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Abstract. The following random graph model was introduced for the evolution
of protein-protein interaction networks: Let G = (Gn)n=n0,n0+1,... be a sequence
of random graphs, where Gn = (Vn, En) is a graph with |Vn| = n vertices, n =
n0, n0 + 1, ... In state Gn = (Vn, En), a vertex v ∈ Vn is chosen from Vn uniformly
at random and is partially duplicated. Upon such an event, a new vertex v′ /∈ Vn
is created and every edge {v, w} ∈ En is copied with probability p, i.e. En+1 has
an edge {v′, w} with probability p, independently of all other edges.

Within this graph, we study several aspects for large n. (i) The frequency of
isolated vertices converges to 1 if p ≤ p∗ ≈ 0.567143, the unique solution of pep = 1.

(ii) The number Ck of k-cliques behaves like nkp
k−1

in the sense that n−kp
k−1

Ck
converges against a non-trivial limit, if the starting graph has at least one k-clique.
In particular, the average degree of a vertex (which equals the number of edges –
or 2-cliques – divided by the size of the graph) converges to 0 iff p < 0.5 and we
obtain that the transitivity ratio of the random graph is of the order n−2p(1−p). (iii)
The evolution of the degrees of the vertices in the initial graph can be described
explicitly. Here, we obtain the full distribution as well as convergence results.

1. Introduction

Random graph models are a topic of active research in probability theory. Since
the introduction of the first models, like the models of Erdős and Rényi (1959) and
Gilbert (1959), several classes of models for the evolution of networks have been
introduced. Frequently, such models try to mimic the behavior of social networks
like the internet; see Cooper and Frieze (2003) and Barabási et al. (2002). For
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a general introduction to random graphs see the monographs Durrett (2010) and
van der Hofstad (2016) and references therein.

Another set of models aim at modeling (micro-)biological networks, such as
protein-protein interaction networks (see e.g. Wagner, 2001, and Albert, 2005 for
a specific application to yeast) or metabolic networks (Jeong et al., 2000). In this
paper, we study a model introduced in Bhan et al. (2002), Pastor-Satorras et al.
(2003), Chung et al. (2004) and Bebek et al. (2006a). Here, a vertex models a
protein and an edge denotes some form of interaction (e.g. one protein that inhibits
the expression of the second protein). Within the genome, the DNA encoding for a
protein can be duplicated (which in fact is a long evolutionary process), such that
the interactions of the copied protein are partially inherited to the copy; see Ohno
(1970). In the model we study, every edge is copied with the same, independent,
probability p.

Our analysis extends previous work of Chung et al. (2004), Bebek et al. (2006a)
and Bebek et al. (2006b) in various directions. We obtain results for the limit of the
(expected) degree distribution for the partial duplication model. Precisely, we are
able to determine a critical parameter p ≈ 0.567143, the unique solution of pep = 1,
below which approximately all vertices are isolated; see Theorem 2.7. Moreover,
we are able to obtain almost sure limiting results for the number of k-cliques and
k-stars in the random graph; see Theorem 2.9. This entails precise asymptotics
of the transitivity ratio of the partial duplication random graph; see Remark 2.13.
Lastly, we study the distribution and the large-scale behavior of the degrees of fixed
vertices; see Theorem 2.14.

2. Model and results

2.1. Model. Let us introduce some notation for (undirected) graphs. Afterwards,
we will define the random graph model we will study in the sequel.

Definition 2.1 (Graph, degree, clique).
(1) A(n undirected) graph (without loops) is a tuple G = (V,E), where V is the

set of vertices and E ⊆ {{v, w} : v, w ∈ V, v 6= w} is the set of edges.
(2) A k-clique within G = (V,E) is a subset V ′ ⊆ V with |V ′| = k and {{v, w} :

v, w ∈ V ′, v 6= w} ⊆ E (i.e. all vertices in V ′ are connected). We denote by Ck(G)
the number of k-cliques in G and by C◦k(G) := Ck(G)/|V | the relative frequency of
k-cliques.

(3) For a graph G = (V,E) and v ∈ V , we define the degree of v by

Dv := Dv(G) := |{w : {v, w} ∈ E}|.

Moreover, the absolute and relative degree distribution is given by (Fk(G))k=0,1,2,...

and (F ◦k (G))k=0,1,2,... through

Fk(G) := |{v : Dv(G) = k}|, F ◦k (G) :=
1

|V |
Fk(G).

We also define their probability generating functions as

Hq(G) :=

∞∑
k=0

Fk(G)qk, H◦q (G) :=

∞∑
k=0

F ◦k (G)qk for q ∈ [0, 1].
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(4) A k-star within G = (V,E) with center v is a vector (v, v1, ..., vk) with
v, v1, ..., vk ∈ V and {v, vi} ∈ E, i = 1, ..., k, (i.e. every vi is connected to v). We
denote by

Sk(G) =

∞∑
`=k

` · · · (`− k + 1)F`(G)

the number of k-stars in G and by S◦k(G) := Sk(G)/|V | the relative frequency of
k-stars.

Remark 2.2 (Relationships). The quantities we just defined are intertwined by some
relationships. For example, since the Sk-values equal the kth factorial moments of
the degree distributions, we have

Sk(G) =
dk

dqk
Hq(G)

∣∣∣
q=1

.

In particular, note that S1(G) =
∑
` `F`(G) = 2C2(G). This is clear, since every

1-star counts an edge twice, having two possibilities of its center, while each edge
corresponds to a 2-clique. However, Ck(G) cannot be obtained from the degree
distribution, if k ≥ 3.

We start with a basic definition of the model; see also Figure 2.1.

Definition 2.3 (Partial duplication random graph). Let p ∈ [0, 1]. We define the
following random graph process – called partial duplication random graph or PDn
graph – G = (Gn)n=n0,n0+1,... with Gn = (Vn, En), where Gn is the graph at time
n = n0, n0+1, ... with vertex set Vn and (undirected) edge set En ⊆ {{v, w} : v, w ∈
Vn, v 6= w}. Starting in some Gn0

= (Vn0
, En0

) with |Vn0
| = n0, the dynamics at

time n is as follows: A vertex v is picked uniformly at random from Vn. Upon
such an event, a new node v′ /∈ Vn is created and every edge connected to v (i.e.
every e ∈ En with e = {v, w} for some w ∈ Vn) is copied with probability p, i.e.
{v′, w} ∈ En+1 with probability p, independently of all other edges.

We define by Ck(n) := Ck(Gn) and C◦k(n) := C◦k(Gn) the number of k-cliques in
Gn and the average number of cliques a vertex is involved in, respectively. Similarly,
we define by Sk(n) := Sk(Gn) and S◦k(n) := S◦k(Gn) the number of k-stars in Gn
and the average number of k-stars a vertex is centered in, respectively. Moreover,
define Fk(n) := Fk(Gn), F ◦k (n) := F ◦k (Gn), k = 0, 1, 2, ... the degree distribution of
Gn and its probability generating function by Hq(n) := Hq(Gn), H◦q (n) := H◦q (Gn).

Throughout the manuscript, we will assume that the initial graph Gn0
is con-

nected and deterministic.

Remark 2.4 (Basic observations). (1) Since we assume that the initial graph
Gn0

is connected, Gn consists of one connected component and singleton nodes
which arise if a vertex is copied but none of its edges (unless p = 1 where all
vertices are connected), n = n0 + 1, n0 + 2, ... In Theorem 2.7, we will study the
expected proportion of singleton vertices.

