rt > `t are possible (in the latter
case we say that we have a positive interface, and in the previous case, a negative
interface). In Valesin (2010), it is shown that the process (|rt − `t|)t≥0, which
describes the evolution of the size of the interface, is stochastically tight:

Theorem 1.1. Valesin (2010) If R ∈ Z∗+ and λ > λc(Z, R), then

for any ε > 0 there exists L > 0 such that P [|rt − `t| > L] < ε for all t ≥ 0.
(1.7)

In the present paper, we will continue the study of the interface, but we will
focus on its position rather than its size. Our main result is

Theorem 1.2. If R ∈ Z∗+ and λ > λc(Z, R), then there exists σ > 0 such that(
t−1/2 · ist

)
s≥0

t→∞−→
(dist.)

(Bs)s≥0,

where (Bs)s≥0 denotes Brownian motion with diffusive constant σ, and convergence
holds in the space D = D[0,∞) of càdlàg trajectories with the Skorohod topology.

Our proof of this result follows the usual two steps: verifying convergence of
finite-dimensional distributions and tightness of trajectories in D (see Section 16
of Billingsley, 1999). We thus prove the following propositions, both applicable to
the case R ∈ Z∗+ and λ > λc(Z, R):

Proposition 1.3. There exists σ > 0 such that, for any 0 = a0 < a1 < · · · < ak
we have

t−1/2 ·
(
ia1·t, ia2·t − ia1·t, . . . , iak·t − iak−1·t

) t→∞−→
(dist.)

(N1, . . . , Nk),

where N1, . . . , Nk are independent and Nj ∼ N (0, σ2(aj − aj−1)).

Proposition 1.4. For any ε > 0 there exists a compact set K ⊂ D such that

lim inf
t→∞

P
[
(t−1/2 · ist)s≥0 ∈ K

]
> 1− ε.

In proving these propositions, we will establish a result of independent interest,
which we call interface regeneration. We will explain it here only informally; the
precise result depends on a few definitions and is given in Theorem 2.14. Given
s > 0, consider the configuration ξhs and assume the interface position is = x.
Suppose we define a new configuration ξ̄ by putting 1’s in all sites to the left of
is and 2’s to the right of is. We then show that it is possible to construct, in the
same probability space as that of (ξt)t≥0, a multitype contact process started from
time s, (ξ′t)t≥s, such that ξ′s = ξ̄ and moreover, the interface positions for (ξt) and
for (ξ′t) are never too far from each other. Since the evolution of the interface of ξ′
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has the same distribution as that of the original process (except for a space-time
shift), this regeneration allows us to argue that, if we consider large time intervals
I1, I2, . . ., then the displacement of is in each interval follows approximately the
same law.

In many of our proofs, we study the time dual of the multitype contact process.
This dual, called the ancestor process, was first considered in Neuhauser (1992)
and further studied in Valesin (2010). In these references, it was shown that the
ancestor process behaves approximately as a system of coalescing random walks on
Z. Because of this, our proofs of Propositions 1.3 and 1.4 are inspired by arguments
that apply to coalescing random walks and the voter model, an interacting particle
system whose dual is (exactly) equal to coalescing random walks. In particular, a
key estimate for the proof of Proposition 1.4 (see Lemma 4.3) was inspired in an
argument by Sun for coalescing random walks (Sun, 2005).

2. Background on the contact process

2.1. Notation on sets and configurations. Given a set A, we denote by #A its
cardinality and by 1A its indicator function.

We will reserve the letter ζ to denote elements of {0, 1}Z, as well as the one-
type contact process, and the letter ξ for elements of {0, 1, 2}Z and the multitype
process. We denote by 0 the configuration in which every vertex is in state 0. We
write {ξ = i} = {x ∈ Z : ξ(x) = i} (and similarly for ζ). Given A ⊂ Z, “ξ ≡ i on
A” means that ξ(x) = i for all x ∈ A (and similarly for ζ).

Throughout the paper, we fix the parameters R ∈ Z∗+ and λ > λc(R,Z). All the
processes we will consider will be defined from these two parameters.

2.2. One-type contact process. We will now briefly survey some background mate-
rial on the (one-type) contact process.

a) Graphical construction and infection paths. A graphical construction or
Harris system is a family of independent Poisson processes on [0,∞),

H =
(
(Dx)x∈Z, (Dx,y)x,y∈Z, 0<|x−y|≤R

)
,

each Dx with rate 1,
each Dx,y with rate λ.

(2.1)

We view each of these processes as a random discrete subset of [0,∞). An arrival
at time t of the process Dx is called a recovery mark at x at time t, and an arrival
at time t of the process Dx,y is called an arrow or transmission from x to y at time
t. This terminology is based on the usual interpretation that is given to the contact
process, namely: vertices are individuals, individuals in state 1 are infected and
individuals in state 0 are healthy. Although we will focus mostly on the multitype
contact process, which we see as a model for competition rather than the spread of
an infection, we will still use some infection-related terminology that comes from
the study of the classical process.

We will sometimes need to consider restrictions of H to time intervals, and also
translations of H. We therefore introduce the following notation, for t > 0 and



Interface of Multitype Contact Process 485

z ∈ Z:

Dx
[0,t] = Dx ∩ [0, t], Dx ◦ θ(z, t) = {s− t : s ∈ Dx−z, s ≥ t},

Dx,y
[0,t] = Dx,y ∩ [0, t], Dx,y ◦ θ(z, t) = {s− t : s ∈ Dx−z,y−z, s ≥ t},

H[0,t] =
(

(Dx
[0,t])x∈Z, (D

(x,y)
[0,t] )x,y∈Zd, 0<|x−y|≤R

)
,

H ◦ θ(z, t) =
(

(Dx ◦ θ(z, t))x∈Z, (D(x,y) ◦ θ(z, t))x,y∈Zd, 0<|x−y|≤R

)
.

(2.2)

Given a (deterministic or random) initial configuration ζ0 and a Harris system
H, it is possible to construct the contact process (ζt)t≥0 started from ζ0 by applying
the following rules to the arrivals of the Poisson processes in H:

a recovery mark at a site makes it healthy:
if t ∈ Dx, then ζt = ζ0→x

t− ;
(2.3)

an arrow with infected starting point makes the end point infected:

if t ∈ Dx,y and ζt−(x) = 1, then ζt = ζ1→y
t−

(2.4)

(recall that ζi→x was defined in (1.2)). That this can be done in a consistent
manner, and that it yields a Markov process with the desired infinitesimal generator,
is a non-trivial result which (as the other statements in this section) the reader can
find in Liggett (1999).

Given x, y ∈ Z, t′ > t ≥ 0 and a Harris system H, an infection path in H from
(x, t) to (y, t′) is a càdlàg path γ : [t, t′]→ Z such that

γ(t) = x, γ(t′) = y,

s /∈ Dγ(s) for all s ∈ [t, t′] and s ∈ Dγ(s−),γ(s) whenever γ(s−) 6= γ(s)
(2.5)

In words, γ may not touch recovery marks and γ can only jump from site x to site
y at time s if there is an arrow from x to y at s. We employ the following notation.
In case there is an infection path from (x, t) to (y, t′), we write (x, t)↔ (y, t′) in H
(or simply (x, t)↔ (y, t′) if H is clear from the context). Given sets A,B ⊂ Z, and
I1, I2 ⊂ [0,∞), we write A× I1 ↔ B × I2 if (x, t)↔ (y, t′) for some (x, t) ∈ A× I1
and (y, t′) ∈ B × I2. We will also write A × I1 ↔ (y, t′) if (x, t) ↔ (y, t′) for some
(x, t) ∈ A× I1, and similarly (x, t)↔ B × I2. Finally, we adopt the convention to
put (x, t)↔ (x, t).

When (ζt) is constructed with the rules (2.3) and (2.4), for any (x, t) ∈ Z×[0,∞),
x is infected at time t if and only if there exists a site y ∈ Z which is infected at
time 0 and so that an infection path connects (y, 0) and (x, t):

ζt(x) = 1{{ζ0=1}×{0}↔(x,t)} for all x ∈ Z, t ≥ 0. (2.6)

We will always assume that the contact process is constructed from a Harris
system (this will also be the case for the multitype contact process, which, as we
will explain shortly, can be constructed from the same H as the one given above).
Additionally, we will often consider more than one process at a given time, and
implicitly assume that all the processes are built in the same probability space,
using the same H.

Let us now list a few facts and estimates that we will need.
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b.) Basic facts about the distribution of Harris systems. Given A ⊂ Z,
x ∈ Z and t ≥ 0, by invariance of the law of Poisson processes with respect to time
reversal, the following holds:

P
[
ζAt (x) = 1

]
= P [A× {0} ↔ (x, t)]

= P [(x, 0)↔ A× {t}] = P [ζxt (y) = 1 for some y ∈ A] .
(2.7)

This is a particularly simple instance of the well-known self-duality property of the
contact process.

Given A ⊂ Z and t ≥ 0, due to invariance of the law of the Harris system with
respect to space-time translations, the processes(

ζAs−t
)
s≥t and

(
1{x∈Z:A×{t}↔(x,s)}

)
s≥t

have the same distribution. We refer to the latter as the contact process started at
time t with A occupied.

By a simple comparison with a Poisson process, we can show that there exist
κ, c > 0 (depending on λ and R) such that

P [(x, r)↔ [x− κt, x+ κt]c × {r + t}] ≤ e−ct for any x ∈ Z, r ≥ 0, t > 0. (2.8)

c.) Extinction time. Given A ⊂ Z and t ≥ 0, define the extinction time of the
contact process started at time t with A occupied as the infimum of the times that
cannot be reached by infection paths started from A× {t}:

TA×{t} = inf{t′ ≥ t : A× {t}= Z× {t′}}.
Note that this is a stopping time with respect to the natural filtration of Harris
systems. We write T (x,t) instead of T {x}×{t} and, in case t = 0, we omit it and write
TA and T x. Note that the distribution of TA×{t} is equal to that of t+ TA×{0}.

By (1.3) and the assumption that λ > λc,

P[T 0 =∞] > 0.

In case TA×{t} =∞, we write A× {t} ↔ ∞. Similarly, when T (x,t) =∞, we write
(x, t)↔∞.

In Theorem 2.30 in Liggett (1999), we find that there exists c > 0 (depending
on R and λ) such that

P
[
t < T 0 <∞

]
≤ e−ct for any t > 0 (2.9)

and

P
[
TA <∞

]
< e−c#A for any A ⊂ Z, A 6= ∅. (2.10)

In the mentioned theorem, these estimates are obtained for the case R = 1, but the
method of proof is a comparison with oriented percolation that works equally well
for R > 1.

d.) An insulation result and an application. The following result deals with
the contact process started from an initial configuration ζ0 in which an interval
[a, b] has the property that, in the two (large) intervals [a− S, a) and (b, b+ S], all
vertices are occupied (we think of these large intervals as “insulating” [a, b] from the
outside). It then guarantees that, in a linearly growing spacial set which contains
[a, b] at time zero, the process is likely to coincide with the process started from ζ ′0,
the modification of ζ0 in which all sites outside [a, b] are set to occupied.
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Lemma 2.1. There exists β̄ > 0 such that the following holds. For any ε > 0 there
exists S0 > 0 such that, if S ≥ S0 and ζ0, ζ

′
0 satisfy, for some a < b,

ζ0(x) = ζ ′0(x) for all x ∈ [a, b];

ζ0(x) = 1 for all x ∈ [a− S, a) ∪ (b, b+ S];

ζ ′0(x) = 1 for all x ∈ (−∞, a) ∪ (b,∞)

and (ζt), (ζ ′t) are contact processes started from ζ0 and ζ ′0 and constructed with the
same Harris system, then, with probability larger than 1− ε,

ζt(x) = ζ ′t(x) for all x ∈ [a− β̄t, b+ β̄t] and t ≥ 0. (2.11)

This result is easy to prove when the process only has nearest-neighbor interac-
tions, R = 1, and much harder for general R. The proof (for any R ∈ N∗) follows
from Proposition 2.7 in Andjel et al. (2010) (see also the treatment of the event H2

in page 11 of that paper). The key idea is an event which the authors called the
formation of a descendancy barrier ; this means that in a space-time set of the form
Cx = {[x− β̄t, x + β̄t] : t ≥ 0}, every vertex that is reachable by an infection path
from Z×{0} is reachable by an infection path from (x, 0). For the statement of the
present lemma, it would suffice to argue that, if S is large, with high probability
one can find x ∈ [a−S, a) and y ∈ (b, b+S] so that a descendancy barrier is formed
from both x and y.

