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Abstract. We show that all geodesic rays in the uniform infinite half-planar quad-
rangulation (UIHPQ) intersect the boundary infinitely many times, answering
thereby a recent question of Curien. However, the possible intersection points
are sparsely distributed along the boundary. As an intermediate step, we show
that geodesic rays in the UIHPQ are proper, a fact that was recently established
in Caraceni and Curien (2015) by a reasoning different from ours. Finally, we argue
that geodesic rays in the uniform infinite half-planar triangulation behave in a very
similar manner, even in a strong quantitative sense.

1. Introduction

The uniform infinite half-planar quadrangulation UIHPQ provides a natural
model of (discrete) random half-planar geometry. It arises as a local limit of finite-
size quadrangulations with a boundary, when the number of quadrangles and the
size of the boundary tend to infinity in a suitable way. We give more precise state-
ments with references in the next section.

The full-plane equivalent of the UIHPQ is the so-called uniform infinite planar
quadrangulation (UIPQ), which was introduced by Krikun (2005), after Angel and
Schramm (2003)’s pioneering work on triangulations. It is proved in Curien et al.
(2013) that geodesic rays (i.e., infinite one-ended geodesics) starting from the root
in the UIPQ satisfy a confluence property towards infinity (and, as it is also shown,
towards the root): Almost surely, there exists an infinite set of vertices such that
every geodesic ray emanating from the origin passes through all the vertices of this

Received by the editors May 15, 2016; accepted November 12, 2016.

2010 Mathematics Subject Classification. 05C80, 60J80.

Key words and phrases. Uniform infinite half-planar quadrangulation, geodesic rays, boundary.

Acknowledgment of support. The research of EB was supported by the Swiss National Science
Foundation grant P300P2_.161011, and performed within the framework of the LABEX MILYON
(ANR-10-LABX-0070) of Université de Lyon, within the program “Investissements d’Avenir”
(ANR-11-IDEX-0007) operated by the French National Research Agency (ANR). GM is a member
of Institut Universitaire de France, and acknowledges support of the grant ANR-14-CE25-0014
(GRAAL) and of Fondation Simone et Cino Del Duca.

1123


http://alea.impa.br/english/index_v13.htm
https://doi.org/10.30757/ALEA.v13-40

1124 E. Baur, G. Miermont and L. Richier

set. In other words, geodesic rays in the UIPQ are essentially unique, in the sense
that the Gromov boundary of the UIPQ contains only a single point.

In a recent work Caraceni and Curien (2015), Caraceni and Curien showed that
the analog coalescence property of geodesics holds in the half-planar model UIHPQ:
There is with probability one an infinite sequence of distinct vertices, which are all
hit by every geodesic ray emanating from the root. Our main result of this paper
shows that this property holds in the UIHPQ in a very strong sense.

Theorem 1.1. Almost surely, every geodesic ray in the UIHPQ hits the boundary
infinitely many times. More specifically, almost surely there is an infinite sequence
of distinct vertices all lying on the boundary of the UIHPQ, such that every geodesic
ray passes through every point of this sequence except maybe for a finite number.
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FIGURE 1.1. Artistic drawing of the UIHPQ (here, for simplicity,
with a simple boundary) with two distinguished geodesics emanat-
ing from the root vertex p called the mazimal or leftmost geodesic
(in red) and the minimal or rightmost geodesic (in green). All geo-
desic rays starting from p lie in between the maximal and minimal
geodesic. Their joint intersection points with the boundary are
thus intersection points for any geodesic ray emanating from p.

After having introduced some notation, we will outline our strategy for proving
Theorem 1.1 at the beginning of Section 3. In Section 4, we obtain more precise
information on the set of times (and points) of intersection with the boundary, see
Proposition 4.3. More specifically, by analyzing two distinguished geodesics starting
from the root vertex, we will construct an infinite set of boundary vertices, which
contains all possible points of intersection with any geodesic ray. See Figure 1.1.
Our construction will imply that geodesic rays hit both “sides” of the boundary
(see Section 2.2.3 for the exact terminology) infinitely many times; however, the
time between two hits has a logarithmic tail. Section 5 contains an extension of our
results to the uniform infinite half-planar triangulation UIHPT, see Theorem 5.3.

The UIHPQ considered here has a non-simple boundary, meaning that the bound-
ary vertices cannot be connected by a simple curve. In other words, there are pinch-
points along the boundary. The analog of the UIHPQ with a simple boundary, which
we denote by UIHPQ® (see Angel and Curien, 2015; Curien and Miermont, 2015,
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and Angel, 2005 for the triangular analog), can be constructed by a pruning proce-
dure applied to the UIHPQ, cf. Curien and Miermont (2015), and this construction
will allow us to argue in Corollary 3.7 that our results on geodesics transfer to the
UIHPQ™.

The uniform infinite planar quadrangulation UIPQ contains a distinguished infi-
nite sequence of vertices, the so-called spine. This sequence can be interpreted as
a self-avoiding infinite path in the UIPQ, which is, as it is shown in Curien et al.
(2013), almost surely hit only a finite number of times by the collection of geodesic
rays starting from the root. This result should be seen in comparison with our
Theorem 1.1, see Remark 3.5 for more on this. In particular, in the UIPQ, there
are self-avoiding paths of infinite length which are finally avoided by any geodesic
ray. As our arguments leading to Theorem 1.1 show, such paths do not exist in the
UIHPQ: Any infinite self-avoiding path in the UIHPQ must cross any geodesic ray
infinitely often.

The fact that the spine is eventually left by the collection of geodesic rays ema-
nating from the root is a key step in Curien et al. (2013) to prove the confluence
property towards infinity, and our approach borrows to some extent from the ideas
presented there.

We will rely on a Schaeffer-type encoding of the UIHPQ going back to Schaeffer
(1998); Bouttier et al. (2004); Curien and Miermont (2015) in terms of uniformly
labeled critical Galton-Watson trees, which are attached to the down-steps of a
two-sided simple random walk. The key observation for Theorem 1.1 is expressed
in Proposition 3.1. There, we find the exact distribution of the minimal label,
which is attained in the trees attached to an excursion above —1 of the simple
random walk. A related quantity is studied in Lemma 14 in Curien et al. (2013),
see also Remark 3.5 below. In the last section, we argue that a variant of the
Schaeffer-type encoding can be used to construct the uniform infinite half-planar
triangulation UIHPT, and then a similar strategy works for the UIHPT as well,
resulting in Theorem 5.3. In particular, somewhat surprisingly, we will see that
geodesic rays in the UIHPT behave in a quantitatively very similar manner.

2. The uniform infinite half-planar quadrangulation

The UIHPQ is an infinite random quadrangulation with an infinite boundary,
which comes equipped with an oriented root edge lying on the boundary. Let us
first briefly recall the notion of planar quadrangulations with a boundary.

2.1. Planar maps and quadrangulations with a boundary. A finite planar map is a
finite connected graph properly embedded in the two-dimensional sphere, that is,
in such a way that edges intersect only at their endpoints. As usual, we regard
two such maps as being equivalent, if they differ only by a homeomorphism that
preserves the orientation of the sphere.

The faces of a planar map are the connected components of the complement of
the union of its edges. The degree of a face is the number of its incident edges,
where, as usual, an edge that lies entirely in a face is counted twice.

A planar map is a quadrangulation with a boundary, if all faces have degree
four, except possibly one face called the root face, which can have an arbitrary
(even) degree. The edges surrounding the root face form the boundary of the
quadrangulation. We do not require the boundary to be a simple curve.



1126 E. Baur, G. Miermont and L. Richier

The size of a quadrangulation with a boundary is the number (possibly infinite)
of its non-root or inner faces. The size of the boundary, which is also called the
perimeter of the map, is given by the degree of the root face. Note that since
quadrangulations are bipartite, the perimeter is an even number.