(2) Let Gn0
be an m-partite graph for some m ≤ n0, i.e. there is a partition

of Vn0
into sets W1(n0), ...,Wm(n0) such that En0

⊆
{
{v, w} : v ∈ Wi(n0), w ∈

Wj(n0) for some i 6= j}
}

. This means that vertices in Wi(n0) are only connected
to vertices outside Wi(n0), i = 1, ...,m. Then, Gn is m-partite for all n ≥ n0.
Indeed, if a vertex v ∈ Wi(n0) is copied, it is connected only to vertices outside
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v v v

v′ v′

Figure 2.1. Illustration of one step in the PDn random graph;
see also Definition 2.3. At time n = 6 (since there are 6 vertices in
the graph on the left), the vertex v is picked uniformly at random.
It is copied, giving rise to the new vertex v′, together with all po-
tential edges to neighbors of v (see the dashed lines in the middle).
Then, every dashed line is kept independently of the others with
probability p. The result is the random graph with n = 7 vertices
on the right.

Wi(n0), and so is the copied vertex. Iterating this argument shows that Gn is m-
partite, as well. Moreover, we see that the sizes (W1(n), ...,Wm(n))n=n0,n0+1,... of
the partition elements, follow Pólya’s urn dynamics.

Remark 2.5 (Related random graph models).
(1) In Pastor-Satorras et al. (2003), an extension of the PDn-model was intro-

duced. After partially (with probability p per edge) duplicating a vertex v ∈ Vn,
giving rise to the new vertex v′, every vertex w ∈ Vn additionally is connected to
v′ with probability r/n for some constant r > 0. This simple modification is said
to induce the scale-free property (Kim et al., 2002; Bebek et al., 2006a), but, as we
will see in Remark 2.8.3, this does not hold for at least some values of p.

(2) As stated by Ispolatov et al. (2005) the famous preferential attachment model
also shows up in a special limiting case of the PDn-model. Assume the case of small
p, which implies that at most one edge is copied upon a duplication event, while the
probability that at a time n a fixed node vk (with degree Dk(n)) becomes connected
to the new node conditioned on the event that at least one edge is retained equals

πk(n) :=
Dk(n)
n · p∑

k≥1 F
◦
k (n)(1− (1− p)k)

.

Using 1 − (1 − p)k p→0∼ pk and that S1(n) = 2C2(n), we obtain that πk(n)
p→0−−−→

Dk(n)/2C2(n) for each n. So, when conditioning the PDn-model to have no isolated
vertices, the preferential attachment model arises in the limit p→ 0.

(3) Another duplication model was recently introduced by Thörnblad (2015) and
further analyzed by Backhausz and Móri (2015, 2016). Here, the random graphs
consist of disjoint cliques, almost surely. In each time step, a vertex v is chosen
uniformly at random and duplicated with probability θ. Upon such an event, a
new vertex v′ is created and connected to all neighbors of v and to v itself. With
probability 1 − θ, all edges connecting v to its neighbors are deleted. For this
model, the degree distribution was analyzed and a phase transition at θ = 1/2 was
discovered in Thörnblad (2015). The limiting case θ = 1/2 and the maximal degree
was studied in Backhausz and Móri (2015, 2016). The PDn-model is related in the
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case p = θ = 1, although the new vertex is not connected to the copied vertex in
the PDn-model.

2.2. Results. Let us now come to the main conclusions about the PDn model we
have derived. First, Theorem 2.7 states a critical value p ≈ 0.567143, below which
almost all vertices have degree 0, i.e. are isolated. Its proof, which is based on a
time-continuous version of PDn and a duality argument with a piece-wise deter-
ministic Markov process is found in Section 4. Second, Theorem 2.9 studies the
occurrences of certain subgraphs in the PDn: k-cliques, which deliver an under-
standing of topological properties of the initial graph retained during the process,
and k-stars, which give insights in the degree distribution, since they describe its
factorial moments. Here, we are able to obtain almost sure limit results using Mar-
tingale theory. Third, Theorem 2.14 deals with the evolution of the degrees of fixed
vertices in the initial graph. Here, we obtain almost sure as well as Lr-limit results.
The proofs of Theorems 2.9 and 2.14 are found in Section 5.

Remark 2.6 (Notation). In our Theorems, for sequences a1, a2, ... and b1, b2, ...,

we will write an
n→∞∼ bn iff an/bn

n→∞−−−−→ 1. The Gamma-function is denoted

t 7→ Γ(t) :=
∞∫
0

xt−1e−xdx. Empty products, i.e. products of the form
∏0
i=1 f(i),

are defined to be 1.

Theorem 2.7 (Frequency of isolated vertices). Let p∗ be the (unique) solution of
pep = 1 (or p+ log p = 0). Then, the following dichotomy holds:

(1) For p ≤ p∗, it holds that supq∈[0,1] |H◦q (n) − 1| n→∞−−−−→ 0 almost surely. In

particular, for q = 0, we have that F ◦0 (n)
n→∞−−−−→ 1, i.e. the proportion of isolated

vertices converges to 1.

(2) For p > p∗, it holds that E[H◦q (n)]
n→∞−−−−→ x∞ < 1 for all q ∈ [0, 1) (and in

particular E[F ◦0 (n)]
n→∞−−−−→ x∞) with

x∞ := 1−
(

1− 1
p log

(
1
p

))
·
∞∑
k=1

S◦k(n0)

k!
(−1)k−1

k−1∏
`=1

(
1− 1− p`

p`

)
.

Remark 2.8 (Connections to work by Bebek et al (2006)).

(1) Previously, it has been known that F ◦0 (n)
n→∞−−−−→ 1 for p < 0.5; see e.g.

Lemma 2 in Bebek et al. (2006b). More precisely, as explained in the same paper,
and as a consequence of Theorem 2.9 below, the expected number of neighbors of a
randomly chosen node converges to 0 for p < 0.5. Theorem 2.7 extends the range for
which F ◦0 (n) converges to 1 to the range p ≤ p∗. Interestingly, this number already
appeared in the analysis of PDn in a different context; see below Theorem 1 in
Chung et al. (2004) (which we recall in Remark 3.2).

(2) Consider the expected degree distribution (E[F ◦k (n)])k=0,1,2,... for large n.
It is a well-known consequence of a fact (usually attributed to Paul Lévy) that
a weak limit for such a sequence of distributions as n → ∞ exists if and only if
the probability generating functions x 7→ E[H◦x(n)] converge to a function h which
is continuous at x = 1. The limiting distribution then has h as its probability
generating function. As the Theorem shows, only for p ≤ p∗ such a convergence
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holds and h = 1. This implies that the degree distribution converges to δ0 for
p ≤ p∗ and there is no limiting degree distribution for p > p∗.

Bebek et al. (2006a) call a distribution (f◦k )k=0,1,2,... defective if f◦0 +f◦1 + · · · < 1
and non-defective if f◦0 +f◦1 +· · · = 1. They also raise the question of a critical value
for p which separates defective from non-defective limits of (E[F ◦k (n)])k=0,1,2,.... As
Theorem 2.7 shows, the (vague) limit of (E[F ◦k (n)])k=0,1,2,... is non-defective only
for p ≤ p∗ and defective otherwise. In particular, we have resolved a question
raised in Bebek et al. (2006b), since we have in fact shown that there is no limiting
(probability) distribution for (E[F ◦k (n)])k=0,1,2,... in the case p > p∗.

(3) Furthermore, considering any generalization of the partial duplication model
producing additional edges (e.g. the Pastor–Satorras et al model), by a suitable
coupling argument and Theorem 2.7 it follows immediately that the limiting degree
distribution is bound to be defective if the edge retaining probability is greater
than p∗. Fueling the duplication mechanism with more edges, might also generate
a defective limit for even lower values than p∗.

(4) Frequently in the literature on several random graph models, power laws for
the (expected) degree distributions are found; see e.g. Albert and Barabási (2002).
In mathematical terms, let (F ◦k (n))k=0,1,2,... be the degree distribution for some
random graph at time n. We say that a power-law for n → ∞ with exponent b
holds, if for some c > 0,

lim
k→∞

kb lim
n→∞

E[F ◦k (n)] = c.