Remark 2.2. The above lemma also holds, with the same proof, for a = −∞ or
b =∞.

We will need the following consequence of Lemma 2.1.

Lemma 2.3. For any ε > 0 and σ, σ′ with −β̄ ≤ σ < σ′ ≤ β̄ there exists S0 > 0
such that, if S ≥ S0 and ζ0(x) = 1 for all x ∈ [−S, S], then with probability larger
than 1− ε,

for all t ≥ 0, there exists x ∈ [−S + σt, S + σ′t] such that ζt(x) = 1. (2.12)

Proof : By Lemma 2.1, it suffices to prove that, given ε, σ, σ′, there exists S0 so
that, for S ≥ S0,

P
[
for all t ≥ 0, there exists x ∈ [−S + σt, S + σ′t] with ζZt (x) = 1

]
> 1− ε,

where (ζZt ) denotes the one-type contact process started from full occupancy. For
any t we have

P
[
ζZt ≡ 0 on [−S + σt, S + σ′t]

]
= P [Z× {0}= (x, t) for all x ∈ [−S + σt, S + σ′t]]

(2.7)
= P [(x, 0) = Z× {t} for all x ∈ [−S + σt, S + σ′t]]

≤ P
[
T [−S+σt, S+σ′t] <∞

] (2.10)
< e−2cS−c(σ′−σ)t.
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Also, using the Strong Markov Property it is easy to verify that, for some δ > 0
that depends on σ, σ′, λ and R but not on t,

P
[
ζZt ≡ 0 on [−S + σt, S + σ′t

]
> δ · P

[
ζZs ≡ 0 on [−S + σs, S + σ′s] for some s ∈ [t− 1, t]

]
for all t ≥ 1. In conclusion,

P
[
there exists t > 0 : ζZt ≡ 0 on [−S + σt, S + σt]

]
≤
∞∑
t=1

P
[
there exists s ∈ [t− 1, t] : ζZt ≡ 0 on [−S + σs, S + σ′s]

]

≤ 1

δ

∞∑
t=1

e−2cS−c(σ′−σ)t,

which is smaller than ε if S is large enough, since σ′ − σ > 0.

e.) Invasion-free infection paths. When we construct the contact process
(ζAt )t≥0, arrows in the Harris systems which land on space-time points which were
already in state 1 have no effect. The following result states that, if A×{0} ↔ (x, t),
then we can find exactly one infection path from A× {0} to (x, t) in which all the
jumps correspond to arrows that land on empty sites. We call such an infection
path invasion-free; we stress that this property depends on the initial occupancy A,
since the set of space-time points which are occupied depends on A. Invasion-free
infection paths will be very useful for the graphical construction of the multitype
contact process.

Lemma 2.4. Let H be a Harris system, A ⊂ Z and (x, t) ∈ Z × (0,∞). Then,
either A × {0} = (x, t) or there exists a unique infection path γ : [0, t] → Z such
that γ(0) ∈ A, γ(t) = x and every jump of γ lands on a site that is empty in
(ζAs )s≥0, that is,

γ(s) 6= γ(s−) =⇒ ζAs−(γ(s)) = 0, s ∈ [0, t]. (2.13)

Proof : Assume A×{0} ↔ (x, t). For every infection path γ from A×{0} to (x, t),
we define f(γ) as follows. If γ satisfies (2.13), we let f(γ) = −∞. Otherwise, we
let f(γ) be the last jump time of γ which violates (2.13), that is,

f(γ) = max{s : γ(s) 6= γ(s−), ζAs−(γ(s)) = 1.

If we have f(γ) = s∗ 6= −∞, then there exists an infection path γ′ from A×{0}
to (γ(s∗), s∗) whose last jump occurs before time s∗. Defining a path γ̂ which is
equal to γ′ in [0, s∗] and equal to γ in [s∗, t], we then obtain f(γ̂) < s∗ = f(γ).

In order to obtain a path satisfying (2.13), we can start with an arbitrary infec-
tion path γ from A×{0} to (x, t) and apply the above procedure recursively (that

is, letting γ(1) = γ̂, γ(2) = γ̂(1) etc.) until f reaches −∞. To see that the recursion
must indeed reach a path for which f is −∞, note that the value of f decreases
with each iteration, and moreover f can only attain finitely many values, as there
are almost surely only finitely many infection paths reaching (x, t).

The uniqueness statement is evident: if γ1 and γ2 are two distinct infection
paths from A × {0} to (x, t), then at some point either γ1 jumps to a space-time
point occupied by γ2 or vice-versa, so (2.13) cannot be satisfied by both paths.



Interface of Multitype Contact Process 489

Figure 2.1. Left: illustration of Lemma 2.4. Three infection
paths can be found from A×{0} to (x, t); the unique one in which
all jumps land on empty space-time points appears in green. Right:
multitype contact process built with the same Harris system as the
one on the left. The two types are represented by the colors blue
and red. Note that the infection path that appears in green on the
left picture is entirely blue here.

2.3. Multitype contact process.
a.) Graphical construction and first properties. Due to our symmetric choice
of parameters in (1.4), it is possible to construct the multitype contact process with
the same graphical construction H as the one we have given in (2.1) for the single-
type process. The effects of recovery marks and arrows are:

a recovery mark at a site kills its occupant:
if t ∈ Dx, then ξt = ξ0→x

t− ;
(2.14)

an arrow with a type i occupant at the starting point creates a new type i
occupant at the end point, provided the end point was empty:

if t ∈ Dx,y, ξt−(x) = i and ξt−(y) = 0, then ξt = ξi→yt− , i = 1, 2,
(2.15)

where ξi→x is defined in (1.2). These rules lead to the correct transition rates, as
prescribed in (1.1) and (1.4). Figure 2.1 illustrates the construction.

This picture also illustrates an important fact: if we only distinguish empty sites
from occupied sites (in the picture, if we treat blue and red as a single color), we
re-obtain the single-type process. Formally,(

1{ξt(x)6=0} : x ∈ Z
)
t≥0

has same distribution as a one-type contact

process started from
(
1{ξ0(x) 6=0} : x ∈ Z

)
.

(2.16)

To verify that this holds, note that the rules (2.14) and (2.15) reduce to (2.3) and
(2.4) when the two types are treated as a single type. A consequence of (2.16) is
that we can still use infection paths to decide whether a space-time point is empty
or occupied:

ξt(x) 6= 0 if and only if {y : ξ0(y) 6= 0} × {0} ↔ (x, t). (2.17)
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This is quite convenient, but there is a drawback: in case ξt(x) 6= 0, it is not so
simple to deduce its value from ξ0 and the infection paths in H. This is where
Lemma 2.4 comes into play: if an infection path γ : [0, t] → Z is invasion-free and
ξ0(γ(0)) = i ∈ {1, 2}, then it manages to carry type i, that is, ξs(γ(s)) = i for all
s. This is again illustrated in Figure 2.1 and summarized as follows:

Lemma 2.5. Let (ξt)t≥0 be the multitype contact process started from a fixed ξ0 ∈
{0, 1, 2}Z and constructed with a Harris system. Then,

ξt(x) = i if and only if
there exists an infection path γ : [0, t]→ Z

such that ξ0(γ(0)) = i, γ(t) = x and
ξs−(γ(s)) = 0 whenever γ(s) 6= γ(s−)

, i = 1, 2.

(2.18)
Moreover, for every (x, t) there exists at most one infection path satisfying the stated
properties.

As already noted, it will often be convenient to construct several processes,
one-type or multitype or both, in the same probability space and using a single
realization of H. When we do so, the following will be quite useful.

Claim 2.6. If (ξt)t≥0, (ξ′t)t≥0 are constructed with the same Harris system,

{ξ0 = 2} ⊆ {ξ′0 = 2} and {ξ0 = 1} ⊇ {ξ′0 = 1} implies

{ξt = 2} ⊆ {ξ′t = 2} and {ξt = 1} ⊇ {ξ′t = 1} for all t.
(2.19)

Proof : Simply consider the partial order

ξ ≺ ξ′ ⇔ {ξ = 2} ⊆ {ξ′ = 2} and {ξ = 1} ⊇ {ξ′ = 1}
and note that the rules (2.14) and (2.15) preserve this order.

b.) Ancestor process. Given a multitype contact process (ξt)t≥0 and (x, t) ∈
Z × [0,∞) with ξt(x) = i ∈ {1, 2}, Lemma 2.5 shows us how to locate the site y
which contained, at time 0, the individual of type i from which the occupant of
(x, t) descends. This suggests the definition of an ancestor process which holds a
duality relation with the multitype contact process.

The ancestor process was first defined by Neuhauser (1992) in a more general
version than the one we will present here. The definition in that paper depends
on an algorithmic exploration of the Harris system, starting at (x, t) and moving
downwards to time 0. Here we do not need to use Neuhauser’s algorithm: our
Lemmas 2.4 and 2.5 already allow us to define the ancestor process and obtain the
results we will need.

Fix a Harris system H and x ∈ Z. We will define a process (ηxt )t≥0 on Z∪ {4},
where 4 represents a “cemetery” state. For each t, ηxt will be measurable with
respect to H[0,t], the restriction of the Harris system to [0, t], and will satisfy:

ηxt ∈ {y : ζxt (y) = 1} if t < T x and ηxt = 4 if t ≥ T x. (2.20)

For fixed t > 0, we recall the notation introduced in (2.2) and define the reversed

Harris system Ĥ[0,t] by

Ĥ[0,t] =
(

(D̂x
[0,t])x∈Z, (D̂x,y

[0,t])x,y∈Z, 0<|x−y|≤R

)
, where

D̂x
[0,t] = {t− s : s ∈ Dx ∩ [0, t]} and D̂x,y

[0,t] = {t− s : s ∈ Dy,x ∩ [0, t]}.
(2.21)
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In words, Ĥ[0,t] is the Harris system on the time interval [0, t] obtained from H∩[0, t]
by reversing time and reversing the direction of the arrows (it is useful to think of

H[0,t] and Ĥ[0,t] drawn in the same picture, with the time direction of each being
the opposite of that of the other).

Now, we define ηxt as follows:

• in case Z× {0}= (x, t) in Ĥ[0,t], we let ηxt = 4;
• otherwise, by Lemma 2.4 (with A = Z), there exists a unique infection path

γ : [0, t]→ Z with respect to Ĥ[0,t] such that

γ(s) 6= γ(s−) =⇒ Z× {0}= (γ(s), s−) in Ĥ[0,t], s ∈ [0, t]. (2.22)

We then let ηxt = γ(0).

It should now be clear that (2.20) indeed holds.
The following lemma describes the duality relation that exists between the an-

cestor process and the multitype contact process.

Lemma 2.7. (Duality) Let {(ηxt )t≥0 : x ∈ Z} be the ancestor processes obtained

from a Harris system H. Fix t > 0 and let Ĥ[0,t] be defined as in (2.21). Given

ξ0 ∈ {0, 1, 2}Z, let (ξs)0≤s≤t be the multitype contact process started from ξ0 and

constructed with Ĥ[0,t]. Then, for any x ∈ Z,

if ηxt = 4, then ξt(x) = 0 and (2.23)

if ηxt 6= 4 and ξ0(ηxt ) 6= 0, then ξt(x) = ξ0(ηxt ). (2.24)

In particular, if ξ0(x) 6= 0 for all x ∈ Z, then, with the convention that ξ0(4) = 0,

(ξt(x) : x ∈ Z) = (ξ0(ηxt ) : x ∈ Z) . (2.25)

Proof : If ηxt = 4, then Z × {0} = (x, t) in Ĥ[0,t], so ξt(x) = 0 by (2.17), proving
(2.23). To prove (2.24), assume ηxt = y ∈ Z and ξ0(y) = i ∈ {1, 2}. By the

definition of ηxt , there exists an infection path γ (with respect to Ĥ[0,t]) such that
(2.22) holds. Consequently,

γ(s) 6= γ(s−) =⇒ ξs−(γ(s)) = 0,

so (2.24) follows from Lemma 2.5. The third statement is an immediate consequence
of the previous two.

c.) Ancestor process started from arbitrary space-time points; concate-
nation property. It will be useful to consider ancestor processes started from
space-time points (x, r) with r ≥ 0; we define these by

η
(x,r)
r+s (H) = ηxs (H ◦Θ(0, r)).