Provided the perimeter is non-zero, in which case the map is seen as a single
vertex map, we root such a quadrangulation by specifying one distinguished oriented
edge on the boundary, in such a way that the root face lies to the right of that edge.
The origin of the root edge is called the root vertex. We write Q; for the set of all
finite (rooted) quadrangulations with a boundary. Of course, if the perimeter of an
element g € Qy is equal to four, we may view ¢ more naturally as a quadrangulation
without boundary.

Equipped with the usual graph distance dg,, the vertex set V(m) of a rooted
planar map m is a pointed metric space. Let us next recall the so-called local
topology on the set Q (or more generally, on the set of finite rooted maps).

Given a rooted planar map m with root vertex g, we denote by Ball,.(m) for » > 0
the combinatorial ball of radius r, that is, the submap of m containing all vertices
v of m with dg(0,v) < r, together with the edges of m connecting such vertices.
Now if m and m’ are two rooted planar maps, the local distance between m and m’
is defined as

dmap(m,m’) = (1 + sup{r > 0 : Ball,(m) = Ball,(m)})"".

The local topology is the topology induced by dmap, and we write Q for the com-
pletion of Qf with respect to dmap. Elements in o\Q ¢ are called infinite quadran-
gulations with a boundary.

The UIHPQ Q% is a random (rooted) infinite quadrangulation with an infinite
boundary, which can be obtained as a local limit of random elements in Qy, in the
following ways.

Firstly, let Q¢ be uniformly chosen among all rooted quadrangulations of size
n with a boundary of size 20, ¢ € N = {1,2,...}. Curien and Miermont proved
in Curien and Miermont (2015) that with respect to dmap,

Q- Q% 0% - Q%

n—oo T —00
Here, Q7 is the so-called uniform infinite planar quadrangulation with a boundary
of length 20, see Curien and Miermont (2015) for a precise description. Similar
convergences hold if Q7 is chosen uniformly among all rooted quadrangulations
of size n with a simple boundary of size 20, that is, if Q7 is a uniform rooted
quadrangulation of the 20-gon with n inner faces. In this case, the limiting map
when first n — oo and then ¢ — oo is the uniform infinite planar quadrangulation
with a simple boundary UIHPQ(S), as alluded to above (see Angel and Curien, 2015
for details).

Secondly, the UIHPQ Q% arises also as the local limit of random elements in
Q¢ when the boundary grows simultaneously with the size of the map. More
specifically, assume that o, grows much slower than n. Then it is shown in Baur
et al. (2016) that

o (d) 00
Qn” — Qoo .

n—oo
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In Curien and Miermont (2015), the UIHPQ Q22 is constructed from an extended
Schaeffer-type mapping applied to a so-called uniform infinite treed bridge of infinite
length, and we will recall and work with this construction in the following section.

A new construction of the UIHPQ which is better suited to study the metric balls
around the root has recently been given in Caraceni and Curien (2015). Although
we will work with the first construction, we adopt some notation from there.

In the following section, we introduce certain deterministic objects which encode
(non-random) infinite quadrangulations via a Schaeffer-type mapping. Randomized
versions of these objects will then encode the UIHPQ.

2.2. A Schaeffer-type construction.

2.2.1. Well-labeled trees and infinite treed bridges. Recall the definition of a (rooted)
finite planar tree 7, see, e.g., Le Gall and Miermont (2012). We denote by |7| the
number of its edges and write V(1) for the vertex set of .

A well-labeled tree (7,¢) is a pair of a rooted planar tree 7 and integer labels
£ = (£(u))uev(r), which are attached to the vertices of 7, according to the following
rule: Whenever u,v € V(7) are connected by an edge, then |¢(u) — £(v)| < 1.

For k € Z, we let LT be the set of all finite well-labeled plane trees, whose root
is labeled k. The set of all well-labeled plane trees is denoted LT = UgezLTy.

As in Curien and Miermont (2015) or Caraceni and Curien (2015), we will work
with so-called treed bridges. We will only need their infinite versions, which we
define next. First, an infinite bridge is a two-sided sequence b = (b(7) : ¢ € Z) with
b(0) =0 and |b(i+ 1) —b(é)| = 1. An index i for which b(i 4+ 1) = b(i) — 1 is called
a down-step of b. The set of all down-steps of b is denoted DS(b).

Definition 2.1. We call infinite treed bridge a pair (b, T), where b is an infinite
bridge and 7' is a mapping from DS(b) to LT with the property that T'(i) € LTy,
i.e., T(i) is a well-labeled tree whose root has label b(7).

We write TB™>° for the set of all infinite treed bridges which have the property
that inf;cz, b(i) = —oo and infiez_ b(i) = —o0, where Z, = {0,1,2,...}, Z_ =
{...,—2,-1,0}.

2.2.2. The Bouttier-Di Francesco-Guitter mapping. We now construct a mapping
®, which we call the Bouttier-Di Francesco-Guitter mapping, that sends elements in
TB™ to infinite quadrangulations with an infinite boundary. The uniform infinite
half-planar quadrangulation UIHPQ is then obtained from applying ® to a random
element (boo, Teo) in TB™*°) whose law we specify in the next section.

We stress that usually (e.g., in Curien and Miermont, 2015, or in Caraceni and
Curien, 2015), the Bouttier-Di Francesco-Guitter mapping is first introduced as a
bijection between finite versions of treed bridges and (rooted and pointed) finite-
size quadrangulations with a boundary. Then it is argued that the mapping can
be extended to elements in TB™°°, yielding infinite quadrangulations. However,
since we will here only work with infinite quadrangulations, we directly describe
the mapping as a function

®:TB™> — Q.

Let (b,T) € TB™. It is convenient to work with the following representation
of (b,T) in the plane: We identify b = (b(¢) : ¢ € Z) with the labeled bi-infinite
line, which is obtained from connecting the neighboring vertices of Z by edges and
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assigning to ¢ € Z the label b(¢). Then we graft a proper embedding of the tree
T(i) for i € DS(b) to the vertex ¢ in the upper half-plane, by identifying the root
of T'(i) with the vertex i. See Figure 2.2. Note our small abuse of notation: We
denote here by i € DS(b) an index of b as well as a vertex of the representation of
b.

The vertex set of such a representation of (b, T) is therefore given by Z and the
union of the tree vertices of T'(¢), i € DS(b), where we interpret the root of T'(¢) and
the vertex ¢ € Z as one and the same vertex. Following the wording of Caraceni
and Curien (2015), we call the vertices which belong to the trees T'(i), i € DS(b),
real vertices, and the vertices j € Z above which no trees are grafted, i.e., the
vertices 7 that do not correspond to down-steps of b, phantom vertices. A corner of
(the representation of) (b,T) is an angular sector between two consecutive edges,
in the clockwise contour or left-to-right order. Henceforth we shall consider only
real corners, i.e., corners that are incident to real vertices and lie in the upper half-
plane. By a small abuse of notation, given a vertex v € T'(i), i € DS(b), we shall
simply write ¢(v) for its label, and we let ¢(c¢) = £(v) if ¢ is a corner incident to wv.

e een )
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FIGURE 2.2. The Bouttier-Di Francesco-Guitter mapping. Vertex
0 of Z is indicated by an arrow. The visible trees are attached
to the vertices —2, 1 and 2 of Z, which are labeled 0, 1 and O,
respectively. These vertices correspond to down-steps of the bridge.

We now consider the bi-infinite sequence of corners (¢;);cz obtained from order-
ing the real corners of (b, T') according to the left-to-right order, where we agree that
¢o is the left-most real corner with label 0, which appears in T'(¢), i € DS(b) N Z.
See again Figure 2.2. For ¢ € Z, we denote by succ(c;) the first corner among
Cit1,Cit2, - .., which has label £(c;) — 1. Note that such a corner always exists, since
infiez, b(i) = —co. We call succ(c;) the successor of i. As indicated on the right
side of Figure 2.2, we draw for every ¢ € Z an arc between the corner ¢; and succ(c;)
in the upper half-plane, in such a way that arcs do only possibly intersect at their
endpoints. We finally erase the phantom vertices and the edges that stem from
the representation of (b,T"). We obtain a locally finite quadrangulation M with
an infinite boundary 0M, which we root in the (oriented) edge that corresponds
to the first step of the bridge to the right of 0. A detailed explanation of this
correspondence is given in the next section. In other words, the root face that lies
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to the right of the root edge has infinite degree, and the edges surrounding it form
the (infinite) boundary M of the map.