In this sense, a power law does not exist for the PDn model since for all k > 0 we
have shown that limn→∞E[F ◦k (n)] = 0. This observation was also made by Bebek
et al. (2006b), who argue that the proof for the power law behavior of PDn given
in Chung et al. (2004) is false. We come back to this proof in Remark 3.2. Note,
however, that for p ≤ p∗ it is still possible that the connected component of Gn
satisfies a power law, i.e. there are b, c > 0 with

lim
k→∞

kb lim
n→∞

E

[
Fk(n)∑∞
`=1 F`(n)

]
= c.

Actually, the preferential attachment model arising for small p as explained in
Remark 2.5.2, and that model being known to satisfy a power-law (see e.g. Albert
and Barabási, 2002), supports this conjecture. Although this power law behavior of
the connected component has already been discussed in Ispolatov et al. (2005), care
must be taken in order to provide a rigorous result. We defer the deeper analysis
of the connected component to future research.

Theorem 2.9 (Cliques, stars). (1) Let Ck(n0) > 0 and F∞ := σ(Gn;n ≥ n0).
Then, there is an F∞-measurable random variable Ck(∞) with P(Ck(∞) > 0) > 0,
such that

n−kp
k−1

Ck(n)
n→∞−−−−→ Ck(∞), (2.1)

almost surely and in L2 for each k. Moreover,

E[Ck(n)] = Ck(n0) ·
n−1∏
m=n0

m+ kpk−1

m

n→∞∼ Ck(n0) · Γ(n0)

Γ(n0 + kpk−1)
nkp

k−1

. (2.2)
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(2) For Sk(n), note that S1(n) = 2C2(n), such that the asymptotics for S1 can
be read off from the asymptotics of C2. In addition, for each k ≥ 2 there is an
F∞-measurable random variable Sk(∞), such that

n−(kp+pk)Sk(n)
n→∞−−−−→ Sk(∞) (2.3)

almost surely. Moreover,

E[S2(n)] =
(
S2(n0) +

2

p
S1(n0)

) n−1∏
k=n0

k + 2p+ p2

k
− S1(n0)

2

p

n−1∏
k=n0

k + 2p

k

n→∞∼
(
S2(n0) +

2

p
S1(n0)

) Γ(n0)

Γ(n0 + 2p+ p2)
n2p+p2 .

(2.4)

Remark 2.10 (Dependence on the initial graph). The Ck(n) demonstrate a topolog-
ical discrepancy between duplication based and preferential attachment models: In
preferential attachment often the number of edges added to the graph in one time
step is bounded by some constant m. Thus, the formation of new (m + 2)-cliques
is impossible, while the emergence of k-cliques with k ≤ m+ 1 is not – both inde-
pendent of the initial graph. In contrast to this, in the PDn new k-cliques occur if
and only if there is at least one k-clique in the initial graph.

Also, Theorem 2.7.2 shows that the limits of the degree distribution for p > p∗

very well depend on the initial values S◦k(n0) as opposed to many limiting results
for preferential attachment.

Remark 2.11 (Moments of the degree distribution). Using
{
n
k

}
, the number of

partitions of {1, ..., n} into k nonempty sets, also known as the Stirling numbers of
the second kind, we can write the moments of the degree distribution as

M`(n) :=
∑
k≥0

k`F ◦k (n) =
∑
k≥0

F ◦k (n)
∑̀
m=0

{
`

m

}
k↓m =

∑̀
m=0

{
`

m

}
S◦m(n),

where
{
`
`

}
= 1. By (2.3) we obtain M`(n) ∼ S◦` (n) almost surely and thus imme-

diate limiting results for the moments.

Remark 2.12 (Critical values and L1-convergence).
(1) It is a simple consequence of Theorem 2.9, that several critical values exist

which distinguish cases for C◦k(n), the relative frequencies of k-cliques, and S◦k(n),
the relative frequencies of k-stars, converging to 0 or diverging. Precisely, we obtain
for C◦k

C◦k(n)
n→∞−−−−→

{
∞, if p > k−1/(k−1),

0, if p < k−1/(k−1).

For the limiting case p := k−1/(k−1), we obtain that C◦k(n)
n→∞−−−−→ Ck(∞). Analo-

gously, for S◦k , and for the (unique) solution pk (in [0, 1]) of pk + pk = 1,

S◦k(n)
n→∞−−−−→

{
∞, if p > pk,

0, if p < pk.

Surprisingly, none of those critical values equal p∗ from Theorem 2.7.
There might be a connection to the pk though: Assume that the moments

Mx(n) :=
∑
kxF ◦k (n) satisfy Mx(n) ∼ npx+px−1 not only for x ∈ N (as follows
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from Remark 2.11), but also for each x ∈ R+. For p ≥ p∗, we see that the inequal-
ity px + px ≥ px + e−px > 1 holds for all x > 0, while for p < p∗ there are x > 0
with px + px < 1. Thus, p∗ is the smallest value of p ∈ [0, 1] such that there is
no positive solution x of px + px = 1. Hence, all Mx(n) tend to ∞ if and only if
p > p∗.

(2) Unfortunately, we are not able to show that the convergence in (2.3) also
holds in L1(F∞) if k ≥ 2 and thus we cannot rule out the possibility that Sk(∞) is
trivial, i.e. we cannot rule out Sk(∞) = 0. It should be possible to use a technique
similar to the proof of the L2 convergence of the Ck(n), but it is much more difficult
since additionally there are three possible relations of the centers c1, c2 of two k-
stars s1 and s2:

a) c1 = c2, b) (c1, c2) ∈ En, c) neither a) nor b),

where each of those as well as the number of shared nodes or edges influence the
evolutions of k-star pairs in a different way. Since the structures of pairs of k-
stars are so complex, another approach might be more suitable in order to show
non-triviality of Sk(∞).

Remark 2.13 (Transitivity ratio). The transitivity ratio Tr(G) of a graph G =
(V,E) is defined via C3(G) and S2(G) by

Tr(G) :=
6C3(G)

S2(G)
.

(Precisely, it is defined by the quotient of three times the number of triangles
C3(G) and the number of connected triples, i.e. the number of triples v, w, u ∈ V
with {v, w}, {w, u} ∈ E. Each connected triple is counted twice by S2(G) upon
summing over vertex w.) Hence, we find that

E[6C3(n)]

E[S2(n)]

n→∞∼ 6C3(n0)

S2(n0) + 2
pS1(n0)

Γ(n0 + 2p+ p2)

Γ(n0 + 3p2)
n−2p(1−p).

Moreover, n2p(1−p)Tr(n) converges (at least on the set S2(∞) 6= 0) to some inte-
grable random variable by Theorem 2.9.

Theorem 2.14 (Degree evolution of the initial vertices). Let Vn0 = {1, ..., n0}, i.e.
we number the initial vertices by 1, ..., n0. In addition, let Dk(n) > 0 be the degree
of vertex k ≤ n0 at time n. Then, for n ≥ n0 and ` ≥ a,

P(Dk(n) = `|Dk(n0) = a) =
∑̀
m=a

(−1)m−a
(
`− 1

m− 1

)(
m− 1

a− 1

) n−1∏
j=n0

(
1− pm

j

)
.

(2.5)

Moreover, there is an almost surely positive random variable Dk(∞), such that

n−pDk(n)
n→∞−−−−→ Dk(∞) (2.6)

almost surely and in Lr for each r ≥ 1 and, using `↑m := ` · · · (` + m − 1) for
m = 1, 2, . . .,

E[n−mpDk(n)↑m] =
Dk(n0)↑m
nmp

n−1∏
`=n0

`+mp
`

n→∞−−−−→ Dk(n0)↑m · Γ(n0)

Γ(n0 +mp)
= E[Dk(∞)m].

