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Abstract. We consider the system of stochastic differential equation
dX; = A(X;_)dZ;, Xo = x, driven by cylindrical a-stable process Z; in RY. We
assume that A(z) = (a;;(z)) is diagonal and a;;(x) are bounded away from zero,
from infinity and Holder continuous. We construct transition density p? (¢, z,y) of
the process X; and show sharp two-sided estimates of this density. We also prove
Holder and gradient estimates of z — pA(t,2,y). Our approach is based on the
method developed in Chen and Zhang (2016).

1. Introduction

Let
Zo=(z",....2"),

be cylindrical a-stable process, that is Zt(i), t = 1,...,d are independent one-
dimensional symmetric standard a-stable processes of index a € (0,2), d € N,
d > 2. We consider the system of stochastic differential equation

dXt = A(Xt_) dZt, XQ =, (11)

where A(z) = (a;;(x)) is diagonal and there are constants by, ba, b3 > 0, 8 € (0,1]
such that for any z,y € R, i € {1,...,d}

bl S aii(x) S bg, (12)
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|aii () — aii(y)] < balz — y|”. (1.3)
In the sequel, without loss of generality, we assume that 8 € (0, «/4].
We define an operator £ by the following formula
d

Lf(x)= lim Aa [f(z + asi(z)wie;) + f(o — aii(z)wie;) — 2f ()]

=1 e—0+ 2 |wi|>e

dwi
|wi|1+a’

for a Borel function f such that the limit on the right hand side exists for any
z € R%. Here {e;}9_, is the standard basis in R? and A, = %

It is well known that system of SDEs (1.1) has a unique weak solution and the
generator of X, restricted to CZ(R?), is given by £ (see Bass and Chen, 2006).

Let us denote the transition density of one-dimensional symmetric standard a-
stable process of index o € (0,2) by ¢g:(z —y), t > 0, z,y € R. Clearly, the
transition density of Z(t) is given by H;l:l ge(xj — yj)-

The main result of this paper is the following theorem.

Theorem 1.1. (i) The strong Markov process X (t) formed by the unique weak
solution to SDE (1.1) has a positive jointly continuous transition density function
pA(t,z,y) in (t,z,y) € (0,00) x R? x R? with respect to the Lebesgue measure on
R4,

(ii) The transition density solves

& A y) = £pA (1)), (14)

for all t € (0,00) and z,y € R%.
(iii) For any T > 0 there exist ¢ = ¢1(T,d, v, b1, ba, bs, 8) > 1 such that for any
z,y € R4, t € (0,7
d d
et [[oelwi — i) <p(ta,y) < ex [[ 9@ — o) (1.5)
i=1 i=1
(iv) For any T > 0 and vy € (0, A1) there exists co = co(T, 7, d, @, by, ba, b, 5) >
0 such that for any z,2',y € R?, t € (0,T]

d d
I (t,2,y) —p (1,2, y)| < colw — 't/ (H (@i — i) + [ [ oo — yi)> :
i=1 i=1
(1.6)
(v) For any T > 0 and « € (1,2) there exist cz3 = c3(T,d, a, by, ba, b3, B) > 0 such
that for any z,y € R¢, t € (0,7

|Vap™ (t, 2, y)| < est™*p™(t, 2, ). (1.7)

Systems of stochastic differential equations driven by cylindrical a-stable pro-
cesses have attracted a lot of attention in recent years see e.g. Bass and Chen (2006);
Priola and Zabczyk (2011); Wang and Zhang (2015); Priola et al. (2012); Zhang
(2013); Sun and Xie (2014). In Bass and Chen (2006) existence and uniqueness
of weak solutions of systems of SDEs (1.1) is proved under very mild assumptions
on matrices A(z) (i.e. it is assumed that A(z) are continuous and bounded in
2 and nondegenerate for each z). Our paper may be treated as the first step in
studying fine properties of transition densities of systems of SDEs driven by Lévy
processes with singular Lévy measures. Fine properties of such transition densities
are of great interest but in the case of singular Lévy measures relatively little is
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known. We decided to study the particular case of diagonal matrices A(x) in (1.1)
because in that case one can obtain sharp two-sided estimates of these densities.
Note that upper and lower bounds of transition densities are possible due to the
specific structure of the generator, in particular, that each one dimensional measure
in the representation of £ is absolutely continuous. It seems that in the case of gen-
eral non-diagonal matrices in (1.1) such sharp two-sided estimates are impossible
to obtain. Nevertheless, we believe that our results will help to obtain qualitative
estimates of transition densities also in the case of general matrices in (1.1).