We let ®((b,T)) = M be the rooted infinite quadrangulation with an infinite
boundary obtained in this way.

2.2.3. Identification of the boundary. If we identify Z with the bi-infinite line by
connecting neighboring vertices with an edge, then the Bouttier-Di Francesco-
Guitter mapping establishes a one-to-one correspondence between the edges of Z
and those of the boundary OM of M = ®((b,T)), as it is visible in Figures 2.2
and 2.3. More precisely, for a given (b, T'), we define a function

p:Z— V(OM)

as follows: Vertex i € Z of the representation of b (which is labeled b(7)) is mapped
to itself, if ¢ is a real vertex. By definition, this is the case if and only if i € DS(b).
Otherwise, we search for the next real corner to the right of ¢ which has label
b(¢), and define (i) to be the vertex incident to it. Then the edge {i,i + 1} of Z
corresponds to a unique edge from ¢(i) to ¢(i + 1) of OM, and the assignment is
one-to-one. Instead of being more formal, we refer to Figure 2.3.

We will call o(Z_) and ¢(Zy) the left and right part of the boundary of M,
respectively. Of course, OM = (Z_) U p(Z4+). Moreover, M is rooted in the
(oriented) edge between ¢(0) and ¢(1).

2.2.4. Construction of the UIHPQ. Recall the definition of LTy, for k € Z. Let py be
the Boltzmann measure on LTy given by pp((7,£)) = 127171/2. The measure py, is
the law of a so-called uniformly labeled critical geometric Galton-Watson tree. This
means that if (7,¢) is distributed according to pg, then 7 has the law of a Galton-
Watson tree with a geometric offspring distribution of parameter 1/2. Moreover,
conditionally on 7, £ : V(1) — Z is the random labeling of 7 such that the root
receives label k, and independently for each edge e = {u,v} of 7, £(u) — £(v) is
uniformly distributed over {—1,0,1}. We refer, e.g., to Le Gall and Miermont
(2012, Section 2.2) for more details.

Let boo = (boo (i) : @ € Z) be a two-sided simple symmetric random walk with
boo(0) = 0, that is, (boo(?) : 7 € Z4) and (boo(d) : 4 € Z_) are two independent
simple symmetric random walks starting from 0.

Conditionally on by, define a (random) function T, : DS(bs) — LT by letting
T (i) for i € DS(bs) be a well-labeled tree with law py,__(;), independently in
i € DS(beo)-

We call the random element (b, Too) of TB™° a uniform infinite treed bridge.

Definition 2.2. The UIHPQ Q% = (V(QX), dgr, 0) is the random infinite quad-
rangulation with an infinite boundary obtained from applying the Bouttier-Di
Francesco-Guitter mapping to a uniform infinite treed bridge (boo, Teo), i-€-,

We will write £ (v) for the label of a vertex v € V(T (7)), ¢ € DS(bw ), which we
also identify with a vertex of Q% via the Bouttier-Di Francesco-Guitter mapping.
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2.3. Geodesics in the UIHPQ. Let G = (V(G), E(G)) be a graph. A geodesic in G is
a path of possibly infinite length, which visits a sequence (or chain) of vertices v =
(7(0),7(1),...) of G such that for i, j € Z for which  is defined, dg((7),7(j)) =
li — j|. An infinite geodesic v with v(0) = v € V(G) is called a geodesic ray started
at v.

Note that we view a geodesic as a sequence of concatenated edges. In particular,
if G is a non-simple graph as in the case of the UIHPQ, a geodesic is usually not
specified by its vertices alone.

Let (b,T) € TB™™ be an infinite treed bridge. We will now define particular
geodesic rays in the infinite quadrangulation ®((b,T")). Recall the definition of
the sequence of corners (c¢;);ez obtained from ordering the real corners of (b, T)
according to the contour order, as well as the definition of the successor-mapping;
see Section 2.2.2. We write succ(? for the i-fold composition of the successor-
mapping and denote by V(c¢) the vertex incident to the corner c.

Definition 2.3 (Maximal geodesic). Let (b,T') € TB™*°, and let v € V/(®((b,T)))
be a vertex of the quadrangulation associated to (b, T"). Let ¢ be the leftmost (real)
corner of (b,T) incident to v. Then the mazimal geodesic started at v is given by
the chain of vertices incident to the iterated successors of ¢, that is, 72, (0) = v,
and then for i € N,

Yinax (i) = V(suce(c)),
and with edges connecting succ” (c) to succ**t1)(¢) for i € Z,.

We will simply write ypax for the maximal geodesic started from the root p.
See Figure 2.3 for an illustration of the maximal geodesic in the UIHPQ. It is a
direct consequence of the definition that maximal geodesics finally coalesce. Indeed,
consider the first vertex incident to a corner ¢; for ¢ € Z., which is visited by v5 .-
Let v’ be the first vertex incident to a corner ¢;j, j > i, which is visited by Ymax-
Then v’ is also visited by 2 ..., and from that moment on, 72 .. and Jmax coincide.

Of special interest is the class of proper geodesics, which generalizes the construc-
tion of maximal geodesics, in the sense that the connecting edges do not necessarily
emanate from leftmost corners.

Definition 2.4 (Proper geodesic). A geodesic ray v is proper, if for every i € Z,
((y(i+1)) = £(v(i) — 1.

It turns out that in the UIHPQ, almost surely every geodesic ray is proper.
This fact has already been proved in Caraceni and Curien (2015), but we will
give an alternative proof in Corollary 3.6. In particular, it makes sense to call
maximal geodesics leftmost geodesics. In Section 4, we shall also consider minimal
or rightmost geodesics.

3. Proof of the main results

To begin with, let us describe our general strategy for proving Theorem 1.1.
We will first show that the maximal geodesic Ymax hits both parts of the boundary
of the UIHPQ infinitely many times, see Proposition 3.4 below. For that purpose,
we will study the sets R, and R_ of intersection times of ~,.x with the right and
left part of the boundary. It turns out that both R, and R_ are regenerative
sets. Moreover, we find a representation of these sets in terms of the infinite treed
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F1cure 2.3. The UIHPQ and its maximal geodesic vy ax-

bridge encoding the UIHPQ, which involves the minimal label attained in the trees
between two subsequent minima of the bridge. The crucial step is formulated as
Proposition 3.1 below, where we compute the exact distribution of such a minimal
label. Once we know that vyax touches both parts of the boundary infinitely
often, we also know that every geodesic ray must cross ymax infinitely many times.
From this, we readily deduce that any geodesic ray is proper, as it was already
shown in Caraceni and Curien (2015, Proposition 4.8) for geodesic rays started
from the root vertex, by means different from ours. Since any proper geodesic ray
lies finally in between vypax and the boundary, an appeal to Proposition 3.4 allows
us to conclude the proof of Theorem 1.1.