(2.7)
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Remark 2.15 (Degree evolution of arbitrary vertices). In the case of k > n0 we can
obtain results for the behavior of Dk(n) by conditioning on the graph at time k,
i.e. considering Gk as initial graph.

Remark 2.16 (Connection to the Pólya urn). In the special case p = 1, the sequence
(Dk(n))n=n0,n0+1,... is connected to Pólya’s urn. Note that the degree of vertex vk
increases by one at time n iff one of the neighbors of vk is copied. In Pólya’s urn,
start with n0 balls, where Dk(n0) = a balls are red and all others are black. Then,
as usual, pick a ball from the urn at random, and put it back together with a second
ball of the same color. From this construction, Dk(n) is equal in distribution to
the number of red balls when there are n balls in the urn for all n. Of course, it is
well-known that in this case, the probability that there are ` red balls in the urn
at the time when there are n balls in total equals(

n− n0

`− a

)
a↑(`−a) · (n0 − a)↑(n−n0−`+a)

n0↑(n−n0)
, (2.8)

with m↑k := m · (m+ 1) · · · (m+ k − 1) (e.g. (4.2) in Johnson and Kotz, 1977).
Using (5) of Chapter 1 of Riordan (1979) we obtain(

n− n0

`− a

)
=

(
(n− a− 1)− (n0 − a− 1)

`− a

)
=

`−a∑
m=0

(−1)m
(
n− a− 1−m
`− a−m

)(
n0 − a− 1

m

)
.

From this it follows, that (2.8) equals the right hand side of (2.5) if p = 1.
Also section 6.3.3 in Johnson and Kotz (1977) shows that the proportion of red
balls in the urn converges to a β-distributed random variable with parameters a
and n0 − a. Therefore it is not surprising that for p = 1 the moments of Dk(∞) as
given in (2.7) match those of the β(a, n0 − a)-distribution.
The connection of (2.5) to an extension of Pólya’s urn would look as follows: Con-
sider an urn, starting with n0 balls, a of which are red and n0 − a of which are
black. In each step, choose a ball at random from the urn. If the ball is black, put
it back to the urn together with another black ball. If the ball is red, put it back
to the urn together with another ball. The color of the additional ball is red with
probability p and black with probability 1 − p. Then, the chance that there are `
red balls in the urn at the time when there are a total of n balls in the urn equals
the right hand side of (2.5).

Remark 2.17 (The limiting distribution). The limiting distribution with moments
given by the right hand side of (2.7) seems to be not well–known. Thus far, we
deduced, using Stirling’s formula, that for p < 1

‖Dk(∞)‖L∞ = lim
m→∞

‖Dk(∞)‖Lm = lim
m→∞

(
Γ(Dk(n0) +m)

Γ(n0 + pm)

)1/m

=∞,

which shows that (in contrast to the special case p = 1) Dk(∞) is not bounded.
Also, Stirling’s formula shows that the moments satisfy

∞∑
m=1

E[Dk(∞)m]−1/(2m) =∞,
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which is Carleman’s condition for the determinacy of the corresponding Stieltjes
moment problem (e.g. Shohat and Tamarkin, 1943, Theorem 1.11). Thus, the
limiting distribution is defined by its moments.

3. Preparation

3.1. Some recursions. We collect some simple calculations in this section. Through-
out, we denote by (Fn)n=n0,n0+1,... the filtration generated by G = (Gn)n=n0,n0+1,....

Proposition 3.1 (Evolution of F,H, S,C). It holds that

E[Fk(n+ 1)|Fn] = Fk(n) + p(k − 1)F ◦k−1(n)− pkF ◦k (n) (3.1)

+
∑
`≥k

F ◦` (n)

(
`

k

)
pk(1− p)`−k,

E[Hq(n+ 1)|Fn] = Hq(n)− pq(1− q) d
ds
H◦s (n)

∣∣∣
s=q

+H◦1−p+pq(n), (3.2)

E[Sk(n+ 1)|Fn] =
(

1 +
pk + pk

n

)
Sk(n) +

pk(k − 1)

n
Sk−1(n), (3.3)

E[Ck(n+ 1)|Fn] = Ck(n)
(

1 +
k

n
pk−1

)
. (3.4)

Proof : Let us start with (3.1). The quantity Fk increases in two cases: either,
a vertex of degree ` ≥ k is copied, together with k edges (which has probability(
`
k

)
pk(1−p)`−k), or one of the neighbors of a vertex of degree k−1 is copied together

with the connecting edge. On the other hand, Fk decreases by one, if one of the
neighbors of a vertex of degree k is copied together with the connecting edge. These
three cases make up the right hand side of (3.1).
For (3.2), recall the definition of Hq. We multiply (3.1) by qk and sum in order to
obtain

E[Hq(n+ 1)−Hq(n)|Fn] = pq2
∞∑
k=1

(k − 1)F ◦k−1(n)qk−2 − pq
∞∑
k=0

kF ◦k (n)qk−1

+

∞∑
k=0

∞∑
`=k

F ◦` (n)

(
`

k

)
pk(1− p)`−kqk

= −pq(1− q) d
ds

( ∞∑
k=0

F ◦k (n)sk
)∣∣∣
s=q

+

∞∑
`=0

F ◦` (n)(1− p+ pq)`

= −pq(1− q) d
ds
H◦s (n)

∣∣∣
s=q

+H◦1−p+pq(n).

We now turn to (3.3). Again, use (3.1), multiply by k · · · (k −m + 1) =: k↓m and
sum for

E[Sm(n+ 1)− Sm(n)|Fn]

=

∞∑
k=m

(
pk↓m(k − 1)F ◦k−1(n)− pk↓mkF ◦k (n) +

∞∑
`=k

F ◦` (n)k↓m

(
`

k

)
pk(1− p)`−k

)

= p

∞∑
k=m

((k + 1)↓m − k↓m)kF ◦k (n)
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+ pm
∞∑
`=m

∑̀
k=m

F ◦` (n)`↓m

(
`−m
k −m

)
pk−m(1− p)`−k

= p
∑
k

(
mk↓m +m(m− 1)k↓(m−1))

)
F ◦k (n) + pm

∑
`

F ◦` (n)`↓m

=
pm+ pm

n
Sm(n) +

pm(m− 1)

n
Sm−1(n),

where we have used that

k ·
(
(k + 1)↓m − k↓m

)
=
(
k −m+ 1 + (m− 1)

)
· k↓(m−1)

(
k + 1− (k −m+ 1)

)
= mk↓m +m(m− 1)k↓(m−1).

For (3.4), a k-clique arises if a vertex v which is member of a k-clique is copied,
together with all k − 1 edges connecting v to the other members of the clique.
Hence,

E[Ck(n+ 1)|Fn] = Ck(n)
(

1 +
k

n
pk−1

)
.

�

Remark 3.2 (Scale-free property). (1) In Chung et al. (2004), the authors show
the following: If for some b > 0 (necessarily we will have b > 1) and c > 0 it holds
that

lim
k→∞

kb lim
n→∞

E[F ◦k (n)] = c, (3.5)

then, b must satisfy p(b− 1) = 1− pb−1.
Let us briefly recall the arguments leading to this power-law behavior of the

(expected) degree distribution. Starting off with (3.1), taking expectations on both
sides, and setting E[Fk(n)] = ck−bn+ o(n) for some c, b, we see that for n→∞, if
a stationary state for E[F ◦k ] is reached,

ck−b
k→∞∼ p(k − 1)c(k − 1)−b − pkck−b + c

∑
`≥k

`−b
(
`

k

)
pk(1− p)`−k.

Note that k(1− 1/k)−b − k k→∞∼ b, and (see Lemma 2 in Chung et al., 2004)∑
`≥k

`−b
(
`

k

)
pk(1− p)`−k k→∞∼ k−bpb−1.

Therefore, by dividing by ck−b, the parameter b must satisfy

1 = pb− p+ pb−1, (3.6)

the desired relationship.