When r = 0, we will keep writing (ηxt ) instead of (η
(x,0)
t ). If we also have x = 0, we

simply write (ηt)t≥0. Naturally, we have

η
(x,r)
t ∈ {y : (x, r)↔ (y, t)} if t < T (x,r) and η

(x,r)
t = 4 if t ≥ T (x,r).

and (
η

(x,r)
r+t

)
t≥0

(dist.)
=

(
ηxt
)
t≥0

(dist.)
= (ηt + x)t≥0 . (2.26)

The usefulness of starting the ancestor process at arbitrary space-time points is in
the following result.
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Lemma 2.8. (Concatenation property). For 0 ≤ r < t < t′, we have:

if η
(x,r)
t 6= 4 and η

(η
(x,r)
t ,t)

t′ 6= 4, then η
(x,r)
t′ = η

(η
(x,r)
t ,t)

t′ . (2.27)

In particular, for r < t <∞,

if η
(x,r)
t 6= 4 and T (η

(x,r)
t ,t) =∞, then η

(x,r)
t′ = η

(η
(x,r)
t ,t)

t′ for all t′ ≥ t. (2.28)

Proof : The result is an easy consequence of the following fact. Suppose γ : [a, b]→
Z and γ′ : [b, c]→ Z are infection paths satisfying:

γ(b) = γ′(b),

γ(s) 6= γ(s−) =⇒ Z× {0}= (γ(s), s−), s ∈ [a, b],

γ′(s) 6= γ′(s−) =⇒ Z× {b}= (γ(s), s−), s ∈ [b, c].

Then, the concatenation γ′′ : [a, c]→ Z, defined by

γ′′(s) =

{
γ(s) if s ∈ [a, b],

γ′(s) if s ∈ [b, c]

satisfies

γ′′(s) 6= γ′′(s−) =⇒ Z× {0}= (γ′′(s), s−), s ∈ [a, c].

2.4. Renewal times of the ancestor process. We now recall the renewal structure
from which we are able to decompose the ancestor process into pieces that are
independent and identically distributed. This then allows us to find an embedded
random walk in (ηs) and argue that the whole of the trajectory of (ηs) remains
close to this embedded random walk. Most of the results of this subsection are
not new (they appear in Neuhauser (1992) or Valesin (2010) or both); in an effort
to balance the self-sufficiency of this paper with shortness of exposition, we will
include a few key proofs and omit others.

Due to the concatenation property (2.28), it will be useful to find times t for
which (ηt, t) ↔ ∞. Let us discuss how the search for these times goes. Fix t0 ≥ 0
and, on the event {(0, 0)↔∞}, define

τ = inf{t ≥ t0 : (ηt, t)↔∞}, (2.29)

σ0 = t0, σk+1 =

T
(ησk ,σk) if σk <∞;

∞ if σk =∞.
(2.30)

We claim that

almost surely on {(0, 0)↔∞}, τ = sup{σk : σk <∞}. (2.31)

See Figure 2.2 for an illustration of the random times (σk), τ, and of this claim. We
interpret (2.31) as expressing that τ is obtained as the result of repeated attempts
of having (ηt, t)↔∞, starting at time t0 and moving forwards in time. That is, we
first check whether (ηt0 , t0) ↔ ∞. If so, we have τ = σ0 = t0. Otherwise, we wait
until time σ1 = T (ηt0 ,t0), that is, the first time t at which the set {y : (ηt0 , t0) ↔
(y, t)} is empty. We then check whether or not (ησ1 , σ1)↔∞; if so, we have τ = σ1,
and so on.
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Figure 2.2. Illustration of the times σk and τ. The thick black
line represents the evolution of the ancestor process. The infinity
symbol on top means that (ησ3

, σ3)↔∞, so that τ = σ3.

The statement (2.31) is proved as follows. If (ησk , σk) ↔ ∞ for some k, then
we clearly have τ ≤ σk. Now assume that, for some k and t, we have σk ≤ t <
σk+1 < ∞. Since t < σk+1 = T (ησk ,σk), we have (ησk , σk) ↔ Z × {t}, so at
time t, the first ancestor of (ησk , σk) is some y ∈ Z with (ησk , σk)↔ (y, t). Hence,

T (y,t) ≤ T (ησk ,σk) = σk+1 <∞. Using the concatenation formula (2.27) with r = 0,

we also have ηt = η
(ησk ,σk)
t = y. Therefore we have proved that

σk ≤ t < σk+1 <∞ =⇒ τ ≥ t.
This completes the proof of (2.31).

Equation (2.27) is a key ingredient for obtaining the following result.

Lemma 2.9. There exists c > 0 such that, for any b > a ≥ 0, we have

P [ηs 6= 4 and (ηs, s) =∞ for all s ∈ [a, b]] < e−c(b−a). (2.32)

See Proposition 1 of Neuhauser (1992) (page 474) for a full proof. The idea is
as follows. First note that

P [ηs 6= 4 and (ηs, s) =∞ for all s ∈ [a, b], (0, 0) =∞] ≤ P
[
b− a < T 0 <∞

]
(2.9)
< e−c(b−a).

Hence, it suffices to bound

P [ηs 6= 4 and (ηs, s) =∞ for all s ∈ [a, b], (0, 0)↔∞] .

Define τ and (σk)∞k=0 as in (2.29), (2.30) with t0 = a. One can then argue that
max{k : σk <∞} can be stochastically dominated by a geometric random variable
with success probability P[T 0 = ∞]. Moreover, if σk < σk+1 < ∞, then the law
of σk+1 − σk has exponentially decaying tail (in other words, if (ησk , σk) does not
survive to ∞, then it dies out quickly). Equation (2.32) is obtained by putting
these ideas together.
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Given a finite set A ⊂ Z, we write

P̃A [ · ] = P[ · | (y, 0)↔∞ for all y ∈ A]. (2.33)

In case A = {x}, we write P̃x instead of P̃{x} and in case x = 0, we omit the

superscript. We write ẼA, Ẽx and Ẽ for the corresponding expectation.

Lemma 2.10. Let t0 > 0 and, on the event {(0, 0) ↔ ∞}, define τ as in (2.29).
We then have

P̃ [τ <∞] = 1. (2.34)

Moreover, for any y ∈ Z and events E,F on Harris systems,

P̃
[
H[0,τ] ∈ E, ητ = y and H ◦ θ(0, τ) ∈ F

]
= P̃

[
H[0,τ] ∈ E, ητ = y

]
· P̃y [H ∈ F ] .

(2.35)

Proof : The first statement is a direct consequence of Lemma 2.9. For the second
statement, let (σk)∞k=0 be as in (2.30). Using (2.31) and the fact that (σk)∞k=0 is
an increasing sequence of stopping times with respect to the natural filtration of
Harris systems, the left-hand side of (2.35) becomes

∞∑
k=0

P̃
[
σk <∞; H[0,σk] ∈ E; ησk = y and (y, σk)↔∞; H ◦ θ(0, σk) ∈ F

]
= P[(0, 0)↔∞]−1 ·

∞∑
k=0

P

[
σk <∞; H[0,σk] ∈ E;

ησk = y and (y, σk)↔∞; H ◦ θ(0, σk) ∈ F

]

= P̃y [H ∈ F ] ·
∞∑
k=0

P̃
[
σk <∞; H[0,σk] ∈ E; ησk = y and (y, σk)↔∞

]
= P̃y [H ∈ F ] · P̃

[
H[0,τ] ∈ E; ητ = y

]
.

Given (z, r) ∈ Z× [0,∞), on the event (z, r)↔∞ we define the times

τ
(z,r)
0 = r, τ

(z,r)
k = inf{t ≥ τ

(z,r)
k−1 + 1 : (η

(z,r)
t , t)↔∞}, k ≥ 1.

We write τzk instead of τ
(z,0)
k and τk instead of τ0

k. We now state three simple facts
about these random times. First, it follows from (2.28) that

if τ1 = t and ηt = z, then τk = τ
(z,t)
k−1 for all k ≥ 1. (2.36)

Second, from (2.32) it is easy to obtain

P̃ [τk <∞ for all k] = 1. (2.37)

Third, by putting (2.8) and (2.32) together, it is easy to show that

P̃
[
max

(
τ1, sup

0≤s≤τ1

|ηs|
)
> t

]
≤ e−ct, t > 0. (2.38)

Our main tool in dealing with the ancestor process is the following result.

Proposition 2.11. (1) Under P̃,(
τk+1 − τk, (ηt − ητk)τk≤t<τk+1

)
, k = 1, 2, . . . are i.i.d. (2.39)

In particular, (ητk)k≥0 is a random walk on Z with increment distribution

P̃
[
ητk+1

= w | ητk = z
]

= P̃ [ητ1 = w − z] .
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(2) There exist C, c > 0 such that, for any t ≥ 0, r > 0 and x ≥ 0,

P

[
ηt+r 6= 4, sup

s∈[t,t+r]

|ηs − ηt| > x

]
≤ P̃

[
max

k∈{1,...,dre}
|ητk | >

x

3

]
+ Cre−cx. (2.40)

(3) Under P̃,

ηt√
t

t→∞−→
(dist.)

N (0, σ2) with σ > 0. (2.41)

Remark 2.12. Due to (2.39), the law of maxk∈{1,...,K} |ητk | under P̃ is the same
as that of maxk∈{1,...,K} |X1 + · · · + Xk|, where X1, . . . , XK are independent and

identically distributed random variables with law P[Xi = ·] = P̃[ητ1 = ·]. Due to

(2.38), this increment distribution P̃ [ητ1 = ·] has exponential tails. Hence, standard
maximal inequalities for random walks with exponential moments are applicable;
see for example Section 12.2.2 of Lawler and Limic (2010). In particular, if δ is

small enough, we have Ẽ[exp{δ|ητ1
|}] <∞ and Theorem 12.2.5 in Lawler and Limic

(2010) gives

P̃
[

max
k∈{1,...,K}

|ητk | > x

]
< e−δx · (Ẽ[exp{δ|ητ1 |}])K , x > 0. (2.42)

Optimizing over the possible values of δ as in Corollary 12.2.7 of Lawler and Limic
(2010), it can then be shown that, for some c > 0,

P̃
[

max
k∈{1,...,K}

|ητk | > x

]
< exp

{
−cx2/K

}
, 0 < x < K2/3. (2.43)

Proof of Proposition 2.11. A proof of part (2.39) can be found in Neuhauser (1992),
but we give another one here. Let E0, . . . , Ek be measurable subsets of ∪t≥0D[0, t],
the space of finite-time trajectories that are right-continuous with left limits. We
evaluate

P̃
[
(ηs − ητi)τi<s≤τi+1

∈ Ei for i = 0, . . . , k
]

=
∑
z∈Z

P̃
[
(ηs)0≤s≤τ1

∈ E0, ητ1
= z, (ηs − ητi)τi<s≤τi+1

∈ Ei for i = 1, . . . , k
]
.

(2.44)

Now, by (2.28) and (2.36),

on {(0, 0)↔∞, ητ1 = z},

we have ηs = η(z,τ1)
s for all s ≥ τ1 and τk = τ

(z,τ1)
k−1 for all k ≥ 1.
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Applying these identities and Lemma 2.10, we obtain that (2.44) is equal to∑
z∈Z

P̃
[
(ηs)0≤s≤τ1

∈ E0, ητ1
= z
]

× P̃z
[(
ηzs − ηzτi

)
τi<s≤τi+1

∈ Ei+1 for i = 0, . . . , k − 1
]

=
∑
z∈Z

P̃
[
(ηs)0≤s≤τ1

∈ E0, ητ1
= z
]

× P̃
[
(ηs − ητi)τi<s≤τi+1

∈ Ei+1 for i = 0, . . . , k − 1
]

= P̃
[
(ηs)0≤s≤τ1

∈ E0

]
· P̃
[
(ηs − ητi)τi<s≤τi+1

∈ Ei+1 for i = 0, . . . , k − 1
]
.