We first introduce some more notation. Let (b,T") € TB™* be an infinite treed
bridge. For j € Z,, we write

Hj(b) = inf{m € Z, : b(m) = —j}, Hj =sup{m € Z_:b(m)=—j}
for the first time b hits —j to the right of zero or to the left of zero, respectively.
Note that both H;(b) and H}(b) are finite for each j € Z., almost surely.
Moreover, for i € DS(b), we write ; = ({;(u)),ecv (1) for the labels of the
vertices of the tree T'(i) € LTy(;). Recall that if r is the root vertex of T'(i), then

£;(r) = b(7).
For j € Z,, we let

Ai((b,T)) = - in ¢ j d
i (6, T)) DS (O)NHy, Hy 11) <u€31(1;1(i)) Z(u)H)’ o
A ((b,T)) = - in ¢ j
5((b,T)) ieDS(b)I;Iﬁl[%I}erUH]() <u€gl(1%1(i)) (U)+J>,

where H; = Hj(bs), and H} = H}(bs). In words, A;((b,T)) € Z is the abso-
lute value of the minimal label shifted by |b(H;)| = j in the trees T'(i) that are
attached to the infinite bridge b on [H;, H;41). A similar interpretation holds for
A((b,T)). We simply write A; and A’ for the random numbers A;((beo, 7))
and A’ ((boo, Teo)), where (bso, Ti) is a uniform infinite treed bridge as specified
in Section 2.2.4. The strong Markov property shows that A; has the same law as
Ao, and A’ has the same law as A, for each j € Z;. As we show next, their
distributions can be computed explicitly.
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Proposition 3.1. We have for m € N,
P(Ag >m) = m;—&—l’ and P(Ay >m) = p——E

Proof: We first consider Ag. The statement for A{, will then follow from a sym-
metry argument. Let m € N. We set g(m) = P(Ag < m). Moreover, let
h(m) = P(min,cy () €(u) > —m), where (7,¢) is distributed according to po; see
Section 2.2.4. We decompose the path of b on [0, H) into its excursions above 1,
as shown in Figure 3.4. For A to be smaller than m, the labels in every excursion
above 1 have to be larger than —(m+ 1), while the minimal label of the tree grafted
to the last step of the excursion has to be larger than —m.

A standard application of the strong Markov property shows that these excur-
sions, shifted by —1, have the same law as b on [0, Hy), so that the quantity g(m)
satisfies the recursive equation

oo k
glom) = ghim) 3 (Gatm+ 1)) == (3.)

pas 2—g(m+1)
We stress that (3.1) is in spirit of the arch decomposition as described in Section

V.4.1 of Flajolet and Sedgewick (2009); see also (2.1) and (2.2) of Bouttier and
Guitter (2012) for related decompositions.

A

A
2 2
l -
\ ; Ry
- \ / il h(m) B
T—g(m+1)

\J

Do

—m

FIGURE 3.4. The decomposition of the probability g(m).

From the Bouttier-Di Francesco-Guitter bijection for quadrangulations of a finite
size, see, e.g., Bouttier et al. (2004), well-labeled trees are in bijection with rooted
and pointed quadrangulations, the pointed vertex being at distance min, ey () £(u)—
1 from the root. In Bouttier and Guitter (2012), the generating function for quad-
rangulations with weight g4 per face and distance less than or equal to m between
the root and the pointed vertex, called the distance-dependent two-point function
and denoted R,,, is proved to satisfy (see Bouttier and Guitter, 2012, (6.18))

R - p A=y =y
Ayt (1 - ymt2)
where R = R(g4) = lim;,—y00 R is the generating function of rooted and pointed
quadrangulations with weight g4 per face, and y = y(g4) is the solution of the
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so-called characteristic equation (see Bouttier and Guitter, 2012, (6.17)). In our
special case corresponding to a critical weight per face given by g4 . = 1/12, the
solution of the characteristic equation simplifies to y = 1. Taking the limit y 1T 1 in
the last display, this implies

m(m + 3)
R,=R———F———.
(m+1)(m+2)
Since the partition function is given by R, we therefore get
R 2
h =P - in / <m-1]="=1-— . 3.2
(m) ( (S fu) s m ) R (m+ 1)(m +2) (3:2)

By the way, we note that h(m) as already been calculated before in Chassaing and
Durhuus (2006, Proposition 2.4); see Remark 3.3 below. Letting f(m) = P(Ag >
m) =1 — g(m), we obtain from (3.1) and the last display
2
m)—fm+1)+ fm)f(im+1) = —————— - forallm e N.
Fm) = flm-+1) + fm) 1) = e

Our claim about Ag now follows from the following

Lemma 3.2. Consider the non-linear system

fm) = f(m+1)+ f(m)f(m+1) = m for all m € N,
f(0) =1, (3.3)
lim, 00 f(mMm) =0.
Then the only solution f of (3.3) with f(m) € (0,1) for all m € N is given by

f(m)=1/(m+1), m € Z,.

Proof: Tt is elementary to check that f(m) = 1/(m + 1), m € Z, is a solution
of (3.3) with f(N) C (0,1), so it remains to show uniqueness. We first prove the
following statement:
If f1,fo:Zy — (0,1) are two solutions of (3.3) such that f1(m) < fa(m)
for some m € N, then f1(m + k) < fo(m + k) for all k € Z..
Indeed, assume fi(m) < fa(m) for some m € N. We show that then also f1(m+1) <
fa(m +1). Since f; is a solution of (3.3), we can use (3.3) to express fi(m + 1) in
terms of fi(m) and obtain
(m+1)(m +2)fi(m) — 2 - (m+1)(m +2)fa(m) — 2
(m+1)(m+2)(1 = fi(m)) ~ (m+1)(m+2)(1 = f2(m))
An iteration of the argument shows fi(m + k) < fa(m + k) for all k € Z; and
hence (3.4).

Now assume there are two solutions f1, fo : Z+ — (0,1) of (3.3) with f; # fo.
Then there exists € > 0 and m € N such that fa(m)— fi(m) > € or fi(m)— fa(m) >
¢. By symmetry, we may assume the former. Since both f; and f; solve (3.3), we
obtain for their difference

fa(m) = fi(m) = (fa(m + 1) — fi(m + 1)) + fa(m) fa(m +1) — f1(m) f1(m + 1)(: 0)~
3.5

(3.4)

film+1) = = fa(m+1).

By assumption, fo(m) — f1(m) > €, which implies by (3.4) that
fa(m)fo(m +1) — fi(m) fr(m+ 1) > 0.

Therefore, we obtain from (3.5) that also fa(m + 1) — f1(m + 1) > e. Tterating the
argument, we see lim,, ., fo(m) > ¢, a contradiction to lim,, o fo(m) = 0. O
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FIGURE 3.5. The symmetry argument between excursions of b.

We continue the proof of Proposition 3.1 and turn to the distribution of Af. By
time-reversal, (boo(7) : H] < i < 0) has the same law as (bso(i) : 0 < i < Hy).
Moreover, down-steps 4 of (boo(i) : Hy < i < 0) belong to DS(bs ), and as shown
in Figure 3.5, independent trees with law py,__(;) are assigned to them. However,
Hj — 1 is an up-step of the bridge, where no tree is attached to, while H; — 1 is a
down-step. As a consequence, if we modify T, by attaching an independent tree
with law pg to Hj — 1, the whole process (b, Too) has the same law on [0, H] as
on [H{,0]. Thus, for every m € Z,

P(Ag < m) =P(Ay < m)h(m),
which gives from the first part of the proposition that for every m € N,

1
P(A] > = —.
(A > m) mL3

This concludes the proof of Proposition 3.1. O

Remark 3.3. Note that as an intermediate step in the proof of Proposition 3.1,
we explicitly compute the distribution of a minimal label in a well-labeled tree
(1,¢) with law pg, cf. Display (3.2). As it was pointed out to us by the referee,
the calculation of h(m) was already performed in Chassaing and Durhuus (2006,
Proposition 2.4). In Curien et al. (2013, Lemma 12), it is (only) shown that the
tail distribution behaves asymptotically like 2/m? as m tends to infinity. The
methods of Curien et al. (2013) rely on the fact that the label function ¢ has its
continuous analog in the so-called Brownian snake. We stress that for our purpose,
the asymptotic tail behavior of the minimal label of (7, ¢) would not provide enough
information, see Remark 3.5 below.