Of course, with this proof Chung et al. (2004) only show an assertion about the
scaling exponent b in the case that the limiting distribution of (E[F ◦k (n)])k=0,1,2,...

satisfies a power law. No assertion is made if such a power law exists. In order to
resolve this, consider p ≥ p∗ as given in Theorem 2.7, that is p ≥ e−p. For such
p the inequality px + px ≥ px + e−px > 1 holds for all x > 0. More precisely, the
desired relationship has a solution b > 1 if and only if p < p∗. However, in this case
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we have seen that (E[F ◦k (n)])
n→∞−−−−→ δk0 and so (3.5) cannot hold. We conclude

that no power–law behavior is possible.
(2) The works on the Pastor–Satorras et al modification we mentioned in Re-

mark 2.5 claim the same power law (3.6) to hold, again with p(b − 1) = 1 − pb−1,
irrespective of r as long as r > 0 (see Theorem 1 in Bebek et al., 2006b using ar-
guments similar to those of Chung et al., 2004 and (18) in Kim et al., 2002, where
the connection gets clear by multiplying 1−δ and substituting p = 1−δ). It is also
recognized that such a power law can only exist for p ≤ p∗. However, the proofs of
this power law only show stationarity of a degree distribution with power law. The
question of convergence in the sense of (3.5) still is an open problem.

3.2. An auxiliary process. In the proof of Theorem 2.7, we will need a piece-wise
deterministic process which we introduce here. There, we will obtain and use a
duality (see Subsection 4.2), i.e. a relationship of the form

E[H1−x(t)] = E[H1−Xt(0)|X0 = x]

for continuous-time versions of the probability generating functions of the degree
distributions H and a [0, 1]-valued process X = (Xt)t≥0, which jumps from x to

px at rate 1 and in between jumps follows the logistic equation Ẋ = pX(1 − X).
Recall that such piece-wise deterministic processes have been studied recently in
more detail; see e.g. Davis (1984), Costa and Dufour (2008), Azäıs et al. (2014).

Lemma 3.3 (The auxiliary process X ). Let p ∈ [0, 1] and X = (Xt)t≥0 be a Markov
process with state space [0, 1] and generator

GX f(x) = px(1− x)f ′(x) + (f(px)− f(x)) (3.7)

for f ∈ C1
b ([0, 1]) and X0 ∈ [0, 1]. In addition, let p∗ ≈ 0.567143 be the unique

solution of pep = 1 (or p+ log p = 0).

Then, if p ≤ p∗, it holds that Xt
t→∞−−−→ 0 almost surely, whereas if p > p∗ it holds

that X is ergodic and Xt
t→∞
===⇒ X∞ for some [0, 1]-valued random variable X∞ with

P(X∞ > 0) = 1 and

E[Xk
∞] =

(
1− 1

p log
(

1
p

))
·
k−1∏
`=1

(
1− 1− p`

p`

)
.

Proof : We consider the process − logX = (− logXt)t≥0 with state space [0,∞).
From (3.7), we read off that this process has the generator

G− logX g(y) = −p(1− e−y)g′(y) + g(y + log(1/p))− g(y).

In other words, − logX decreases at rate p(1 − e−y) at time t if − logXt equals y

and increases by log(1/p) at the times of a Poisson process. Note that Xt
t→∞−−−→ 0

iff − logXt
t→∞−−−→∞.

We start with the case p < p∗. Here, we can couple the process − logX with a
process U = (Ut)t≥0 with generator

GUg(y) = −pg′(y) + g(y + log(1/p))− g(y)

by using the same Poisson processes for − logX and U . Since 1− e−y ≤ 1, we have
that Ut ≤ − logXt. However, we can write U as

Ut = U0 − pt+ log(1/p)Pt
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for some unit-rate Poisson process P = (Pt)t≥0 and by the law of large numbers for

Poisson processes (i.e. Pt

t

t→∞−−−→ 1 almost surely), we see that Ut
t→∞−−−→ ∞ almost

surely, if log(1/p) > p or p < p∗. Since Ut ≤ − logXt, this implies − logXt
t→∞−−−→∞

or Xt
t→∞−−−→ 0, as claimed.

Now, we turn to the case p > p∗. First, we have to prove ergodicity of − logX
(which is equal to ergodicity of X ). Let Tz := T− logX

z := inf{t ≥ 0 : − logXt = z}.
According to Davis (1993), Theorem 3.10, we have to show that (i) there is z ≥ 0
such that E[Tz| − logX0 = z] < ∞ and (ii) P(Tz < ∞| − logX0 = x) = 1 for all
x ≥ 0.

Let z be large enough such that

pz := p(1− e−z) > log(1/p).

We define
S(z,z+log(1/p)] := inf{t : z < − logXt ≤ z + log(1/p)}.

Then, E[S(z,z+log(1/p)]|− logX0 = x] <∞ for all x ≤ z. Indeed, the probability for
at least z/ log(1/p) jumps in some small time interval of length ε > 0 is positive.
After the first such time interval we can be sure that S(z,z+log(1/p)] has occurred.
By finitness of first moments of geometric distributions, E[S(z,z+log(1/p)]|−logX0 =
x] < ∞ follows. By a restart argument, we have to show that E[Tz| − logX0 =
x] < ∞ for all z < x ≤ z + log(1/p), which will be done by using a comparison
argument. For this, let R = (Rt)t≥0 be a process with generator

GRg(y) = −pzg′(y) + g(y + log(1/p))− g(y).

If z < R0 = − logX0 ≤ z + log(1/p), then – using the same Poisson processes for
− logX and R – we have that Tz ≤ TRz := inf{t ≥ 0 : Rt = z} since p(1−e−y) ≥ pz
for y ≥ z. Since (Rt − R0 + t(pz − log(1/p)))t≥0 is a martingale and TRz < ∞
almost surely, we have by optional stopping that E[R0 − RTRz ] = R0 − z = (pz −
log(1/p))E[TRz ], hence E[Tz| − logX0 = x] ≤ log(1/p)/(pz − log(1/p)) < ∞. It is
now straight-forward to obtain the properties (i) and (ii) and we see that − logX
is ergodic. In particular, − logX∞ <∞, i.e. X∞ > 0 almost surely.

By the ergodic Theorem, we have that 1
t

∫ t
0

1 − Xsds
t→∞−−−→ 1 − E[X∞]. This

can be used when we study the martingale
(
− logXt + logX0−

∫ t
0

log(1/p)− p(1−
Xs)ds

)
t≥0

. By dividing by t and ergodicity, we see that

0 = lim
t→∞

1

t
log(X0/Xt)−

1

t

∫ t

0

log(1/p)− p(1−Xs)ds

= − log(1/p) + p(1−E[X∞]),

i.e.

E[X∞] = 1− 1
p log(1/p).

Now, since E[G− logX f(X∞)] = 0, we find that for f(x) = e−kx

0 = E[kp(1−X∞)Xk
∞ +Xk

∞(pk − 1)]

= −pkE[Xk+1
∞ ] + (pk + pk − 1)E[Xk

∞]

or

E[Xk+1
∞ ] =

pk + pk − 1

pk
E[Xk

∞] =
(

1− 1− pk

pk

)
E[Xk

∞].



700 F. Hermann and P. Pfaffelhuber

By induction, we see that

E[Xk
∞] =

(
1− 1

p log
(

1
p

))
·
k−1∏
`=1

(
1− 1− p`

p`

)
.

Last, we consider the case p = p∗. Let X
(p)
t be the Markov process with generator

(3.7) for a specific value of p. If p 7→ X
(p)
0 is constant, we can couple these processes

by using the same jump times such that X
(p)
t ≤ X(p′)

t for p < p′. Therefore,

0 ≤ E[lim sup
t→∞

X
(p∗)
t ] ≤ inf

p>p∗
E[lim sup

t→∞
X

(p)
t ] = inf

p>p∗
E[X(p)

∞ ]

= inf
p>p∗

(
1− 1

p log
(

1
p

))
= 0.