We now iterate this computation to obtain (2.39).
For the remaining statements, we will need a definition. On the event {(0, 0)↔

∞}, let

Nt = max{k : τk ≤ t}, t ≥ 0.

Since we have τk+1 − τk ≥ 1 for all k, we obtain

Nt+r −Nt ≤ dre for any t ≥ 0, r > 0. (2.45)

We now turn to (2.40). Recalling that under P̃, we almost surely have (0, 0)↔∞,
the left-hand side of (2.40) is less than

P

[
t+ r < T 0 <∞, sup

s∈[t,t+r]

|ηs − ηt| > x

]
+ P̃

[
sup

s∈[t,t+r]

|ηs − ηt| > x

]
. (2.46)

The first term in (2.46) is less than

P

[
T 0 <∞, sup

0≤s≤T 0

|ηs| >
x

2

]
≤ P

[ x
2κ

< T 0 <∞
]

+ P

[
sup

s∈[0,x/(2κ)]

|ηs| >
x

2

]
,

where κ is as in (2.8). Then, (2.8) and (2.9) show that the sum is less than e−cx

for some c > 0. Noting that [t, t+ r] ⊂ [τNt , τNt+dre+1], the second term in (2.46)
is less than

P̃

 sup
s∈[τNt , τNt+1]

|ηs − ητNt | >
x

3


+ P̃

[
max

k∈{Nt+2,...,Nt+dre+1}
|ητk − ητNt+1

| > x

3

]
+ P̃

[
max

k∈{Nt+1,...,Nt+dre+1}
sup

s∈[τk,τk+1]

|ηs − ητk | >
x

3

]
.

(2.47)

A computation carried out in Lemma 2.5 of Valesin (2010) shows that the first
term of (2.47) is bounded above by e−cx for some c > 0 (see equation (2.10) in that
paper). Next, Lemma 2.10 implies that the second term in (2.47) is equal to

P̃
[

max
k∈{1,...,dre}

|ητk | >
x

3

]
.
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Finally, again by Lemma 2.10, the third term in (2.47) is equal to

P̃

[
max

k∈{1,...,dre+1}
sup

s∈[τk,τk+1]

|ηs − ητk | >
x

3

]

(2.39)

≤ (dre+ 1) · P̃

[
sup

s∈[0,τ1]

|ηs| >
x

3

]
(2.38)

≤ (dre+ 1) · e−cx.

Finally, let us prove (2.41). Denote

µ = (Ẽτ1)−1
(2.38)
< ∞.

In Lemma 2.5 in Valesin (2010), it is shown that

P̃
[
sup{|ηs − ητNt | : τNt ≤ s ≤ τN1+1} > x

]
≤ e−cx, t > 0, x > 0. (2.48)

We write
ηt√
t

=
ηbt/µc√

t
+
ηNt − ηbt/µc√

t
+
ηt − ηNt√

t

By (2.39) and the Central Limit Theorem,
ηbt/µc√

t
converges in distribution, as

t → ∞, to N (0, σ2) with σ > 0. Using (2.48), we have that
ηt−ηNt√

t
converges

in probability, as t → ∞, to zero. Hence, (2.41) will follow if we prove that the
remaining term also satisfies

ηNt − ηbt/µc√
t

t→∞−→
(prob.)

0 (2.49)

With this aim, fix ε > 0. For any δ > 0 we have

P̃
[
ηNt − ηbt/µc√

t
> ε

]
≤ P̃

[
Nt
t
− 1

µ
> δ

]
+ P̃

[
ηNt − ηbt/µc√

t
> ε, Nt ∈

[
t

µ
− δt, t

µ

]]
+ P̃

[
ηNt − ηbt/µc√

t
> ε, Nt ∈

[
t

µ
,
t

µ
+ δt

]]
.

(2.50)

By the Renewal Theorem, P̃
[
Nt
t −

1
µ > δ

]
→ 0 as t→∞. Next,

P̃
[ |ηNt − ηbt/µc|√

t
> ε, Nt ∈

[
t

µ
,
t

µ
+ δt

]]
≤ P̃

[
max

t
µ≤i≤

t
µ+δt

|ητi − ητbt/µc | > ε
√
t

]

≤ δtVar(ητ1
)

ε2t
= δ

Var(ητ1
)

ε2
,

where the last inequality is an application of Kolmogorov’s Inequality. The above
can be made arbitrarily small by taking δ small (depending on ε). The other term
in (2.50) is then treated similarly, and the proof of (2.49) is now complete.

In Valesin (2010), results are obtained about the joint behavior of two or more
ancestor processes. The method used to obtain such results involved studying
renewal times that are more complicated than the τxk defined above. We will not
present the details here. Rather, let us just mention that, while a single ancestor
behaves closely to a random walk (as outlined above), a larger amount of ancestors,
when considered jointly, behave closely to a system of coalescing random walks (that
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is, a system of random walkers that move independently with the added rule that
two walkers that occupy the same position merge into a single walker). Taking
advantage of this comparison, one can then obtain for ancestor processes several
estimates that hold for coalescing random walks. In particular, in Lemma 3.2 in
Valesin (2010), it is shown that

there exists C > 0 such that

P [ηxt , η
y
t 6= 4, ηxt 6= ηyt ] ≤ C|x− y|√

t
, x, y ∈ Z, t > 0.

(2.51)

Using this result, it is then possible to show that the density of the set of all
ancestors at time t, {ηxt : x ∈ Z} ∩Z, goes to zero as t→∞ (see Proposition 3.5 in
Valesin, 2010), so that

for all finite I ⊂ Z, P [{ηxt : x ∈ Z} ∩ I 6= ∅]
t→∞−−−→ 0. (2.52)

Finally, we will need the bound

for any u > 0 there exists C > 0 such that,

for t large enough and any x < y,

P
[
ηxs , η

y
s 6= 4, ηxs > ηys + u

√
t for some s ≤ t

]
<

C√
t
.

(2.53)

For coalescing random walks having symmetric jump distribution with finite third
moments, this estimate is given by Lemma 2.0.4 in Sun (2005). As (ηxt ) and (ηyt )
are not exactly coalescing random walks, the proof of the mentioned lemma has to
be adapted to the present context. Given the method of proof of Theorem 6.1 in
Valesin (2010), this adaption does not involve anything new, so we do not include
it here.

2.5. Interface. Given ξ ∈ {0, 1, 2}Z, we write

r(ξ) = sup{x ∈ Z : ξ(x) = 1}, `(ξ) = inf{x ∈ Z : ξ(x) = 2}.
Define

Ω =

{
ξ ∈ {0, 1, 2}Z : #{x < 0 : ξ(x) = 1} = #{x > 0 : ξ(x) = 2} =∞,

#{x < 0 : ξ(x) = 2} <∞, #{x > 0 : ξ(x) = 1} <∞

}
;

(2.54)
in particular, r(ξ) <∞ and `(ξ) > −∞ for any ξ ∈ Ω.

As mentioned in the Introduction, (ξht )t≥0 denotes the contact process started
from the heaviside configuration, (1.5), and

rt = r(ξht ), `t = `(ξht ), it = (rt + `t)/2, t ≥ 0.

The interval delimited by rt and `t is the interface, and it is the interface position,
at time t. Using (2.8), it is easy to show that, almost surely,

ξht ∈ Ω for all t ≥ 0.

It will be useful to have the following rough bound on the displacement of rt and
`t.

Lemma 2.13. For any ε > 0 and σ > 0 there exists S0 > 0 such that, if S ≥ S0

and ξ0 satisfies ξ0 ≡ 2 on (0,∞), then with probability larger than 1− ε,
for any t ≥ 0, r(ξt), `(ξt) ≤ S + σt.
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Proof : It is sufficient to prove the result for σ ∈ (0, β̄), where β̄ is the constant
that appears in Lemmas 2.1 and 2.3. We fix σ′, σ′′ with

0 < σ′ < σ′′ < σ.

Using the joint construction of the multitype contact process and the ancestor
processes (as described in Subsection 2.3 and in particular equation (2.25)) together
with the assumption that ξ0 ≡ 2 on (0,∞) and Claim 2.6, we have

P [ξt(x) = 1] ≤ P
[
ξht (x) = 1

]
= P [ηxt 6= 4, ηxt ≤ 0] .

If x ≥ 0, the right-hand side is smaller than or equal to

P [ηxt 6= 4, |ηxt − x| ≥ x]

= P [ηt 6= 4, |ηt| ≥ x]
(2.40)

≤ P̃
[

max
k∈{1,...,dte}

|ητk | >
x

3

]
+ Cte−cx.

Combining the previous two inequalities with a union bound (see also Remark 2.12),
we get

P
[
r(ξt) ≥

S

3
+ σ′t for some t ∈ Z+

]
= P

[
ξt(x) = 1 for some t ∈ Z+ and x ≥ S

3
+ σ′t

]
<
ε

3

(2.55)

if S is large enough. We then bound

P [r(ξt) < S/3 + σ′t and r(ξs) ≥ 2S/3 + σ′′t for some s ∈ [t, t+ 1]]

≤ P [(−∞, S/3 + σ′t)× {t} ↔ [2S/3 + σ′′t,∞)× [t, t+ 1]] < e−c(S+σt/2)

for some c > 0, by a comparison with a Poisson random variable (describing the
number of arrivals in a certain space-time region; we omit the details). Together
with (2.55), this shows that, if S is large enough,

P
[
r(ξt) >

2S

3
+ σ′′t for some t ≥ 0

]
< ε/2. (2.56)

By Lemma 2.3 and (2.16), increasing S if necessary we have

P
[
ξt ≡ 0 on

[
2S

3
+ σ′′t, S + σt

]
for some t ≥ 0

]
< ε/2. (2.57)

To conclude, using (2.56) and (2.57),

P [r(ξt), `(ξt) ≤ S + σt for all t ≥ 0]

≥ P

[
for all t ≥ 0, r(ξt) <

2S
3 + σ′′t

and ξt(x) 6= 0 for some x ∈
[

2S
3 + σ′′t, S + σt

] ] > 1− ε.

Given a Harris system H and s ≥ 0, we define the regenerated interface process
(ist )t≥s as follows:

for any x ∈ Z and t ≥ s, on {bis(H)c = x}, let ist (H) = x+ it−s(H ◦ θ(x, s)).
(2.58)

Let us explain this definition in words. Using the Harris system H, we construct the
multitype contact process started from the heaviside configuration ξh0 and evolve it
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up to time s, obtaining the configuration ξhs with corresponding interface position
is. Then, we artificially put 1’s on (−∞, bisc] and 2’s on (bisc,∞) and, using H[s,t],
we continue evolving the process; the resulting interface position at time t is ist .
Note in particular that

(iss+t − iss)t≥0
(dist.)

= (it)t≥0 and |iss − is| = 0 or
1

2
; (2.59)

the first equality follows from translation invariance of H in space and time. In
Section 5, we will prove:

Theorem 2.14. For any ε > 0 there exists K > 0 such that, for any s ≥ 0,

P [|ist − it| < K for all t ≥ s] > 1− ε. (2.60)

As a consequence we obtain

Corollary 2.15. For any ε > 0 and r > 0 there exists K > 0 such that

P
[

sup
s≤t≤s+r

|it − is| > K

]
< ε for all s ≥ 0.

Proof : For any s, r,K, by (2.59),

P

[
sup

t∈[s,s+r]

|it − is| > K

]

≤ P

[
sup

t∈[s,∞)

|ist − it| > K/2

]
+ P

[
sup
t∈[0,r]

|it| > (K − 1)/2

]
.

Now, for fixed r, the second term vanishes as K → ∞, and the first term does so
as well by Theorem 2.14.

3. Convergence of finite-dimensional projections

The goal of this section is to prove Proposition 1.3. Using Theorem 2.14, we
will be able to deduce (at the end of this section) convergence of finite-dimensional
projections from convergence of one-dimensional projections. Convergence of one-
dimensional projections is the content of Proposition 3.3 below. It will depend on
two preliminary lemmas. Lemma 3.1 is quite simple and states that the probability
that the interface is located at any (deterministic) position x ∈ 1

2Z tends to 0 as
t→∞ (uniformly on x). Lemma 3.2 is much more involved and makes sense of the
following heuristic reasoning. Suppose that, for some x ∈ 1

2Z and some large t > 0,

we observe ξht (x) = 1. Then, there are only two possibilities: either x is located
at the left of the interface (that is, x < min{rt, `t}) or x is located inside the
interface (that is, min{rt, `t} ≤ x ≤ max{rt, `t}). Using Lemma 3.1 and tightness
of the interface size (Theorem 1.1), we will argue that the second alternative has
negligible probability as t→∞. This will allow us to approximate the probability
of {it > x

√
t} from knowledge of the distribution of ξht (bx

√
tc).