We let QL = ®((boo, Too)) be the UIHPQ defined in terms of a uniform infinite
treed bridge (bso,Tx). Recall the identification of Z with 0QZ wvia the function
©. Our presentation is now similar to that of Curien et al. (2013, Section 3.2.2).
From now on, vyax will denote the maximal geodesic in the UIHPQ emanating from
the root p. By construction of the Bouttier-Di Francesco-Guitter mapping and by
definition of ypax, a vertex ¢(j) € 0QL for j € Z, is hit by vymax if and only if
it is incident to the first (real) corner in contour order starting from ¢y with label
Lo (0(4)), i.e., if and only if

min{lo. ;(v) : v € V(T (4)), i € DS(bso), 0 <7 < j —1} > boo(j),

where £, ; denotes the labeling of T, (i). In particular, if we introduce the set of
intersection times of the maximal geodesic with the right boundary of the UIHPQ,

Ry = {j €Zy : 'YmaX(j) € @(Z_;,.)},
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we have
Ry =Z\ |J (.5 + 4.
Jj=0
See Figure 3.6 for an illustration. It follows from the last display that R, can be
represented as the set {Go+G1+---+G,, : n € Z; }, where Go = 0, and (G; : i € N)
is a sequence of i.i.d. variables with

Gi=inf{i>0:max{j+A;:0<j<i—1} <i}. (3.6)
In particular, R, is a discrete regenerative set, and the renewal theorem shows that
the asymptotic frequency of R, is given by

. #R.A,.ﬂ{l,,?’l} 1
Rl = lim n EiGh]

(3.7)

~
/max

FIGURE 3.6. Alternative representation of the UIHPQ and its max-
imal geodesic Ymax as depicted in Figure 2.3. (Trees are represented
by the striped almonds, whose lower endpoints indicate the mini-
mal label in the corresponding tree.)

We will also study the set of intersection times of the maximal geodesic with the
left part of the boundary,

R_ = {] € Z—i— : Vmax(j) € SD(Z—)}

Using again the construction of the UIHPQ wvia the Bouttier-Di Francesco-Guitter
mapping, we can express this set as

R- =7\ (.5 + 4}
Jj=0
Similarly to R, we have R_ = {G(+G| +---+G), : n € Z}, where again G, = 0,
and (G} : 4 € N) is an i.i.d. family of random variables specified by

Gy=inf{i>0:max{j+A}:0<j<i—1} <i}. (3.8)

Note that (G} : i € N) is also independent of (G; : i € N). Indices j € R_ corre-
spond to (certain) up-steps of the bridge and thus to phantom vertices. Then, the
associated vertex ¢(7) is incident to the first (real) corner in contour order starting
from ¢ with label ¢o(¢(j)) and is therefore visited by the maximal geodesic.

We now formulate the key proposition of this paper.
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Proposition 3.4. We have fori € N,

PlieRy) = and P(ieR_)=

i+ 1 i+3

Also, almost surely, both Ry and R_ are infinite sets, and the mazimal geodesic
Ymax Nits the left as well as the right part of the boundary of the UIHPQ infinitely
many times. However, this happens with asymptotic frequency zero: |Ry| =0 and
|R_| =0 almost surely.

Proof: The arguments for Ry and R_ are entirely similar. Let us first consider
R+. By Proposition 3.1 in the last equation, we have for i € N

Plie Ry) =P(max{j+A;:0<j<i—1} <)

[

i—1
H P(Ag>i—j)=[[(1-P(A =)

j=1

1
= In{1l——— = .
= exp z n < ) —
We deduce from the last dlsplay that
E[#R4] = Z P(i € Ry) =

From this, we readily infer that #R+ = 0o almost surely: Indeed, if the contrary
were true, then necessarily G; = oo with some probability o > 0. However, then the
number of points in R, different from 0 is geometrically distributed with parameter
a, a contradiction to E[#R ] = co. The fact that |R| = 0 follows from (3.7) and
Proposition 3.1. Concerning R_, we simply have to replace Ag by Aj in the above
argumentation. An application of Proposition 3.1 shows P(i € R_) = 3/(i + 3),
and the remaining statements for R_ follow from the same reasoning as above. [

Albeit being infinite, the sets R4 and R_ are rather sparse. We will make this
more precise in Section 4.

Remark 3.5. The last proposition should be compared with Proposition 15 of Curien
et al. (2013). Proposition 3.1 has its counterpart in Lemma 14 of Curien et al.
(2013), where it is shown that the quantity corresponding to P (Ag > m) behaves
asymptotically like 2/m for m tending to infinity. The multiplicative factor being
larger than 1, this implies in the context considered there that the number of
intersections between the maximal geodesic and the spine of the UIPQ is finite
almost surely. Here, in the setting of the UIHPQ, we find an exact formula for
P (Ap > m), which came somewhat as a surprise and is the key observation that
leads to Proposition 3.4. We emphasize that an equivalent of the form P (Ag > m) ~
1/m would not be sufficient to deduce that R4 is an infinite set, and the same for
R_.

For the intersection of the independent regenerative sets R and R_, we have
forie Zy

3

(i+1)(i+3)
and with arguments similar to those in the proof of Proposition 3.4, we get that the
left and right boundary of the UIHPQ intersect finitely many times. Actually, we

(’L€R+OR )
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have here obtained a new proof of the fact shown in Curien and Miermont (2015)
that the UIHPQ contains a well-defined core, that is an infinite submap homeomor-
phic to the half-plane. In Curien and Miermont (2015), the well-definedness of the
core was obtained by a limiting argument, starting from an infinite quadrangula-
tion with a simple boundary of a finite (randomized) size, while we prove this result
directly in terms of the UIHPQ.

Note that since any maximal geodesic finally coincides with v,.x, Proposition 3.4
implies that any maximal geodesic has infinitely many intersection points with the
left and right part of the boundary of the UIHPQ. We now prove that all geodesic
rays in the UIHPQ are proper. Theorem 1.1 will then readily follow. The following
result was already established in Proposition 4.8 of Caraceni and Curien (2015) for
geodesic rays started from the root vertex, by similar but different arguments.

Corollary 3.6 (see Proposition 4.8 of Caraceni and Curien, 2015). Almost surely,
all geodesics rays in the UIHPQ QX = ®((bso, Tx)) are proper.

Proof: Here, we propose a simple proof that uses the result of Proposition 3.4.
Let 7 be an infinite self-avoiding path in )%. Since by the above proposition, the
maximal geodesic ymax intersects the left and right boundary infinitely often, the
path 7 also intersects ymax infinitely often, as indicated by Figure 3.7.

Let v be a geodesic ray in Q. To simplify notation, we assume that ~ starts
at the root g (if not, one should consider the maximal geodesic started from ~(0)).
The above remark applied to n =  shows that v and ~y,ax intersect infinitely many
times. Let (u; : ¢ € Z4) be the sequence of vertices at which v and Yax intersect,
with ug = ¢ and such that u; is visited before u; if ¢ < j. Then, for every i € Z,
by definition of the maximal geodesic,

dgr (i1, i) = loo(Ui) — loo(Uit1)-
Because labels differ at most by one between neighboring vertices of the map, the
length of the segment of v between u; and u;41 is at least oo (u;) — loo(Uir1) =
dgr(Uit1,u;). Therefore, equality must hold since v is a geodesic, and this implies
that labels always decrease by one as v goes from u; to u;y1, meaning that ~ is
proper on this segment. This finishes the proof. (Il

The proof of Theorem 1.1 is now an immediate consequence of our foregoing
considerations.

Proof of Theorem 1.1: For the purpose of the proof, we will assume that the UIHPQ
is given in terms of a uniform infinite treed bridge, Q% = ®((bso,Two)). Let v be
a geodesic ray. By Corollary 3.6, we can assume that - is proper. Hence each
edge of v connects a real corner of (bso,Teo) to its successor. Now let ng € Z
be the first instant when the maximal geodesic emanating from v = ~(0) hits the
left part of the boundary. We have seen above that ng is finite almost surely. By
definition, ., always connects leftmost corners to their successors. In particular,
the embedding of + in the upper half-plane (in terms of the Bouttier-Di Francesco-
Guitter mapping) lies in between (2, (n) : n > ng) and the boundary of the map,
see Figure 3.8. Otherwise said, vertices of the right part of the boundary which are
visited by (78.x(n) : n > ng) are also visited by any other proper geodesic started
at v. Since v, coincides after a finite number of steps with ymax, the maximal
geodesic started from the root g, Proposition 3.4 concludes the proof. ([
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FIGURE 3.8. The geodesic v lies in between (v.(n) : n > ng)
and the boundary of the map.