Hence, lim supt→∞X
(p∗)
t = limt→∞X

(p∗)
t = 0, almost surely. �

3.3. Martingales, the Gamma function and a recursion. We prepare some facts
needed in the proofs of Theorems 2.9 and 2.14.

Lemma 3.4 (Asymptotics for the Gamma function). Let n0 ≥ 0 and a > −t0.
Then,

n−1∏
k=n0

k + a

k
=

Γ(n+ a)

Γ(n)
· Γ(n0)

Γ(n0 + a)

n→∞∼ naΓ(n0)

Γ(n0 + a)
.

Proof : The first identity follows by iterating the functional equation xΓ(x) = Γ(x+
1) and for the asymptotics see e.g. Abramowitz and Stegun (1992), 6.1.46. �

Lemma 3.5 (Martingale estimates). Let X = (Xn)n=n1,n0+1,... be a non-negative,
integrable stochastic process, adapted to a filtration F := (Fn)n=n0,n0+1,..., F∞ :=

σ
( ∞⋃
n=n0

Fn
)

and x0 := E[Xn0
] > 0. Moreover, let a > −n0 and assume that

E [Xn+1|Fn] =
(

1 +
a

n

)
Xn

for all n = n0, n0 + 1, ... Then, the following holds:
(1) The process M = (Mn)n≥n0

defined by Mn0
= Xn0

and

Mn = Xn ·
n−1∏
k=n0

k

k + a

is an F-martingale and the expectations of the Xn hold

E[Xn] = x0 ·
n−1∏
k=n0

k + a

k

n→∞∼ x0Γ(n0)

Γ(n0 + a)
· na. (3.8)

(2) There is a non-negative random variable X∞ ∈ L1(F∞) with E[X∞] ≤
x0Γ(n0)/Γ(n0 + a) such that

n−aXn
n→∞−−−−→ X∞ almost surely.

(3) If, in addition to 2., E[Xr
n] = O(nar) for some r > 1, then the convergence

also holds in Lr and thus P(X∞ > 0) > 0.
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Proof : By the assumptions and its definition it is easy to see thatM is a martingale.
Thus, the equality in (3.8) follows by induction and the asymptotic expansion is a
consequence of Lemma 3.4.

Since M is non-negative, it converges almost surely to some random variable
M∞ ∈ L1(F∞) with E[M∞] ≤ E[Mn0

] and hence,

n−aXn = n−aMn ·
n−1∏
k=n0

k + a

k

n→∞−−−−→M∞ ·
Γ(n0)

Γ(n0 + a)
=: X∞

almost surely. The convergence is also in Lr if M is Lr-bounded. We compute,
using E[Xr

n] ≤ cnar and Lemma 3.4,

sup
n

E[Mr
n] = sup

n
E[Xr

n]
( n−1∏
k=n0

k

k + a

)r
≤ sup

n

Γ(n0 + a)rcnar

Γ(n0)rc′nar
<∞,

which shows the assertion. In particular, M converges in L1 which gives us
E[M∞] > 0 concluding the proof. �

Lemma 3.6 (Recursions). Let n0 > 0, a > −n0, ε > 0 and f, g : {n0, n0 +1, . . .} →
(0,∞), satisfying

f(n+ 1) =
(

1 +
a

n

)
f(n) +

g(n)

n
(3.9)

for all n ≥ n0. Then, for n→∞

(1) If g = O(na−ε), then f = Θ(na).

(2) If g = O(na), then f = O(na log n), and if g = Ω(na), then f = Ω(na log n).

(3) If g = O(na+ε), then f = O(na+ε), and if g = Ω(na+ε), then f = Ω(na+ε).

Proof : At first note that from Lemma 3.4 and the positivity of g we easily obtain
f = Ω(na) in any case. Iteration of (3.9) gives us

f(n) = f(n0)

n−1∏
k=n0

(
1 +

a

k

)
+

n−1∑
k=n0

g(k)

k

n−1∏
`=k+1

(
1 +

a

`

)

=

n−1∏
k=n0

k + a

k
·

(
f(n0) +

n−1∑
k=n0

g(k)

k

k∏
m=n0

m

m+ a

)
. (3.10)

Lemma 3.4 provides constants c0, c1, c2 > 0 which hold

(3.10) ≤ c0na
(
f(n0) +

n−1∑
k=n0

g(k)

k
c1k
−a
)
≤ c2na

n−1∑
k=n0

g(k)

ka+1
. (3.11)

Now 1. and the first parts of 2. and 3. follow immediately by considering a suitable
integral as upper bound for the sum. Lastly, note that Lemma 3.4 also provides
constants c0, c1, c2 which satisfy the respective lower bounds in (3.11), such that
the remaining claims follow analogously. �

Corollary 3.7. If, in Lemma 3.6, g is O(nb), then f = o
(
nmax{a,b}+ε) for all

ε > 0.
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4. Proof of Theorem 2.7

4.1. A time-continuous partial duplication graph. It will be helpful to have a time-
continuous version of G.

Definition 4.1 (Partial duplication random graph PDt). Let p ∈ [0, 1]. We define
the following random graph process – called time-continuous partial duplication
random graph or PDt graph – G = (Gt)t ≥ 0 with Gt = (Vt, Et), where Gt is
the graph at time t with vertex set Vt and (undirected) edge set Et ⊆ {{v, w} :
v, w ∈ Vt, v 6= w}. Starting in some G0 = (V0, E0), every v ∈ Vt gives rise at
rate 1 + 1/|Vt| to a duplication event. Upon such an event, a new node v′ /∈ Vt− is
created and every edge connected to v (i.e. every e ∈ Et− with e = {v, w} for some
w ∈ Vt−) is copied at time t with probability p, i.e. {v′, w} ∈ Et with probability p,
independently of all other edges.

We define as in Definition 2.3 the degree distribution Fk(t) := Fk(Gt) and
F ◦k (t) := F ◦k (Gt) and its probability generating function Hq(t) := Hq(Gt) and
H◦q (t) := H◦q (Gt).

Remark 4.2 (Connection between PDn and PDt). (1) We abuse notation here
and use (Gt)t≥0 for the time-continuous PDt graph while (Gn)n=n0,n0+1,... is the
time-discrete PDn graph. Of course, these two processes are closely connected. Let
τn := inf{t ≥ 0 : |Vt| = n} Then, (Gτn)n=n0,n0+1,... ∼ (Gn)n=n0,n0+1,...

(2) The choice of the rate 1 + 1/|Vt| for initiating a duplication event seems
unnatural. It will however turn out that this choice simplifies our line of argument;
see the next proposition.

We now derive an important relationship for H◦q (t).

Proposition 4.3 (Evolution of H◦q (t)). For G = (Gt)t≥0 and H◦(t) as above,

d

dt
E[H◦q (t)] = E

[
− pq(1− q) d

ds
H◦s (t)

∣∣∣
s=q

+H◦1−p+pq(t)−H◦q (t)
]
.

Remark 4.4. Later, it will be useful to define x := 1 − q and H̃x(t) := Hq(t) in
order to obtain

d

dt
E[H̃◦x(t)] = E

[
px(1− x)

d

dx
H̃◦x(t) + H̃◦px(t)− H̃◦x(t)

]
. (4.1)

In particular, note that the right hand side is reminiscent of (3.7).

Proof : We have already seen the evolution of n 7→ E[Hq(n)] in Proposition 3.1.
From this, we derive, since the total rate for a duplication event at time t is |Vt|+1,

E[Hq(t+ dt)] = E
[
Hq(t)(1− (|Vt|+ 1)dt)

+ dt · (|Vt|+ 1)
(
Hq(t)− pq(1− q)

d

ds
H◦s (t)

∣∣∣
s=q

+H◦1−q+pq(t)
)]
.