Lemma 3.1. For any ε > 0 there exists t0 > 0 such that

P [it = x] < ε for any x ∈ 1

2
Z, t ≥ t0. (3.1)
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Proof : Let ε > 0. By (1.7), we can obtain L > 0 such that for all t, P[|rt − `t| >
L] < ε/2. For any t and x we have

P[it = x] ≤P[|rt − `t| > L]

+ P
[
there exist z, w ∈ [x− L, x+ L] : ξht (z) = 1, ξht (w) = 2

]
.

Switching to the dual process, the second probability can be written as

P [there exist z, w ∈ [x− L, x+ L] : ηzt , η
w
t 6= 4, ηzt ≤ 0, ηwt > 0]

≤
∑

z,w∈[x−L, x+L]

P [ηzt , η
w
t 6= 4, ηzt 6= ηwt ] .

By (2.51), when t is large enough the sum is smaller than ε/2 for any x, so we are
done.

Lemma 3.2. For any ε > 0 there exists t0 > 0 such that∣∣∣P[it > x
√
t]− P

[
ξht (bx

√
tc) = 1 | ξht (bx

√
tc) 6= 0

]∣∣∣ < ε for any x ∈ R and t ≥ t0.
(3.2)

Proof : Fix ε > 0. Using (2.9), we can choose S > 0 such that

P
[
S < T 0 <∞

]
< ε (3.3)

Using Corollary 2.15, we then choose S′ > 0 such that

P [there exists s ∈ [t, t+ S] : |is − it| ≥ S′] < ε for all t ≥ 0. (3.4)

Increasing S′ if necessary, by (1.7) we can also assume that

P [|rt − `t| > S′] < ε for all t ≥ 0; (3.5)

Finally, using Lemma 3.1, we can choose t0 > S such that

P [it ∈ [x− S′, x+ S′]] < ε for all t ≥ 0 and x ∈ Z. (3.6)

Now fix t ≥ t0 and x ∈ R. Denoting by 4 the symmetric difference between
sets, we have the following estimates:

P
[
{ξht (bx

√
tc) = 1} 4 {ξht (bx

√
tc) 6= 0, it > x

√
t}
]

≤ P
[
|it − x

√
t| ≤ S′

]
+ P [|rt − `t| > S′]

(3.5),(3.6)

≤ 2ε;

(3.7)

P
[
{it−S > x

√
t} 4 {it > x

√
t}
]

≤ P
[
|it − x

√
t| ≤ S′

]
+ P

[
|it−S − x

√
t| ≤ S′

]
+ P [|it − it−S | > S′]

(3.4),(3.6)
< 3ε;

(3.8)

P
[
Z× {t− S} ↔ (x

√
t, t), Z× {0} = (x

√
t, t)
]

≤ P [(0, 0) ↔ Z× {S}, (0, 0) = ∞]
(3.3)
< ε;

(3.9)

the first inequality in (3.9) follows from duality (see equation (2.7)) and translation
invariance of the Harris system in space and time. With these bounds at hand,
we are ready to prove the statement of the lemma. In the following computation,
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the symbol ≈ means that the absolute value of the difference between the left-hand
side and the right-hand side is at most 5ε.

P
[
ξht (bx

√
tc) = 1

] (3.7)
≈ P

[
ξht (bx

√
tc) 6= 0, it > x

√
t
]

(3.8),(3.9)
≈ P

[
Z× {t− S} ↔ (bx

√
tc, t), it−S > x

√
t
]

= P
[
Z× {t− S} ↔ (bx

√
tc, t)

]
· P
[
it−S > x

√
t
]

(3.9)
≈ P

[
ξht (bx

√
tc) 6= 0

]
· P
[
it > x

√
t
]
.

We then have∣∣∣P [it > x
√
t
]
− P

[
ξht (bx

√
tc) = 1 | ξht (bx

√
tc) 6= 0

]∣∣∣
= P

[
ξht (bx

√
tc) 6= 0

]−1

·
∣∣∣P [ξht (bx

√
tc) 6= 0

]
· P
[
it > x

√
t
]
− P

[
ξht (bx

√
tc) = 1

]∣∣∣
≤ P[T 0 =∞]−1 · 15ε,

that is, at most a universal constant times ε. This completes the proof.

Proposition 3.3. As t→∞, it√
t

converges in distribution to N (0, σ2), where σ is

as in (2.41).

Proof : The statement follows from (2.41), Lemma 3.2 and the fact that

P
[
ξht (bx

√
tc) = 1 | ξht (bx

√
tc) 6= 0

]
= P̃bx

√
tc
[
η
bx
√
tc

t ≤ 0
]

= P̃0

[
η0
t√
t
≤ −bx

√
tc√
t

]
.

Proof of Proposition 1.3. Fix 0 < a1 < . . . < ak. We have

t−1/2
(
ia1t, ia2t − ia1t, . . . , iakt − iak−1t

)
= t−1/2

(
ia1t, i

a1t
a2t − i

a1t
a1t, . . . , i

ak−1t
akt

− iak−1t
ak−1t

)
(3.10)

+ t−1/2
(

0, ia2t − i
a1t
a2t + ia1ta1t − ia1t, . . . , iakt − i

ak−1t
akt

+ i
ak−1t
ak−1t

− iak−1t

)
. (3.11)

Theorem 2.14 implies that the term in (3.11) converges to zero in probability as
t→∞. Since the elements of the vector in (3.10) are independent and satisfy

iaitai+1t − i
ait
ait

(dist.)
= i(ai+1−ai)t

(by (2.59)), Proposition 3.3 shows that (3.10) converges in distribution, as t→∞,
to the distribution prescribed in Proposition 1.3.
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4. Tightness in D

Most of the effort in this section will go into proving the following uniform bound
on the displacement of the interface position.

Lemma 4.1. For any ε > 0 there exists U > 0 such that, for large enough t and
any r > 0,

P
[

sup
r≤s≤r+t

|is − ir| ≤ U
√
t

]
> 1− ε

U2
.

The proof will depend on several preliminary results. Before turning to them,
let us first explain how Lemma 4.1 allows us to conclude.

Proof of Proposition 1.4. For each t > 0, define the process X(t) by

X(t)
s = t−1/2 · ist, s ≥ 0.

We want to show that the family of processes {X(t) : t ≥ 0} is tight in D[0,∞). As
explained in Section 16 of Billingsley (1999), it is sufficient to prove that

for all m > 0 and ε > 0 there exists δ > 0 and t0 > 0 such that

P

[
sup

k∈{0,...,bm/δc}
sup

s∈[kδ, (k+1)δ]

|X(t)
s −X

(t)
kδ | > ε

]
< ε for all t ≥ t0.

(4.1)

By the identity X
(t)
m =

√
m ·X(mt)

1 , it is sufficient to treat m = 1. Then the above
condition becomes

for all ε > 0 there exists δ > 0 such that, for large enough t,

P

[
sup

k∈{0,...,b1/δc}
sup

s∈[kδt, (k+1)δt]

|is − ikδt| > ε
√
t

]
< ε.

(4.2)

Given ε > 0, using Lemma 4.1, we can find U > 0 and t0 > 0 such that, if t ≥ t0,

sup
r≥0

P
[

sup
r≤s≤r+t

|is − ir| > U
√
t

]
<

ε3

U2
. (4.3)

Now, set δ = (ε/U)2. We then have, for t ≥ t0/δ and t′ = δt,

P

[
sup

k∈{0,...,b1/δc}
sup

s∈[kδt, (k+1)δt]

|is − ikδt| > ε
√
t

]

≤ 1

δ
· sup
r≥0

P

[
sup

s∈[r,r+δt]

|is − ir| > ε
√
t

]

=
1

δ
· sup
r≥0

P

[
sup

s∈[r,r+t′]

|is − ir| > ε

√
t′

δ

]

=
U2

ε2
· sup
r≥0

P

[
sup

s∈[r,r+t′]

|is − ir| > U
√
t′

]
(4.3)
< ε

as required in (4.2).

Our first step towards the proof of Lemma 4.1 are the following generalizations
of Lemmas 2.9 and 2.10. Since the proofs are line-by-line repetitions of the proofs
of these earlier results, we omit them.
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Lemma 4.2. (1) There exists c > 0 such that the following holds. For any
(x1, r1), (x2, r2) ∈ Z× [0,∞) and b > a ≥ max(r1, r2), we have

P

 η
(x1,r1)
s , η

(x2,r2)
s 6= 4 for all s ∈ [a, b],

min
(
T

(
η(x1,r1)
s ,s

)
, T

(
η(x2,r2)
s ,s

))
<∞ for all s ∈ [a, b]

 < e−c(b−a). (4.4)

(2) Let (x1, r1), (x2, r2) ∈ Z× [0,∞) and σ be a stopping time (with respect to
the sigma-algebra of Harris systems) with σ ≥ max(r1, r2) almost surely.
Let

τ = inf{t ≥ σ : η
(x1,r1)
t , η

(x2,r2)
t 6= 4 and T

(
η
(x1,r1)
t ,t

)
= T

(
η
(x2,r2)
t ,t

)
=∞}.

For any y1, y2 ∈ Z and events E,F on Harris systems,

P
[
τ <∞, H[0,τ] ∈ E, η(x1,r1)

τ = y1, η
(x2,r2)
τ = y2 and H ◦ θ(0, τ) ∈ F

]
= P

[
τ <∞, H[0,τ] ∈ E, η(x1,r1)

τ = y1, η
(x2,r2)
τ = y2

]
· P̃{y1,y2} [H ∈ F ] .

(4.5)

Given u > 0 and t > 0, define Ku,t = −13u
√
t and the intervals

Iu,tk = Ku,t +
(

(4k − 1)u
√
t, 4ku

√
t
)
, 1 ≤ k ≤ 3;

Ju,t0 = (−∞,Ku,t];

Ju,tk = Ku,t +
[
(4k − 3)u

√
t, (4k − 2)u

√
t
]
, 1 ≤ k ≤ 3;

Ju,t4 = Ku,t + [13u
√
t, ∞) = [0,∞).

We will often omit the superscripts and write K, Ik and Jk. These definitions, as
well as the event treated in the following lemma, are illustrated in Figure 4.3.

Figure 4.3. The event of Lemma 4.3.

Lemma 4.3. For any u > 0, there exist C = C(u) > 0 and t0 = t0(u) > 0 such

that, for any t ≥ t0, (x, r) ∈ Ju,t0 × [0, t], x1 ∈ Iu,t1 , x2 ∈ Iu,t2 and x3 ∈ Iu,t3 , we have

P
[
η

(x,r)
t ≥ 0 and ηxis ∈ I

u,t
k for all k ∈ {1, 2, 3} and s ∈ [0, t]

]
≤ C

t3/2
.
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Proof : Fix u > 0. Choose t large enough that

2t1/4 < u
√
t. (4.6)

Fix (x, r) ∈ J0 × [0, t], x1 ∈ I1, x2 ∈ I2, x3 ∈ I3. Define

σk = inf{s : η(x,r)
s ≥ inf Jk}, 1 ≤ k ≤ 4.

The probability in the statement of the lemma is less than

P[σ4 ≤ t and ηxks ∈ Ik for all s ≤ σ4 and k ≤ 3].

We will show that

P [σ4 ≤ t, ηxks ∈ Ik for all s ≤ σ4 and k ≤ 3]

≤ Ce−ct
γ

+
C√
t
P [σ3 ≤ t, ηxks ∈ Ik for all k ≤ 2 and s ≤ σ3]

(4.7)

for some c, C, γ that only depend on u. To this end, we first define the events

E1 =
{
∃s, s′∈ [r, t] : |s− s′| < t1/8, η(x,r)

s 6= 4, η(x,r)
s′ 6= 4, |η(x,r)

s − η(x,r)
s′ | > t1/4

}
,

E2 =

 ∃s, s
′ ∈ [r, t] : |s− s′| ≥ t1/8, η(x,r)

u 6= 4, ηx3
u 6= 4

and min
(
T (η(x,r)u ,u), T (ηx3u ,u)

)
<∞ for all u ∈ [s, s′]


and the random time

τ = inf{t ≥ σ3 : η
(x,r)
t 6= 4, ηx3

t 6= 4, (η
(x,r)
t , t)↔∞, (ηx3

t , t)↔∞}.