Corollary 3.7. Theorem 1.1 remains true if the UIHPQ is replaced by its analog
with a simple boundary, the UIHPQ®).

Proof: We give only a sketch proof, since the statement is essentially a conse-
quence of the pruning construction of the UIHPQ™® out of the UIHPQ), as explained
in Curien and Miermont (2015) (see, in particular, Proposition 6 in this work).
Roughly speaking, after removing the finite quadrangulations which hang off from
the pinch-points of the boundary of the UIHPQ), a core consisting of a unique infinite
quadrangulation with an infinite simple boundary remains, which has, after a root-
ing operation, the law of the UIHPQ®. Since geodesics started from the core of the
UIHPQ do not visit the finite quadrangulations that are attached to the pinch-points
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of the boundary (the pinch-points would be visited twice), Theorem 1.1 applies to
the UIHPQ'™ as well. 0

4. Sparseness of the intersections with the boundary

From Theorem 1.1, we know that every geodesic ray in the UIHPQ hits the
boundary infinitely many times. The goal of this section is to show that these
hitting times and hitting points are, however, sparsely distributed, in a way that
we will make precise in Proposition 4.3 below.

For that purpose, recall that the sets Ry and R_ of intersection times of the
maximal geodesic with the right and left part of the boundary, respectively, admit
the representation

Ry ={Go+G1+ - +Gn:nely}, R_-={G,+G+ - +G,:nel},

where Gy = Gf, = 0, and the families (G; : i € N) and (G} : i € N) consist of i.i.d.
random variables specified by (3.6) and (3.8), respectively. We find the following
asymptotic behavior.

Lemma 4.1. For m tending to infinity, we have

1 , 1
mn®m’ 3mIn®m’
Proof: We first look at G1. For n € Zy, let uw, = P(n € Ry), fn = P(G1 =
n). Note that fo = 0 and ugp = 1. A classical decomposition (see, e.g., Section
XII1.3 in Feller, 1968) of u,, according to the smallest non-zero element in R, i.e.,
according to the value of G1, gives the recursive relation

Up = frup—1 + fon—o+ -+ faug, neN.

For the generating functions U(s) = > . uns™ and F(s) = ) -, fns", the last
relation implies B B

P(Gl Zm)N

1
1—F(s)’
Using that P(n € Ry) = 1/(n + 1), see Proposition 3.4, we obtain for 0 < |s| < 1
the expression U(s) = —(1/s)In (1 — s). Therefore,

1
F(s)=1—sln"! (1_3) , sl < 1.

Standard singularity analysis, see, e.g., (24) on page 387 of Flajolet and Sedgewick
(2009), yields the first claim. For G, we use that P(n € R_) = 3/(n+3), see again
Proposition 3.4. For the generating function H(s) = . P(G} = n)s", this gives
similarly to above the relation N

H(s) = 1— (5°/3) (m (113) Y s> T <l

Since 1—H(s) ~ (1/3)(1—F(s)) as s — 1, an application of Flajolet and Sedgewick
(2009, Theorem IV .4) finishes the proof of the second claim. O

U(s) = |s| < 1.

Remark 4.2. The above lemma should be compared with the asymptotics of the
returns to zero of a recurrent two-dimensional random walk S = (S, : n € Zy).
For concreteness, let us assume that S is the simple symmetric random walk on
72 started from zero. Let R be the regenerative set of return times to zero of S.
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One has the representation R = {Go+ G1 +---+ G,, : n € Z, }, where Gy = 0,
and (G; : i € N) are the waiting times between two consecutive returns. Then, as
m — 0o, we get the asymptotics (Spitzer, 1976, Chapter III, Section 16, Example
1)
]P’(mE’R)NL and P(G zm)wL
™n ! mln®m’

Coming back to geodesics in the UIHPQ, we note that Lemma 4.1 gives precise
quantitative information on the number of steps between two consecutive visits of
the boundary by the maximal geodesic Ypax- The distance measured along the
boundary between two consecutive times of intersection is bounded from below by
the number of steps of Yyax in between these times.

In the proof of Theorem 1.1, we have seen that any geodesic ray -y is finally
enclosed between Ynax and the boundary of the UIHPQ. A priori, this does not
exclude the existence of a geodesic ray that visits the boundary with a much higher
frequency than vy.x. We will now argue that this is not the case.

In this regard, it is convenient to introduce the minimal geodesic in the UIHPQ
emanating from the root o. Given (beo, 7o) and v a real vertex of (b, Too), We
write ¢(")(v) for the rightmost corner incident to v. Note that in the list of corners
(ci)icz as specified in Section 2.2.2, ¢(")(v) appears as the last corner incident to v
(in the lexicographical order).

The minimal geodesic Yy starting from g is then given by the chain of vertices
Ymin(0) = o, and for i € N,

amin(i) = V (suce (7 (in(i = 1)) )

The edge set of Ymin is given by the edges connecting (") (Ymin (7)) to () (Ymin (14+1))
fori € Zy.

Similarly to above, one defines for v, the (random) sets of intersection times
with the right and left part of the boundary, respectively,

Rl«tin = {.7 € Z-l- : Vmin(j) € SO(Z-&-)}) RTin = {.] € Z-‘r : ’Ymin(.j) € @(Z—)}'

The following symmetry argument shows that the random set R}™ (defined in
terms of ymin) has the same law as R_ (defined in terms of vyax). Consider the
mapping that associates to a (possibly infinite) rooted planar map m its “mirror”

, which is obtained from applying a symmetry with respect to any line of the
plane, and reversing the orientation of the root edge. This transformation is better
understood by seeing a planar map as a gluing of polygons: Then, the map s
obtained by reversing the orientation of the polygons forming m, and that of the
root edge. Now, it is seen that this transformation preserves the uniform measure
on quadrangulations with a fixed size and perimeter, and thus the law of the UIHPQ.
Finally, recall that the maximal and minimal geodesics started at the root vertex
are also the leftmost and rightmost geodesics, respectively, and are thus exchanged
by the “mirror” mapping. It follows that Rlﬁi“ and R_ have the same law, and, by
the same symmetry argument, R™™" has the same law as R .

As a direct consequence of the way edges are drawn in the Bouttier-Di Francesco-
Guitter construction of the UIHPQ, and of the fact that every geodesic ray is proper,
see Corollary 3.6, we notice that any geodesic ray ~y lies finally in between vyax and
Ymin- Indeed, this is the case from the first vertex on hit by - that is incident to a
corner ¢; with ¢ € Zy. See Figure 4.9 for an illustration. From the constructions of
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min

Ymax and Ymin, we see that R, is a subset of R, and similarly R™M is a subset
of R_.

FIGURE 4.9. The geodesic v (black bold) started at the leftmost
vertex labeled 2 is enclosed by min (green bold) and Ymax (red
bold) after it first hits the latter (at the topmost vertex labeled
-1).

We collect our observations in the following proposition, which should be read as
an extension to Theorem 1.1. For simplicity, we restrict ourselves to geodesic rays
emanating from the root vertex; see, however, the remark below the proposition.

Proposition 4.3. Almost surely, for any geodesic ray v = (y(i) : i € Z4) in the
UIHPQ Q2 = ®((boo, Too)) started from the root vertex, we have the inclusions

RyUR™M C{ieZi:~(i) € 0QT}CRM™UR_.

The random sets R4 and R™™ (as well as RY™ and R_) have the same law. The
distance § between two consecutive times in Ry (or R™™) exhibits the tail behavior
P(§ > m) ~ 1/Ilnm as m — oo, whereas the distance §' between two consecutive
times in RY™ (or R_) satisfies P(6" > m) ~ 1/(3Inm).

Remark 4.4. Let v = (v(i) : ¢ € Z4) be any geodesic ray in the UIHPQ (not
necessarily started from the root vertex), and let v be the first vertex to the right
of the root ¢ which is hit by both v and Ypax. Let n, n’ € Z4 such that y(n) =
Ymax (1) = v, and set j = n—n’'. Now consider the shifted geodesic 7, (i) = v(i+j),
i > max{0, —j}. On the event of full probability where v, Ymax and ymin are proper,
we have the inclusions

(R UR™™N\{0,...,n"} C {i > max{0,—j} :7;(i) € 0QX} C RT"UR_.