From this, we obtain

E[H◦q (t+ dt)] =E
[
H◦q (t)(1− (|Vt|+ 1) · dt) + dt · (|Vt|+ 1)

( |Vt|
|Vt|+ 1

H◦q (t)

− 1

|Vt|+ 1
pq(1− q) d

ds
H◦s (t)

∣∣∣
s=q

+
1

|Vt|+ 1
H◦1−q+pq(t)

)]
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= E
[
H◦q (t) + dt ·

(
− pq(1− q) d

ds
H◦s (t)

∣∣∣
s=q

+H◦1−q+pq −H◦q (t)
)]
.

�

4.2. A duality relationship between X and G. Now, we make clear why we need the
auxiliary process X from Subsection 3.2. Here, we borrow ideas from the notion of
duality of Markov processes; see Chapter 4.4 in Ethier and Kurtz (1986).

Recall that two Markov processes G = (Gt)t≥0 (which will be the PDt-graph
below) and X = (Xt)t≥0 (which will be the piecewise-deterministic process from
Subsection 3.2) with state spaces E and E′ are called dual with respect to the
function H : E × E′ → R if

E[H(Gt, x)|G0 = g] = E[H(g,Xt)|X0 = x] (4.2)

for all g ∈ E, x ∈ E′. (In our application, H will be the moment generating
function of the degree distribution of the PDt-graph evaluated at 1 − x.) When
one is interested in the process G, this relationship is most helpful if the process X
is easier to analyse than the process G. Moreover, frequently, the set of functions
{H(., x) : x ∈ E′} is separating on E such that the left hand side of (4.2) determines
the distribution of Gt. In this case, the distribution of the simpler process X
determines via (4.2) the distribution of G, so analysing G becomes feasible. (In
our application, however, {H(., x) : x ∈ E′} is only separating on the space of
degree distributions and hence (4.2) will determine the degree distribution of the
PDt-graph.)

There is no straight-forward way how to find dual processes, but they arise
frequently in the literature; see Jansen and Kurt (2014) for a survey. Examples
span reflected and absorbed Brownian motion, interacting particle models such as
the voter model and the contact process, as well as branching processes.

Proposition 4.5 (Duality). Let X = (Xt)t≥0 be a Markov process with state space

[0, 1] with generator as given in (3.7) and H̃◦x(t) :=
∑∞
k=0 F

◦
k (t)(1 − x)k as above.

Then,

E[H̃◦x(t)|G0] = E[H̃◦Xt
(0)|X0 = x].

Proof : On a probability space where X and the PDt-graph are independent, com-
bining (4.1) and (3.7),

d

ds
E[H̃◦Xt−s

(s)|G0, X0 = x] = 0.

The result then follows since s 7→ E[H̃◦Xt−s
(s)] is constant. �

4.3. Proof of Theorem 2.7. We start with the case p ≤ p∗. Here, we know from

Lemma 3.3 that Xt
t→∞−−−→ 0 almost surely. Hence, using Proposition 4.5, for q ∈

[0, 1) and x := 1− q,

lim
n→∞

E[H◦q (n)] = lim
t→∞

E[H◦q (t)] = lim
t→∞

E[H̃◦x(t)] = lim
t→∞

E[H̃◦Xt
(0)|X0 = x]

= E[H̃◦0 (0)] = E[H◦1 (0)] = 1.

In particular, since by (3.1)

E[H◦0 (n+ 1)|Fn] = E[F ◦0 (n+ 1)|Fn] =
n

n+ 1
F ◦0 (n) +

1

n+ 1

∑
`≥0

F ◦` (n)(1− p)`
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≥ F ◦0 (n) = H◦0 (n),

(H◦0 (n))n=0,1,2,... is a bounded sub-martingale and thus converges almost surely to
1. By the monotonicity of the probability generating function, we also obtain the
stated uniform convergence result.

The case p > p∗ can be treated similarly, but Xt does not converge almost surely
to a constant. Hence, in this case with X∞ from Lemma 3.3 we can compute

lim
n→∞

E[H◦q (n)] = lim
t→∞

E[H̃◦Xt
(0)|X0 = x] =

∞∑
k=0

F ◦k (n0)E[(1−X∞)k]

=

∞∑
k=0

F ◦k (n0)

k∑
`=0

(
k

`

)
(−1)`E[X`

∞]

=

∞∑
`=0

(−1)`E[X`
∞]

∞∑
k=`

(
k

`

)
F ◦k (n0)

= 1−
∞∑
`=1

S◦` (n0)

`!
(−1)`−1E[X`

∞].

Now by Lemma 3.3, the result follows.

5. Proof of Theorems 2.9 and 2.14

Proof of Theorem 2.9: We start with 1. where we make use of Proposition 3.1 and
Lemma 3.5. For the almost sure convergence in (2.1), we use Lemma 3.5.2 with
a = kpk−1, and for (2.2), we use (3.8). We will set aside the L2 convergence for
now.
The proof of 2. is a bit more involved since the recursions from Proposition 3.1 for
Sk involve both, Sk and Sk−1. But considering the quantity

Qk(n) :=

k∑
`=1

a`S`(n)

where, recalling that the empty product is 1,

a` :=

k−1∏
m=`

m(m+ 1)

k −m+ pk−1 − pm−1
,

we obtain a fitting recursion as follows:

E[Qk(n+ 1)|Fn] =

k∑
`=1

a`

((
1 +

p`+ p`

n

)
S`(n) +

p`(`− 1)

n
S`−1(n)

)

=
(

1 +
pk + pk

n

)
Sk(n) +

k−1∑
`=1

S`(n)

((
1 +

p`+ p`

n

)
a` +

p`(`+ 1)

n
a`+1

)

=
(

1 +
pk + pk

n

)
Sk(n) +

k−1∑
`=1

a`S`(n)

(
1 +

p`+ p`

n
+
pk − p`+ pk − p`

n

)

=
(

1 +
pk + pk

n

)
Qk(n).
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Thus, by Lemma 3.5.2 there are random variables Sk(∞) satisfying

n−(kp+pk)Qk(n)
n→∞−−−−→ Sk(∞) almost surely. Since n`p+p

`

= o
(
nkp+p

k)
for all

` < k and (2.2) provides the asymptotics of S1(n) = 2C2(n), inductively the almost
sure convergence in (2.3) follows.

Now, writing Q1(n) = S1(n) as well as Q2(n) = S2(n) + 2
pS1(n), we have from

Lemma 3.5

E[S2(n)] = E[Q2(n)]− 2

p
E[Q1(n)]

= Q2(n0)

n−1∏
k=n0

k + 2p+ p2

k
− 2

p
Q1(n0)

n−1∏
k=n0

k + 2p

k

and (2.4) follows.
For the L2 convergece in (2.1) first consider the number of pairs of k-cliques at

time n, 1
2Ck(n)↓2. Now let Ck,`(n) be the number of `-pairs at time n, that is pairs

of k-cliques which share exactly ` nodes. (e.g. two disjoint cliques form a 0-pair
and a (k − 1)-pair of k-cliques is a (k + 1)-clique with an edge missing.) Thus, we
obtain

1
2Ck(n)↓2 =

(
Ck(n)

2

)
=

k−1∑
`=0

Ck,`(n). (5.1)

Supposing there is an `-pair of k-cliques at time n, there are four ways for new
pairs to arise during the next time step:

1) First of all, every new clique forms a (k − 1)-pair with the clique it was
duplicated from, since they only do not share the new node. As (3.4) shows,

this happens kpk−1

n Ck(n) times on average during the next time step. In the
next 3 cases we will ignore those events.

2) One of the 2(k − `) not-shared nodes is chosen and the one clique of the pair
it is contained in is duplicated. Then, since the new clique retains the ` nodes
which are part of the non-duplicated clique of the pair, a new `-pair is formed.