By (2.40) and (4.5), we can find γ > 0 such that

P[E1 ∪ E2] ≤ Ce−ct
γ

. (4.8)

Using (4.6), we have

{σ4 ≤ t; ηxks ∈ Ik for all s ≤ σ4, k ≤ 3} ∩ Ec1

⊆


σ3 ≤ t− t1/8; ηxks ∈ Ik for all s ≤ σ3 and k ≤ 2;

η
(x,r)
s ≤ sup J3 and ηx3

s ∈ I3 for all s ∈ [σ3, σ3 + t1/8];

η
(x,r)
s > ηx3

s + u
√
t for some s ∈ [σ3 + t1/8, t]

 .
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We thus also get

{σ4 ≤ t, ηxks ∈ Ik for all s ≤ σ4 and k ≤ 3} ∩ Ec1 ∩ Ec2

⊆


σ3 ≤ t− t1/8, ηxks ∈ Ik for all s ≤ σ3 and k ≤ 2,

τ ≤ σ3 + t1/8, η
(x,r)
τ ≤ sup J3,

ηx3
τ ∈ I3, η

(x,r)
s > ηx3

s + u
√
t for some s ∈ [τ, t]


⊆

{
σ3 ≤ t, ηxks ∈ Ik for all s ≤ σ3 and k ≤ 2,

τ <∞, η(x,r)
τ ≤ sup J3, η

x3
τ ∈ I3, η

(x,r)
s > ηx3

s + u
√
t for some s ∈ [τ, τ + t]

}

=
⋃

z≤sup J3

⋃
w∈I3


σ3 ≤ t, ηxks ∈ Ik for all s ≤ σ3 and k ≤ 2,

τ <∞, η(x,r)
τ = z, ηx3

τ = w,

η
(z,τ)
s > η

(w,τ)
s + u

√
t for some s ∈ [τ, τ + t]

 .

Using this set inclusion and (4.5) we obtain

P [{σ4 ≤ t, ηxks ∈ Ik for all s ≤ σ4, k ≤ 3} ∩ Ec1 ∩ Ec2]

≤
∑

z≤sup J3

∑
w∈I3

P
[
σ3 ≤ t, ηxks ∈ Ik for all s ≤ σ3

and k ≤ 2, τ <∞, η(x,t)
τ = z, ηx3

τ = w

]

· P̃{z,w}
[
ηzs > ηws + u

√
t for some s ∈ [0, t]

]
≤ P [σ3 ≤ t, ηxks ∈ Ik for all s ≤ σ3 and k ≤ 2]

· sup
z≤sup J3, w∈I3

P̃{z,w}
[
ηzs > ηws + u

√
t for some s ∈ [0, t]

]
(2.53)

≤ C√
t
· P [σ3 ≤ t, ηxks ∈ Ik for all s ≤ σ3 and k ≤ 2] .

The desired result now follows from iterating this computation.

Lemma 4.4. For any ε > 0 there exists U > 0 such that, for large enough t,

P
[
there exists (x, r) ∈ [−U

√
t− t1/4,−U

√
t]× {0, 1, . . . , btc} : η

(x,r)
t > 0

]
<

ε

U2
.

(4.9)

Proof : Let N be a large integer to be chosen later. Define

u = N2, U = 13u, t > t0(u), where t0(u) is as in Lemma 4.3.
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For k ∈ {1, 2, 3}, let Īu,tk be the set of N sites (or N + 1 sites, depending on parity)

that are closest to the middle point of Iu,tk . Define the events

B1 =
{
T Ī

u,t
k <∞ for some k ∈ {1, 2, 3}

}
,

B2 =
{

there exist k ∈ {1, 2, 3}, y ∈ Īu,tk , s ≤ t such that ηys 6= 4, ηys /∈ I
u,t
k

}
,

B3 =


there exist (x, r) ∈ [−U

√
t− t1/4,−U

√
t]× {0, . . . , btc},

y1 ∈ Īu,t1 , y2 ∈ Īu,t2 , y3 ∈ Īu,t3 such that

η
(x,r)
t > 0, ηyis ∈ I

u,t
i for each i = 1, 2, 3, s ≤ t.

 .

We then have{
there exists (x, r)∈ [−U

√
t− t1/4,−U

√
t]× {0, 1, . . . , btc} : η

(x,r)
t > 0

}
⊆ ∪3

k=1Bk.

In what follows, c and C will denote constants that only depend on λ and R
(recall that λ and R respectively denote the birth rate and range of the interactions
of our process). Moreover, CN will denote constants that also depend on N . Of
course, since u = N2, constants that depend on u also depend on N . We start
bounding the probability of B1:

P[B1] ≤
3∑
k=1

P
[
T Ī

u,t
k <∞

] (2.10)

≤
3∑
k=1

exp
{
c ·#Īu,tk

}
≤ 3e−cN .

To bound the probability of B2, fix k ∈ {1, 2, 3} and y ∈ Īu,tk . As long as t is

large enough that N < u
√
t, we have

{there exists s ≤ t : ηys /∈ I
u,t
k } ⊆

{
sup

0≤s≤t
|ηys − y| > u

√
t/2

}
and, by (2.40) and (2.43), the probability of this event is less than Ce−c

u2t
4t +

Cte−c
u
√
t

2 for some c, C > 0. We thus get

P[B2] ≤ 3N
(
Ce−c

u2t
4t + Cte−c

u
√
t

2

)
= 3N

(
Ce−c

N4

4 + Cte−c
N2√t

2

)
.

We now turn to B3. Note that there are at most t5/4 candidates for (x, r) and
N3 candidates for y1, y2, y3. Using Lemma 4.3, there exists CN > 0 such that

P[B3] ≤ N3 · t5/4 · CN
t3/2

≤ CN ·N3

t1/4
.

Putting these bounds together and rearranging constants, we get

U2 · P
[
there exists (x, r) ∈ [−U

√
t− t1/4,−U

√
t]× {0, 1, . . . , btc} : η

(x,r)
t > 0

]
≤ CN4e−cN + CN5e−cN

4

+ CtN5e−cN
2
√
t +

CNN
7

t
1
4

. (4.10)

Now, given ε > 0, we first choose N∗ such that the sum of the first two terms
on (4.10) is less than ε/2. Next, we choose t∗ > t0((N∗)2) such that, for N∗ and
any t > t∗, the sum of the third and fourth terms in (4.10) is less than ε/2. This
completes the proof of the lemma, with U = 13(N∗)2.
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Lemma 4.5. For any ε > 0 there exists U > 0 such that, for large enough t,

P
[
|rs|, |`s| ≤ U

√
t for all s ≤ t

]
> 1− ε

U2
.

Proof : Given ε > 0, we will find U > 0 such that

P
[

inf
0≤s≤t

`s < −U
√
t− t1/4

]
<

ε

U2
if t is large enough (4.11)

and

P
[

inf
0≤s≤t

`s ≥ −U
√
t− t1/4, inf

0≤s≤t
rs < −2U

√
t

]
t→∞−−−→ 0; (4.12)

the statement of the lemma clearly follows from these statements and symmetry.
For (4.11), we remark that, using the joint construction of the multitype contact

process and the ancestor processes, (4.9) can be rewritten as

P
[
there exists (x, r) ∈ [−U

√
t− t1/4,−U

√
t]× {0, 1, . . . , btc} : ξhr (x) = 2

]
<

ε

U2
.

(4.13)
Letting At be the event that appears in the above probability, we also have

P
[
Act ∩

{
inf

0≤s≤t
`s < −U

√
t− t1/4

}]

≤
btc∑
r=0

P
[
[−U
√
t,∞)× {r} ↔ (−∞,−U

√
t− t1/4]× [r, r + 1]

]
≤ te−ct

1/4

by a comparison with a Poisson random variable. (4.11) is thus proved.
We now turn to (4.12). If the event inside the probability occurs, then we have

`s ≥ −U
√
t− t1/4 for all s ∈ [0, t] and rs∗ < −2U

√
t for some s∗ ∈ [0, t]. This gives

rs∗ = sup{x : ξhs∗(x) = 1} < −2U
√
t, `s∗ = inf{x : ξhs∗(x) = 2} ≥ −U

√
t− t1/4

=⇒ ξhs∗(y) = 0 for all y ∈ [−2U
√
t, −U

√
t− t1/4).

This gives

P
[

inf
0≤s≤t

`s ≥ −U
√
t− t1/4, inf

0≤s≤t
rs < −2U

√
t

]
≤ P

[
there exists s ∈ [0, t] such that ξhs ≡ 0 on [−2U

√
t, −U

√
t− t1/4)

]
.

The probability on the right-hand side can be bounded from above similarly to how
we proceeded in Lemma 2.3, so that (4.12) follows.

Proof of Lemma 4.1 We recall the definition of its in (2.58). Given ε > 0, using the
previous lemma we choose U so that

P
[

sup
0≤s≤t

|is| ≤
U

2

√
t

]
> 1− ε

2U2
.

Using Theorem 2.14, we choose K so that, for any r > 0,

P [|is − irs| ≤ K for all s ≥ r] > 1− ε

2U2
.
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Then, if t is large enough that U
√
t > 2K we have, for any r > 0,

P
[

sup
r≤s≤r+t

|is − ir| > U
√
t

]

≤ P
[

sup
r≤s≤r+t

|is − irs| >
U

2

√
t

]
+ P

[
sup

r≤s≤r+t
|irs − ir| >

U

2

√
t

]

≤ P
[

sup
r≤s≤r+t

|is − irs| > K

]
+ P

[
sup

0≤s≤t
|is| >

U

2

√
t

]
<

ε

U2
.

5. Interface regeneration

In this section we will prove Theorem 2.14. We will often consider multitype
contact processes with different initial configurations simultaneously. When we
do so, we always assume that all these processes are constructed on the same
probability space, using a single Harris system H.

We start defining some classes of subsets of the space of configurations {0, 1, 2}Z.
Recall the definition of Ω ⊂ {0, 1, 2}Z in (2.54). Define

ΓS,L =

{
ξ ∈ Ω : there exist a < b with b− a ≤ L, r(ξ), `(ξ) ∈ (a, b),

ξ ≡ 1 on [a− S, a] and ξ ≡ 2 on [b, b+ S]

}
, S, L > 0.

(5.1)

The homogeneously and fully occupied intervals [a− S, a], [b, b+ S] that appear in
the above definition will be referred to as “isolation segments”. The reason is that
we think of them as isolating the interface (which is contained in (a, b)) from the
“outside” [a− S, b+ S]c, so that, if S is large, we can hope that the configuration
in the outside never has any effect on the evolution of the interface.

Our second class of configurations will depend on a preliminary definition. Given
ξ0 ∈ Ω, let

ξ̃0 = 1(−∞,bi(ξ0)c] + 2 · 1(bi(ξ0)c,∞).

Also let (ξt) and (ξ̃t) be contact processes started from ξ0 and ξ̃0, respectively
(constructed with the same Harris system). We now let

Ωε,K =
{
ξ0 ∈ Ω : P

[
|i(ξt)− i(ξ̃t)| < K for all t

]
> 1− ε

}
. (5.2)

We will separately prove the following two propositions:

Proposition 5.1. (Large isolation segments allow for regeneration). For
any ε > 0 there exists S > 0 such that the following holds. For any L > 0 there
exists K = K(ε, S, L) > 0 such that ΓS,L ⊆ Ωε,K .