5. Extension to the uniform infinite half-planar triangulation and further
remarks

The uniform infinite half-planar triangulation UIHPT is an infinite triangulation
of the half-plane. A variation with a simple boundary (i.e., the triangular analog
to the UIHPQ®) was introduced by Angel (2005).

In this part, we will argue that the intersection times with the boundary of
geodesics in the UIHPT behave in way comparable to that in the UIHPQ. More
precisely, it turns out that the right part of the boundary is hit by the maximal
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geodesic started from the root with exactly the same frequency as in the UIHPQ,
whereas the distribution of the hitting times of the left part of the boundary un-
dergoes a slight change.

In order to avoid too much repetition, we will not treat the case of the UIHPT in
full detail. We will rather argue that the strategy developed for the UIHPQ applies
to the UIHPT as well, and then sketch how the computations have to be modified.
Our discussion will therefore lack a certain rigor, but should enable the reader to
fill in the remaining details. In order to make a clear distinction to the UIHPQ,
some of our quantities considered in this section will be decorated with the tilde
sign.

Triangulations, or more generally (rooted and pointed) planar maps with pre-
scribed face valences, can be encoded in terms of labeled trees called mobiles,
see Bouttier et al. (2004). Let us briefly recall the encoding: First, label each
vertex of the map by its distance from the pointed vertex minus the distance from
the pointed vertex to the origin of the root edge. Put a new vertex without label
in the center of each face. Now walk around each face F' in the clockwise order,
and look at each of its incident edges. If for an edge e, the label decreases by 1
when walking clockwise around F', then connect the endpoint of e with the larger
label to the (unlabeled) vertex in the middle of F. If the labels of the endpoints of
e are both equal to n, say, add a flagged vertex with flag n in the middle of e and
connect the flagged vertex with two new edges to the two central vertices of the
faces incident to e. In the third case, that is, for edges where the labels increase
when walking around the face F', do nothing. See Figure 5.10. By removing all the
original edges of the map together with the pointed vertex, one obtains a mobile,
i.e., a plane tree with three types of vertices: labeled and unlabeled vertices, and
flagged vertices.

Note that by construction, flagged vertices have degree 2, and unlabeled vertices
are in one-to-one correspondence with the faces of the map. Moreover, the degree of
the corresponding face equals twice the number of labeled vertices plus the number
of flagged vertices that are connected to the unlabeled vertex in the mobile. In
particular, an unlabeled vertex associated to a triangular face has either three
flagged vertices or a flagged vertex and a labeled vertex incident to it.

FIGURE 5.10. The construction of a mobile. The black dots repre-
sent unlabeled vertices of the mobile. They are put in the centers
of the faces of the map. On the left, the bold line represents a mo-
bile edge associated to an edge of the map, which connects a vertex
labeled n to a vertex labeled n — 1. On the right, the bold line
represents a mobile edge associated to an edge connecting two ver-
tices with label n. The flagged vertex is represented by a lozenge
and receives label n, too.
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FIGURE 5.11. The rooting convention. The red arrow represents
the root edge of the map, and the green bold arrow is the associated
root edge of the mobile.

The root edge of a planar map allows to distinguish a root edge in the mobile, as
depicted in Figure 5.11. If the root edge of the map connects two vertices with label
0, see the right most case in Figure 5.11, it is convenient to regard the encoding
mobile as a pair of half-mobiles with root flag 0 each, i.e., mobiles which have one
distinguished flagged vertex of degree 1 called the root flag, which receives label
0. There is a bijection between rooted pointed planar maps on the one hand and
rooted mobiles and pairs of half-mobiles on the other hand. We refer to Bouttier
et al. (2004) and Bouttier and Guitter (2012) for more details.

In terms of generating functions, prescribing the number of faces of a certain
degree k amounts to attach a weight to each face of degree k. For our purpose, we
now specialize in triangulations corresponding to the critical weight sequence g =
93.c:03(k), where g3 o, = 271373/4 see, e.g., Miermont (2006). In this regard, let R,,
(or S,,) denote the corresponding generating function of rooted mobiles (or half-
mobiles) with root label (or root flag) 0, which have their labels all strictly larger
than —m and their flags all larger or equal to —m, cf. Bouttier and Guitter (2012).
Letting R = lim,;,— o0 Ry and S = lim,, o, Sy, an analysis of (6.2) in Bouttier
and Guitter (2012) shows that R = /3 and S = 3%/4 (vV3—1), but this will be
of no importance here. Note that R and S are the partition functions for rooted
mobiles with root label 0 and half-mobiles with root flag 0, respectively, subject to
gk = 93,cr03(k).

In order to motivate our construction of the UIHPT, let us first consider rooted
pointed triangulations with a boundary of perimeter n € Z;. This means that
all faces except the root face are triangles, the root face being incident to n edges
(loops and multiple edges are allowed). We choose such a triangulation m according

to the Boltzmann law p(m) = g;fg(m)/Z, where F'(m) denotes the set of faces of m
without the root face (which receives no weight), and Z is the normalizing partition
function. Denote by d the distance between the pointed vertex of m and the origin
of the root edge. Following Section 2.4 of Bouttier et al. (2004), we associate to the
map a (random) path (X[ (i) : 0 < i < n) that encodes the clockwise sequence of
distances minus d between the pointed vertex of the map and the vertices incident to
the root face, with X["(0) given by the origin of the root edge (so that X[ (0) = 0).

We decompose the associated mobile around the unlabeled vertex v lying in the
center of the root face of the map. Then each down- or level-step of X [™ corresponds
to a labeled or a flagged vertex, respectively, which is connected to v by an edge,
see Figure 5.10. By removing v and its incident edges, one obtains a sequence of
rooted mobiles and half-mobiles. More precisely, a down-step i of X" corresponds
to a rooted mobile with root label X [™(7), while a level-step i of X", that is, an i
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with X[ (i+1) = X[ (4), corresponds to a half-mobile with root flag X (i). This
decomposition is bijective. Letting n grow, this incites us to define the following
two-sided random walk. Let C' = 2v/R+ S, and consider by, = (bso (i) : i € Z) with
bso(0) = 0, such that the increments (boo (i 4+ 1) — boo (i) : i € Z) are ii.d. with
law

- 5 VR o - S

P (boo(z 4 1) — boo(i) = il) =, P (boo(z 1) — buo(i) = 0) ==,
and (boo (i) : i € Z_) is an i.i.d. copy of (bso(i) : i € Z,). One can show that for
fixed ¢ € N, there is the convergence

(X[”]([i]) L 0<i< e) % (Boo(i) L l<i< z) ,

with [¢] denoting the representative of ¢ modulo n in {0,...,n — 1}.

We proceed now similarly to the construction of the UIHPQ: Conditionally on
boo, we identify b., with Z equipped with the labels (Boo(z) 11 € Z), and graft
independently to each down-step i € DS(BOO) a mobile € in the upper half-plane
with root label bu (i), distributed according to the Boltzmann measure p?) () =

g?f C-r(e) /R (where ¢(6) denotes the set of unlabeled vertices of §). Moreover, writing

LS(bso) for the set of level-steps of bs,, we graft to each i € LS(bs,) independently
a half-mobile 8’ with root flag by (i), distributed according to p(*)(¢') = g:ffc'r(el)/s.
We obtain what we call a uniform infinite mobile bridge (BOO,TOO), where T is
now a collection of independent mobiles and half-mobiles associated to the down-
and level-steps of Boo, respectively.

Each realization of (BOO,TOO) is naturally embedded in the upper-half plane,

come with three types of vertices. We call here a labeled vertex of a mobile or a
half-mobile a real vertez , and a real corner (of the embedding) is a corner in the
upper half-plane incident to a real vertex. Note that flagged vertices are not real
vertices.