Corresponding probability: 2(k−`)
n pk−1

3) One of the ` shared nodes is chosen and both cliques of the pair are duplicated.
Obviously, this way a new `-pair arises. Additionally the other two new pairs
(one original and the copy of the other original respectively) are (` − 1)-pairs,
since those cliques do not share the new node.

Corresponding probability: `
np

2k−`−1

4) One of the ` shared nodes is chosen, but only one of the cliques is duplicated.
Similarly to 3), a new (` − 1)-pair arises. (Since the duplication of one clique
fails, so does the creation of the new `-pair and one of the (`− 1)-pairs.)

Corresponding probability: `
n · 2p

k−1(1− pk−`) = `
n2pk−1 − `

n2p2k−`−1

Following this, for ` ≤ k − 2 we obtain

E[Ck,`(n+ 1)− Ck,`(n) | Fn] =
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=
2(k − `)pk−1 + `p2k−`−1

n
Ck,`(n) +

2(`+ 1)pk−1

n
Ck,`+1(n) (5.2)

and

E[Ck,k−1(n+ 1)− Ck,k−1(n) | Fn]

=
2pk−1 + (k − 1)pk

n
Ck,k−1(n) +

kpk−1

n
Ck(n). (5.3)

Using (5.1) we compute

E[Ck(n+ 1)↓2 − Ck(n)↓2 | Fn] = 2

k−1∑
`=0

E[Ck,`(n+ 1)− Ck,`(n) | Fn]

=
k−1∑
`=0

2(k − `)pk−1 + `p2k−`−1

n
2Ck,`(n) +

k−1∑
`=1

2`pk−1

n
2Ck,`(n) +

2kpk−1

n
Ck(n)

=
2kpk−1

n
Ck(n)↓2 +

2

n

k−1∑
`=0

`p2k−`−1Ck,`(n) +
2kpk−1

n
Ck(n)

=
2kpk−1

n
Ck(n)2 +

2pk

n

k−1∑
`=1

`pk−1−`Ck,`(n)

and thus

E[Ck(n+ 1)2]

=
(

1 +
2kpk−1

n

)
E[Ck(n)2] +

2pk

n

k−1∑
`=1

`pk−1−`E[Ck,`(n)] +
kpk−1

n
E[Ck(n)].

Since E[Ck(n)] = O
(
nkp

k−1)
= O

(
n2kpk−1−kpk−1)

, for the use of Lemma 3.6 it

suffices to show the existence of a δ > 0 holding
∑
` E[Ck,`(n)] = O

(
n2kpk−1−δ).

From (5.3) it follows, that

E[Ck,k−1(n+ 1)] =
(

1 +
2pk−1 + (k − 1)pk

n

)
E[Ck,k−1(n)] +

1

n
O
(
nkp

k−1)
3.7
= O

(
nmax{2pk−1+(k−1)pk,kpk−1}+ε

)
for arbitrarily small ε > 0. Using Corollary 3.7 again, inductively, (5.2) implies

E[Ck,`(n)] = O
(
n

max
`≤m≤k

(
2(k−m)pk−1+mp2k−m−1

)
+ε̄)

and hence
k−1∑
`=1

E[Ck,`(n)] = O
(
n

max
1≤m≤k

(
2(k−m)pk−1+mp2k−m−1

)
+ε̃)

(5.4)

for arbitrarily small ε̃ > 0. Since

max
1≤m≤k

(
2(k −m)pk−1 +mp2k−m−1

)
≤ max

1≤m≤k
(2k −m)pk−1 = 2kpk−1 − pk−1,

letting ε̃ = pk−1/2, (5.4) satisfies the conditions of Lemma 3.6.1, we finally obtain

E[Ck(n)2] = O
(
n2kpk−1)

and Lemma 3.5.3 applies. �
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Proof of Theorem 2.14: For (2.5), we will show that

P(Dk(n) ≤ `|Dk(n0) = a) =
∑̀
m=a

(−1)m−a
(
`

m

)(
m− 1

a− 1

) n−1∏
j=n0

(
1− pm

j

)
(5.5)

which implies (2.5).
We fix n0, k and a and set

Φ`(n) := P(Dk(n) ≤ `|Dk(n0) = a).

We will prove (5.5) by induction over n. For n = n0, we have that Φ`(n0) = 1`≥a.
In addition, the right hand side of (5.5) gives for n = n0∑̀

m=a

(−1)m−a
(
`

m

)(
m− 1

a− 1

)
=
∑
m

(−1)m−a
(

(`− a)− (−a)

m

)(
−1 +m

−a+m

)
= (−1)`−a

(
−1

`− a

)
=

(
`− a
`− a

)
= 1`≥a

according to Riordan (1979), (8) and (ii) in Chapter 1. This shows that (5.5) holds
for n = n0 and all `. In order to apply induction, we get the recursion

Φ`(n+ 1) = Φ`(n)− p`

n
P(Dk(n) = `|Dk(n0) = a)

= Φ`(n)− p`

n
·
(

Φ`(n)− Φ`−1(n)
)

since Dk increases by at most one in every time step.
Assume that (5.5) holds for an n for all `. Then, using the recursion, and the

assumption for n,

Φ`(n+ 1) =
∑̀
m=a

(−1)m−a
(
`

m

)(
m− 1

a− 1

) n−1∏
j=n0

(
1− pm

j

)

−
∑̀
m=a

(−1)m−a
p`

n

(( `
m

)
−
(
`− 1

m

))(m− 1

a− 1

) n−1∏
j=n0

(
1− pm

j

)

=
∑̀
m=a

(−1)m−a
(
`

m

)(
m− 1

a− 1

) n−1∏
j=n0

(
1− pm

j

)

− pm

n
·
∑̀
m=a

(−1)m−a
(
`

m

)(
m− 1

a− 1

) n−1∏
j=n0

(
1− pm

j

)

=
∑̀
m=a

(−1)m−a
(
`

m

)(
m− 1

a− 1

) n∏
j=n0

(
1− pm

j

)
and we are done.

For (2.6), we will use Lemma 3.5. We have that

Dk(n+ 1)−Dk(n) =

{
1, with probability pDk(n)

n ,

0, with probability 1− pDk(n)
n
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since Dk increases by one iff one neighbor of vk and the respective edge are copied.

Using Lemma 3.4 and that Dk(n)
n→∞−−−−→∞ we obtain for r > −1 ≥ −Dk(n0) that

Dk(n)r ∼ Γ(Dk(n) + r)

Γ(Dk(n)

almost surely, where the right hand side satisfies

E
[Γ(Dk(n+ 1) + r)

Γ(Dk(n+ 1))

∣∣∣Fn]

=
pDk(n)

n
· Γ(Dk(n) + 1 + r)

Γ(Dk(n) + 1)
+
(

1− pDk(n)

n

)
· Γ(Dk(n) + r)

Γ(Dk(n))

=
Γ(Dk(n) + r)

Γ(Dk(n))
·
(pDk(n)

n
· Dk(n) + r

Dk(n)
+ 1− pDk(n)

n

)

=
Γ(Dk(n) + r)

Γ(Dk(n))
·
(

1 +
pr

n

)
.

Thus, Lemma 3.5.2 shows

n−rp
Γ(Dk(n) + r)

Γ(Dk(n))
∼
(
n−pDk(n)

)r n→∞−−−−→ Dk(∞)r

almost surely. Furthermore, Lemma 3.5.1 gives us the Lr-boundedness for r >
1 we need for Lemma 3.5.3. Hence, we obtain the Lr-convergence of n−pDk(n)

and (2.7). Lastly, Lemma 3.5.1 also shows the convergence of (n−pDk(n))−
1
2 to an

integrable and thus finite random variable which delivers the almost sure positivity
of Dk(∞). �
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