Proposition 5.2. (Large isolation segments are found not too far). For
any ε > 0 and S > 0 there exists L > 0 such that, for any t ≥ 0,

P
[
ξht ∈ ΓS,L

]
> 1− ε.
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Proof of Theorem 2.14. Fix ε > 0. Choose S = S(ε) as in Proposition 5.1, then
choose L = L(ε, S) as in Proposition 5.2, and finally choose K = K(ε, S, L) as in
Proposition 5.1. Now, for any t ≥ 0 we have

P
[
ξht ∈ Ωε,K

]
≥ P

[
ξht ∈ ΓS,L

]
> 1− ε. (5.3)

Now, for any s ≥ 0 we have

P
[
sup
t≥s
|ist − it| > K

]
≤ P

[
ξhs /∈ Ωε,K

]
+ P

[
sup
t≥s
|ist − it| > K

∣∣∣∣ ξhs ∈ Ωε,K

]
.

The first probability on the right-hand side is less than ε by (5.3) and the second
one is less than ε by the definition of Ωε,K .

5.1. Proof of Proposition 5.1. In proving Proposition 5.1, we will need to argue
that, if S is large and ξ0 ∈ Ω is a configuration such that, for some a, b, L,

a < r(ξ0), `(ξ0) < b < a+ L, ξ0 ≡ 1 on [a− S, a], ξ0 ≡ 2 on [b, b+ S],

then the interface of (ξt) is with high probability never too far from that of the

process started from ξ̃0, the “heaviside version” of ξ0.
The comparison between the interfaces of (ξt) and (ξ̃t) will be indirect. We will

define an intermediate process (ξ̂t), started from what we call an “almost-heaviside
version” of ξ0:

ξ̂0 = 1(−∞,a](x) + 1(a,b)(x) · ξ0(x) + 2 · 1[b,∞)(x).

We will then have two comparison results, Lemma 5.3 and Lemma 5.4, the former

allowing us to compare the interfaces of (ξ̃t) and (ξ̂t), and the latter allowing us to

compare the interfaces of (ξ̂t) and (ξt).
We now give the full statements of our comparison lemmas. Here and in the rest

of this section, β̄ is the constant of Lemma 2.1.

Lemma 5.3. (Comparison I: Processes with initial configurations which
are equal and non-empty at all but finitely many sites). For any ε > 0 and
L > 0 there exists t0 > 0 such that the following holds. If I is an interval of length

at most L and ξ̂0,
ˆ̂ξ0 ∈ {0, 1, 2}Z are such that ξ̂0(x) = ˆ̂ξ0(x) 6= 0 for all x ∈ Z\I,

then

P
[
ξ̂t = ˆ̂ξt for all t ≥ t0

]
> 1− ε.

Lemma 5.4. (Comparison II: Process started from configuration ξ0 with
isolation segments compared to process started from almost-heaviside
version of ξ0). For any ε > 0 there exists S0 > 0 such that the following holds.
Assume S ≥ S0 and ξ0 satisfies, for some a, b ∈ Z with a < 0 < b:

ξ0 ≡ 1 on [a− S, a]; (5.4)

a < r(ξ0), `(ξ0) < b; (5.5)

ξ0 ≡ 2 on [b, b+ S]. (5.6)

Let (ξ̂t)t≥0 be the process started from

ξ̂0(x) = 1(−∞,a](x) + 1(a,b)(x) · ξ0(x) + 2 · 1[b,∞)(x).
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Then, with probability larger than 1− ε,
for every t ≥ 0, r(ξt) = r(ξ̂t), `(ξt) = `(ξ̂t) and (5.7)

a− S

2
− β̄t < r(ξt), `(ξt) < b+

S

2
+ β̄t. (5.8)

The proofs of the comparison lemmas will be done later in this section; first we
will show how they give Proposition 5.1. The argument is sketched in Figure 5.4.

Figure 5.4. Sketch of the argument for Proposition 5.1. With

high probability, (1.) the interfaces of the three processes, ξ, ξ̂ and

ξ̃ are contained in the grey zone at all times, (2.) i(ξt) = i(ξ̂t) for

all t and (3.) i(ξ̂t) = i(ξ̃t) for all t ≥ t0. If all these hold, then

|i(ξt)− i(ξ̃t)| ≤ b+ S + β̄t0 − (a− S − β̄t0) for all t.

Proof of Proposition 5.1. Given ε > 0, we choose S large enough corresponding to
ε/3 in Lemma 5.4. Increasing S if necessary, by Lemma 2.13, we can also assume
the following (recall that rt = r(ξht ) and `t = `(ξht ), where (ξht ) is the process started
from the heaviside configuration).

P
[
rt, `t ∈ [S − β̄t, S + β̄t] for all t ≥ 0

]
> 1− ε.

Then, given L > 0, we choose t0 corresponding to ε/3 and L in Lemma 5.3.
Now assume ξ0 ∈ ΓS,L. Then, there exist a < b as prescribed in (5.1); note in

particular that r(ξ0), `(ξ0) ∈ (a, b), so that i(ξ0) ∈ (a, b). Let

ξ̂0(x) = 1(−∞,a](x) + 1(a,b)(x) · ξ0(x) + 2 · 1[b,∞)(x),

ξ̃0(x) = 1(−∞,bi(ξ0)c] + 2 · 1(bi(ξ0)c,∞)

and (ξ̂t), (ξ̃t) be the processes started from these configurations. By our choice of
S and t0, with probability larger than 1− ε the following three events occur:

for all t ≥ 0, i(ξt) = i(ξ̂t) ∈ [a− S − β̄t, b+ S + β̄t];

for all t ≥ 0, i(ξ̃t)∈ [bi(ξ0)c − S − β̄t, bi(ξ0)c+ S + β̄t] ⊂ [a− S − β̄t, b+ S + β̄t];

for all t ≥ t0, i(ξ̂t) = i(ξ̃t).
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If these events all occur, we have

|i(ξt)− i(ξ̃t)| ≤ b− a+ 2S + 2β̄t0 ≤ L+ 2S + 2β̄t0 if t ≤ t0 and

|i(ξt)− i(ξ̃t)| = 0 if t > t0.

The desired result now holds for K = L+ 2S + 2β̄t0.

Let us now prove our first comparison lemma. The proof is a simple application
of the convergence to zero of the density of the set of all first ancestor processes,
given by equation (2.52).

Proof of Lemma 5.3. Since (ξ̂t) and (ˆ̂ξt) are constructed from the same Harris
system H, it suffices to find t0 such that

P
[
ξ̂t0 = ˆ̂ξt0

]
> 1− ε.

For a fixed t0 > 0, consider the system of first ancestor processes ((ηxt )0≤t≤t0 : x ∈
Z) constructed from the time-reversed Harris system Ĥ[0,t0]. Since ξ̂0 ≡ ˆ̂ξ0 on Z\I,
we have

P
[
ξ̂t0 = ˆ̂ξt0

] (2.25)

≥ P
[
ξ̂0(ηxt0) = ˆ̂ξ0(ηxt0) 6= 0 for all x ∈ Z with ηxt0 6= 4

]
≥ P

[
ηxt0 /∈ I for all x ∈ Z

]
≥ 1− (#I) · P

[
0 ∈ {ηxt0 : x ∈ Z}

]
.

The result now follows from taking t0 large enough, depending on ε and L, by
(2.52).

The proof of the second comparison lemma, Lemma 5.4, will depend on a one-
sided version of that statement, which we now state and prove.

Lemma 5.5. For any ε > 0 there exists S0 > 0 such that the following holds for
any S ≥ S0. Assume ξ0 satisfies:

ξ0 ≡ 2 on [0, S]; (5.9)

r(ξ0) < 0. (5.10)

Let (ξ′t)t≥0 be the process started from

ξ′0(x) = 1(−∞,0)(x) · ξ0(x) + 2 · 1[0,∞)(x). (5.11)

Then, with probability larger than 1− ε we have

for any t ≥ 0, ξt ≡ ξ′t on (−∞, S/2 + βt], (5.12)

`(ξt) = `(ξ′t), r(ξt) = r(ξ′t) and (5.13)

`(ξt), r(ξt) < S/2 + β̄t. (5.14)

Proof : Given S > 0, we write

L
(1)
t =

S

4
+
β̄

2
t, L

(2)
t =

S

2
+ β̄t, t ≥ 0
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Fix ε > 0. By Lemmas 2.1, 2.3 and 2.13, if S is large enough, then with probability
larger than 1− ε all the following three events occur:

E1 =
{

for all (x, t) with x ≤ L(2)
t , ξt(x) = 0 if and only if ξ′t(x) = 0

}
,

E2 =
{

for all t ≥ 0, there exists x such that L
(1)
t ≤ x ≤ L

(2)
t and ξ′t(x) 6= 0

}
,

E3 =
{
r(ξ′t) < L

(1)
t for all t ≥ 0

}
.

We will also assume that S > 4R.
We will now state and prove two auxiliary claims.

Claim 1. On E1 ∩ E3, {x : ξt(x) = 1} = {x : ξ′t(x) = 1} and {x : ξt(x) = 2} ⊆ {x :
ξ′t(x) = 2} for all t.
To see that this holds, first note that

{x : ξ0(x) = 1} = {x : ξ′0(x) = 1}, {x : ξ0(x) = 2} ⊆ {x : ξ′0(x) = 2},
so applying (2.19) we get

{x : ξt(x) = 1} ⊇ {x : ξ′t(x) = 1}, {x : ξt(x) = 2} ⊆ {x : ξ′t(x) = 2} for all t.

Let us prove that, under the assumption that E1 ∩E3 occurs, the first inclusion is
in fact an equality. Fix (x, t) such that ξt(x) = 1. By Lemma 2.4, there exists an
infection path γ such that ξ0(γ(0)) = 1, γ(t) = x and γ only jumps to space-time
points that are unoccupied in (ξs)s≥0, that is, γ satisfies (2.13). By Lemma 2.5, we
also have

ξs(γ(s)) = 1, s ∈ [0, t].

Let x0 = γ(0), x1, . . . , xn = x be the successive positions of γ; also let t0 = 0 and
0 < t1 < · · · < tn ≤ t be the jump times of γ, so that:

γ ≡ x0 on [0, t1), γ ≡ x1 on [t1, t2), · · · ,γ ≡ xn−1 on [tn−1, tn), γ ≡ x on [tn, t].

We will prove by induction that, for each i, we have

ξ′ti(xi) = 1; (5.15)

the statement of Claim 1 will immediately follow. The statement of (5.15) is clear
for i = 0. Assume that it holds for some i < n. Since γ is an infection path, there
is no recovery mark in [ti, ti+1), hence it follows from the induction hypothesis that

ξ′ti+1−(xi) = 1. (5.16)

Since γ jumps from xi to xi+1 at time ti+1, using (2.13) we have

ξti+1−(xi+1) = 0. (5.17)

Now note that

xi+1 ≤ xi +R ≤ r(ξ′ti) +R ≤ L(1)
ti +R ≤ L(1)

ti+1
+R ≤ L(2)

ti+1
, (5.18)

where the second inequality follows from the induction hypothesis and the third
inequality follows from our assumption that E3 occurs. Using (5.17) and (5.18)
together with our assumption that E1 occurs, we get

ξ′ti+1−(xi+1) = 0. (5.19)

Finally, putting (5.16) and (5.19) we conclude that ξ′ti+1
(xi+1) = 1 completing the

proof by induction.
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Claim 2. On E2 ∩ E3, `(ξ′t) ≤ L
(2)
t for all t.

Indeed, by the definition of E2, for any t there exists x ∈ [L
(1)
t , L

(2)
t ] such that

ξ′t(x) 6= 0, and by the definition of E3 we have r(ξ′t) < L
(1)
t , so that x > r(ξ′t), thus

ξ′t(x) = 2, thus `(ξ′t) ≤ x ≤ L
(2)
t .

We are now ready to conclude. From Claim 1 and the definition of E1, we have
that

on E1 ∩ E3, ξt(x) = ξ′t(x) for all t ≥ 0, x ≤ L(2)
t .

From Claim 1 and the definition of E3,

on E1 ∩ E3, r(ξt) = r(ξ′t) < L
(1)
t < L

(2)
t .

From Claim 1 and Claim 2,

on E1 ∩ E2 ∩ E3, `(ξt) = `(ξ′t) < L
(2)
t .

Proof of Lemma 5.4. Let (ξt) and (ξ̂t) be as in the statement of the lemma. We
will also need (ξ′t)t≥0, the process started from

ξ′0(x) = 1(−∞,b)(x) · ξ0(x) + 2 · 1[b,∞)(x).