We write (¢;)iez for the sequence of real corners in the left-to-right order, again
with ¢ being the leftmost corner incident to the root vertex. As in the construction
of the UIHPQ, we now connect each real corner ¢; to its successor, that is the first
corner among ¢;i1,Cit2,... with label ¢(¢;) — 1. Additionally, we connect both
corners of the flagged vertices to the corresponding next real corner in the contour
order with the same label. See Figure 5.12 for an illustration.

We finally erase the unlabeled vertices and the flagged vertices, interpreting the
two outgoing arcs from a flagged vertex which we added as a single edge. We
also erase all the edges and non-real vertices that stem from the representation of
(BOO,TOO) in the plane. We obtain what we call the uniform infinite half-planar
triangulation UIHPT. The bi-infinite line Z can again be identified with the bound-
ary of the UIHPT. In particular, it makes sense to speak of the left or right part
of the boundary. We root the UIHPT according to the convention described in
Section 2.2.3.

Remark 5.1. We stress that the above construction does not make use of the par-
ticular form of the weight sequence and can therefore be carried through for maps
corresponding to other critical or sub-critical Boltzmann weights. For the choice
gr = (1/12)d4(k), we rediscover the construction of the UIHPQ as described in
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Section 2.2.2. Note that for bipartite maps, we have S = 0, i.e., there are no
half-mobiles.

We may now define maximal (and minimal) geodesics in the UIHPT. Note that
vertices of the UIHPT correspond to real vertices of the encoding. Analogously to
the UIHPQ, the maximal geodesic started at vertex v is given by the infinite chain
of vertices which are incident to the iterated successors of the leftmost real corner
¢ belonging to v.

FIGURE 5.12. The construction of the UIHPT from an infinite mo-
bile bridge, with its maximal geodesic Ymax-

Similarly, by starting from the rightmost corner, we define the minimal geodesic
emanating from v, and we write Fmax (Or Fmin) for the maximal (or minimal)
geodesic starting from the root vertex. Moreover, we let 7§,+ and R_ (or 7~2$i“ and
7@‘2“‘) denote the set of intersection times of Ymax (Or Jmin) With the right and left
part of the boundary, respectively.

For characterizing 7~2+ and R_ as regenerative sets, we may argue as in the case
of the UIHPQ. For j € Z, let

Aj = ) max — min  f;(u)+7 .
€D (boo )ULS (boo )N[H; Hyt1)  \u€V (Too (1))

Here, H; = H;(bs), and in hopefully obvious notation, T () is the mobile (in the
case i € DS(bs)) or half-mobile (in the case i € LS(bw)) grafted to the vertex 4,
and /;(u) for u € V(T (4)) represents its label. By replacing H; with H}, we define

A;- in a similar fashion.

Proposition 5.2. We have for m € N,

P<502m>:— and ]P’(ABZm):—.
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Proof: We first look at Ag. Let m € N. Put g(m) =1—P (AO > m). The arch

decomposition corresponding to (3.1) reads

-5 (B 0) o) £(2) 2%

k=0 \k’=0 ¢=0
B 1 1 VRR,
- ~ S'm 777
1—(1_2%@)9(7714—1)1_ = C R

see Figure 5.13. The formula for g is equivalent to

o)
QS
=

O.
}T“\f
=

FIGURE 5.13. The decomposition of the probability g(m).

~ ~ R’"L

m)| ——=———=-—-gm+1) | = . 5.1
i) (=~ ST atm+ 1)) = 6.1
We note along the way that the last expression is universal, in the sense that it
does not depend on the particular choice of the Boltzmann weights (gx)xen.

Back to the triangular case, by letting y 1 1 in (6.8) of Bouttier and Guitter
(2012), which corresponds to the choice of g3 = g3 cr, we obtain the relations
R, m(m+2) S

Ly 7_1793]%2 2
R (m+1)2° § S (m+1)(m+2)

m € N.

Since C' = 2V R+ S and 2g3 . R*/? = 1, see (6.7) of Bouttier and Guitter (2012),
Equation (5.1) turns into
3 1 ~ m(m + 2)
2 —_— Y — ]_ = —
§(m) ( * (m+1)(m+2) glm+ )> (m+1)2’

or, with f(m) =1 — g(m),

Fm) — Fm+ 1) + fm)fm 1) 4 MWL 1 (5.2)
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Qf course, the last display resembles very much Equation (3.3) for f, and in fact,
flm)=1/(m+1) is also a solution of (5.2). Rewriting (5.2) as
. 1)2f(m) — 1 1
fon 1y = T |
(m+1)2(1 = f(m)) (m+1)(m+2)
we check with the same arguments as in the proof of Lemma 3.2 that f(m) =
1/(m + 1) is the only solution of (5.2) with f(m) € (0,1) for m € N, f(0) =1 and

lim,, o0 f(m) = 0. This shows P(Ag > m) = 1/(m + 1), as claimed. The law of
0 is now computed as in the proof of Proposition 3.1, using

m(m + 2)
(m+1)%"

P(Ao<m):P(Ag<m>R—};:P(Ag<m)
O

With the last proposition at hand, we obtain with the arguments given in the

proof of Proposition 3.4 that

]P’(ieR+) :Z_%, ]P’(z'eR_) :i%,
In particular, we again deduce that 9.y hits both parts of the boundary in the
UIHPT infinitely many times. More precisely, comparing the last display with the
analogous results obtained for R, and R_, we conclude that the intersection times
of Amax Wwith the right part of the boundary have exactly the same distribution
as the corresponding times of ypax in the UIHPQ. On the contrary, the maximal
geodesic visits the left part of the boundary slightly more often in the UIHPQ than
in the UIHPT.

A symmetry argument similar to above shows that ﬁﬁi“ has the same law as
R_, and we have the inclusions Ry C RP™ and R™™ C R_. Using that Yy is
proper and hits both parts of the boundary infinitely many times, we deduce from
arguments very close to those in the proof of Corollary 3.6 that almost surely, all
geodesic rays in the UIHPT are proper. Finally, adapting the arguments leading to
Theorem 1.1 and Proposition 4.3, we arrive at the following theorem, whose details
of proof we leave to the reader. We write Q£ for the UIHPT constructed in terms

of an uniform infinite mobile bridge (beo, Tro)-

i€,

Theorem 5.3. On a set of full probability, the following holds in the UIHPT Qg
FEvery geodesic ray hits the boundary of the UIHPT infinitely many times. Moreover,
if v = (y(i) : i € Z4) is a geodesic ray emanating from the root vertex, we have the
inclusions

Ry UR™™ C {i € Zy (i) €0QT} CRMUR-_.
The random sets 7~3+ and R™» (as well as 7~€$i“ and 7~2_) have the same law. The

distance § between two consecutive times in Ry (or R™in ) exhibits the tail behavior
P(§ > m) ~ 1/Inm as m — oo, whereas the distance §' between two consecutive
times in R7™ (or R_) satisfies P(6' > m) ~ 1/(2Inm).

Concluding remarks. Angel constructed in Angel (2005) the uniform infinite
triangulation with an infinite simple boundary, and we expect that Theorem 5.3
can be transferred to the model of Angel by a pruning procedure, as in the case of
the UIHPQ®). Moreover, since the above construction of the UIHPT (or the UIHPQ)
can be extended to general limits of critical or sub-critical Boltzmann maps, the
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same methods can in principle be applied to study the intersection of geodesic rays
with the boundary for the full class of models obtained in this way.

However, as it should be clear from Remark 3.5, intersection properties of
geodesics as studied in this paper are delicate, and our approach requires exact
calculations (or at least non-asymptotic bounds). In the pure quadrangular and
triangular cases at criticality, the expressions for R,, and S,, are particularly sim-
ple, so that we can compute the laws of Ag and Ag explicitly. See (5.11) of Bouttier
and Guitter (2012) for the general form of R,,, which involves so-called Hankel de-
terminants. For a more general treatment, Equation (5.1) is model-independent
and may serve as a starting point for further investigations.
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