Given ε > 0, by Lemma 5.5, S0 can be chosen so that, if (5.5) and (5.6) hold, then

P

[
for every t ≥ 0, `(ξt) = `(ξ′t), r(ξt) = r(ξ′t)

and `(ξt), r(ξt) < b+ S
2 + βt

]
> 1− ε/2. (5.20)

Now, note that (5.6) and the definition of ξ′0 imply

ξ′0 ≡ 1 on [a− S, a], r(ξ′0) > a,

so that we can again use Lemma 5.5 (and symmetry) to obtain that

P

[
for any t ≥ 0, `(ξ′t) = `(ξ̂t), r(ξ′t) = r(ξ̂t)

and `(ξ′t), r(ξ
′
t) > a− S

2 − βt

]
> 1− ε/2. (5.21)

Putting (5.20) and (5.21) together, we obtain the desired result.

5.2. Proof of Proposition 5.2. Recall the definition of Ω in (2.54). Given ξ ∈ Ω, we
write

m(ξ) = min{r(ξ), `(ξ)}, M(ξ) = max{r(ξ), `(ξ)},
so that ξ(x) ∈ {0, 1} for any x < m(ξ) and ξ(x) ∈ {0, 2} for any x > M(ξ). Also
let

mt = m(ξht ) = min{rt, `t}, Mt = M(ξht ) = max{rt, `t}.
Our proof of Proposition 5.2 will consist of three main steps. First, we will

argue that the proposition follows from the weaker result:

Lemma 5.6. For S,L > 0, let

Γ′S,L = {ξ ∈ Ω : there exists b ∈ (M(ξ),M(ξ)+L] such that ξ(x) ≡ 2 on [b, b+S]}.
For any ε > 0 and S > 0 there exists L > 0 such that, for any t ≥ 0,

P
[
ξht ∈ Γ′S,L

]
> 1− ε. (5.22)
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(Note that Γ′S,L ⊃ ΓS,L, so Lemma 5.6 is indeed weaker than Proposition 5.2).
Second, we will prove that Lemma 5.6 follows from the yet weaker result:

Lemma 5.7. For k, L ∈ Z+, k < L, let

Πk,L = {ξ ∈ Ω : #{x ∈ (M(ξ),M(ξ) + L] : ξ(x) = 2} ≥ k} .
For any ε > 0 and k ∈ Z+ there exists L > 0 such that, for any t ≥ 0,

P
[
ξht ∈ Πk,L

]
> 1− ε.

(Note that ΠS,L+S ⊃ Γ′S,L, so Lemma 5.7 is indeed weaker than Lemma 5.6).
Third, we will use Theorem 1.1 to prove Lemma 5.7.

5.2.1. Step 1: proof of Proposition 5.2 assuming Lemma 5.6. Our first step is an
easy application of tightness of the interface size and symmetry.
Proof of Proposition 5.2. Fix S > 0 and ε > 0. Using (1.7), choose L0 > 0 such
that

P [Mt −mt ≤ L0] > 1− ε/3 for all t ≥ 0. (5.23)

Using Lemma 5.6, choose L1 > 0 such that

P
[
ξht ∈ Γ′S,L1/3

]
> 1− ε/3 for all t ≥ 0. (5.24)

Since the set of configurations Γ′S,L1/3
is increasing with L1, we may assume that

L1/3 > L0. Using symmetry, we also have

P

[
there exists a ∈ [mt − L1/3,mt)

such that ξht ≡ 1 on [a− S, a]

]
> 1− ε/3 for all t ≥ 0. (5.25)

Now note that if for t ≥ 0 the events inside the probabilities in (5.23), (5.24) and
(5.25) all occur, then ξht ∈ ΓS,L1

.

5.2.2. Step 2: proof of Lemma 5.6 assuming Lemma 5.7. Apart from Lemma 5.7,
we will need to use the following claim, which shows how, when L and k are appro-
priately chosen, depending on S, configurations in Πk,L can lead to configurations
in Γ′S,L with high probability:

Claim 5.8. For any ε > 0 and S > 0 there exist τ > 0 and k ∈ Z+ such that, for
any L ≥ k,

ξ0 ∈ Πk,L =⇒ P
[
ξτ ∈ Γ′S,L

]
> 1− ε.

Before proving this claim, let us show how to establish Lemma 5.6.

Proof of Lemma 5.6. Fix ε and S. We first choose τ and k corresponding to ε/2
and S in Claim 5.8, and then choose L corresponding to ε/2 and k in Lemma 5.7
(we may assume L ≥ k). We then have, for any t ≥ τ,

P
[
ξht ∈ Γ′S,L

]
≥ P

[
ξht ∈ Γ′S,L | ξht−τ ∈ Πk,L

]
· P
[
ξht−τ ∈ Πk,L

]
≥ (1− ε/2)2 > 1− ε.

That is, (5.22) holds for all t ≥ τ. It is then easy to show that we can increase L if
necessary so that the result also holds for t ∈ [0, τ).

We now turn to the proof of Claim 5.8. The idea of the proof is as follows. If τ is
small (depending on ε), k is large (depending on ε, S and τ), L ≥ k and ξ0 ∈ Πk,L,
then the following will be shown to hold with probability larger than 1− ε:
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• M(ξs) will be constant for s ∈ [0, τ] (that is, the right extremity of the
interface will not change in this time interval);
• one of the (at least k) sites x ∈ (M(ξ0),M(ξ0) + L] with ξ0(x) = 2 will

“germinate”, by time τ, an isolating interval of length S. This means
simply that x will produce enough descendants to fully occupy the interval
[x, x+ S].

This will produce ξτ ∈ Γ′S,L. We now proceed to the actual proof.

Proof of Claim 5.8. Given x ∈ Z and τ > 0, define the freezing event Aτ(x) as
the event that the space-time set [x− R, x + R]× [0, τ] has no recovery mark and
no start or endpoint of any transmission arrow. The reason we call this a freezing
event is the following:

if ξ0 ∈ Ω and Aτ(M(ξ0)) occurs, then M(ξs) = M(ξ0) for all s ∈ [0, τ], (5.26)

that is, the right extremity of the interface is frozen in this time interval (a similar
statement holds for the left extremity). This can be easily verified by inspecting
the two possible cases M(ξ0) = r(ξ0) and M(ξ0) = `(ξ0).

Given x ∈ Z, τ > 0 and S > 0, define the germination event Bτ,S(x) as the
event that

• for all y ∈ [x, x + S], there is an infection path from (x, 0) to (y, τ) which
is entirely contained in [x, x+ S];
• there is no arrow originating from [x, x + S]c × [0, τ] and entering [x, x +
S]× [0, τ].

If this event occurs, then x germinates a fully occupied interval:

if ξ0 ∈ Ω, x > M(ξ0) and Bτ,S(x) occurs, then ξτ ≡ 2 on [x, x+ S]. (5.27)

It is worth observing that, by translation invariance of the Harris system, the
probabilities of Aτ(x) and Bτ,S(x) do not depend on x. Additionally, by making
prescriptions on the Poisson processes of the Harris system in a finite space-time
region, it can be seen that

P[Bτ,S(0)] =: δτ,S > 0 for all τ, S > 0. (5.28)

Fix ε > 0 and S > 0. We choose τ > 0 small enough that

P[Aτ(0)] > 1− ε/2. (5.29)

We then choose k ∈ Z+ so that

k′ := bk/(2R+ S + 1)c satisfies (1− δτ,S)k
′
< ε/2 (5.30)

(note in particular that k ≥ 2R+ S + 1).
Now that τ and k have been chosen, assume that L ≥ k and fix ξ0 ∈ Πk,L. By

the definition of Πk,L, we can find

x1, . . . , xk′ ∈ (M(ξ0) + 2R+ S + 1,M(ξ0) + L] with xi+1 > xi + 2R+ S + 1

and ξ0(xi) = 2 for all i.
(5.31)

We then have

P
[
ξ1 ∈ Γ′S,L

] (5.1),(5.26),(5.27)

≥ P
[
Aτ(M(ξ0)) ∩

(
∪ki=1Bτ,S(xi)

)]
.
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Since the intervals [M(ξ0) − R,M(ξ0) + R] and {[xi − R, xi + R + S], 1 ≤ i ≤
k′} are all disjoint, the events in the probability on the right-hand side are all
independent. Hence, using (5.28), (5.29) and (5.30), this probability is larger than

1− ε
2 − (1− δS)k

′
> 1− ε.

5.2.3. Step 3: proof of Lemma 5.7. For t ≥ 0, define

X
(0)
t = Mt = max{r(ξht ), `(ξht )}, X(j+1)

t = min{x > X
(j)
t : ξht (x) 6= 0}, j = 0, 1, . . . .

We remark that the minimum that defines each X
(j)
t , j ≥ 1, is well defined since

at any time there are infinitely many occupied sites to the right of the origin. An
equivalent formulation of Lemma 5.7 is the statement that, for all k ∈ Z+, the

process (X
(k)
t −Mt)t≥0 is stochastically tight, that is,

for all ε > 0 there exists L > 0 such that P
[
X

(k)
t −Mt > L

]
< ε for all t ≥ 0.

(5.32)
Our proof will be by contradiction. We will assume that (5.32) fails for some k
and will show that this would imply that, for a deterministic sequence (tn), the
interface size Mtn −mtn is larger than n with non-vanishing probability. We will
then argue that this contradicts Theorem 1.1.
Proof of Lemma 5.7. Suppose the statement is false. Then, there exist k ∈ Z+ and

ε > 0 such that, for all L > 0, there exists tL > 0 such that P
[
X

(k)
tL −MtL > L

]
≥ ε.

In particular, by letting L vary along the natural numbers, we obtain a sequence
(tn) such that

P
[
X

(k)
tn −Mtn > n

]
≥ ε for all n ∈ Z+.

By tightness of the size of the interface (as given by (1.7)), we can then find L0 > 0
such that

P
[
Mtn −mtn ≤ L0, X

(k)
tn −Mtn > n

]
> ε/2 for all n ∈ Z+. (5.33)

We will now show that (5.33) implies that one time unit after tn, the interface has
probability at least ε

2 · exp{(−1− 2Rλ)(2R+L0 + k)} of consisting of a gap of size
at least n (that is, `tn+1 ≥ rtn+1 + n). The idea for this argument is essentially
contained in Figure 5.5. The fact that the mentioned lower bound ε

2 · exp{(−1 −
2Rλ)(2R+L0 +k)} does not depend on n will then be used to yield a contradiction
with tightness of the interface size, (1.7).

Let us denote by En the event inside the probability on the left-hand side of
(5.33). Also define the event

Fn = En ∩


in the time interval [tn, tn + 1], all vertices in

[mtn −R,Mtn ] ∪ {X(1)
tn , . . . , X

(k)
tn } ∪ (X

(k)
tn , X

(k)
tn +R]

have a death mark and do not originate any arrow.


See Figure 5.5 for an illustration of this definition. Since the set of vertices that
appears in the definition of Fn contains at most 2R + L0 + k vertices, we have
P[Fn | En] = exp{(−1− 2Rλ)(2R+ L0 + k)}, so that, by (5.33),

P[Fn] ≥ ε

2
· exp{(−1− 2Rλ)(2R+ L0 + k)}. (5.34)
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Figure 5.5. Illustration of the events En and Fn with k = 4
(additional parameters in this picture are: R = 4, L0 = 20 and
n = 22). The event En occurs because Mtn < mtn + L0 and

X
(k)
tn = X

(4)
tn > Mtn +n. The event Fn occurs because in addition,

all occupants of sites in [mtn −R,X
(k)
tn +R] at time tn die within

one second without giving birth. As can be seen, this implies that
the interface consists of a gap of size larger than n at time tn + 1.

Additionally,

Fn ⊆ {rtn+1 < mtn , `tn+1 > Mtn + n} ⊆ {`tn+1 − rtn+1 > n}. (5.35)

Now, (5.34) and (5.35) together imply

P [`tn+1 − rtn+1 > n] >
ε

2
· exp{(−1− 2Rλ)(2R+ L0 + k)} for all n. (5.36)

On the other hand, (1.7) implies that there exists L′ such that

P [|`t − rt| > L′] <
ε

2
· exp{(−1− 2Rλ)(2R+ L0 + k)} for all t ≥ 0. (5.37)

Since (5.36) and (5.37) contradict each other, the proof is complete.
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