The direct inspiration to study transition densities of solutions to (1.1) was
a question of Zabczyk concerning gradient estimates of these densities. Another
source of inspiration was a recent paper Bogdan et al. (2017), where the authors
constructed heat kernels and obtained upper bounds and Hélder estimates of them
for quite general anisotropic space-inhomogeneous non-local operators. However,
the considered jump kernels cannot be “too singular”. In particular, their results
can be applied for systems (1.1) only when d = 2 and « € (1,2) (see the condition
a+ v > d in the assumption Al on page 5 in Bogdan et al., 2017). Moreover, even
for d = 2 and « € (1,2), the obtained estimates are far from being optimal.

In our paper we use a very elegant and efficient method based on Levi’s freezing
coefficient argument (cf. Levi, 1907; Friedman, 1964; Ladyzenskaja et al., 1968).
This method was applied by Kochubei in the framework of pseudodifferential op-
erators (see KKochubei, 1988) to construct a fundamental solution to the related
Cauchy problem as well as transition density for the corresponding Markow pro-
cess. Then in the work Chen and Zhang (2016) this approach was further extended
to provide sharp two-sided estimates of the transition density in the case of the
non-local and non-symmetric Lévy type operators on R?. Chen and Zhang studied
jump kernels of the type x(z,2)/|2|9", a € (0,2), with some regularity conditions
of k(x,z). Tt turned out that similar ideas can be applied also in our situation
where jump kernels are much more singular. We follow the road-map from Chen
and Zhang (2016) however, due to a specific structure of the operator £, there
are many differences between that paper and ours. The main new elements, in
comparison to Chen and Zhang (2016), are the proof of crucial Theorem 3.2, the
proof of Lemma 4.4, the estimates (4.9-4.11) and the proof of lower bound esti-
mates of pA(t,z,y). It is worth pointing out that in our paper we have shown that
the transition density p (¢, ,y) satisfies the equation (1.4) for all x,y € R? while
in Chen and Zhang (2016) it is shown that the heat kernel p% (¢, x,y) satisfies the
analogous equation only when x # y. A similar remark concerns gradient estimates
of pA(t,x,7), which we managed to show for all z,y € R?. On the other hand, we
were able to prove gradient estimates of p* (¢, z,y) only for a € (1,2), while in the
latter paper gradient estimates were obtained for « € [1,2). It is worth mentioning
that quite recently a very interesting generalization of the results from Chen and
Zhang (2016) appeared in Kim et al. (2018).

The problem of estimates of transition densities for jump Lévy and Lévy-type
processes has been intensively studied in recent years see e.g. Chen and Zhang
(2016); Kim et al. (2018); Bogdan et al. (2014); Chen and Kumagai (2008); Chen
et al. (2011); Knopova and Schilling (2012); Kaleta and Sztonyk (2015); Knopova
(2013); Mimica (2012); Grzywny and Szczypkowski (2017, 2018); Knopova and Ku-
lik (2017, 2011). However, relatively few results concern processes with jump ker-
nels which are not comparable to isotropic ones. We have already mentioned here
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the paper Bogdan et al. (2017). One should also mention the papers by Bogdan,
Kaleta and Sztonyk (see Bogdan and Sztonyk, 2007; Kaleta and Sztonyk, 2017,
2015; Sztonyk, 2017) but they only concern heat kernels of translation invariant
generators and convolution semigroups for which the existence and many prop-
erties follow by Fourier methods. There are also known estimates of anisotropic
non-convolution heat kernels given in Sztonyk (2010a); Kaleta and Sztonyk (2013)
however these are obtained under the assumption that the jump kernel is domi-
nated by that of the rotation invariant stable process. For estimates of derivatives
of Levy densities we refer the reader to Sztonyk (2010b); Bogdan and Jakubowski
(2007); Schilling et al. (2012); Kaleta and Sztonyk (2015); Kulczycki and Ryznar
(2016); Knopova (2013); Chen and Zhang (2016); Knopova and Kulik (2018); Kulik
(2018); Grzywny and Szczypkowski (2017, 2018). Very important results concern-
ing existence and Feller property of solutions to Lévy driven SDEs were obtained by
F. Kiithn (see e.g. Kiihn (2012); Kithn (2017, 2018a,b)). Interesting results about
weak Euler approximation for solutions of some Lévy driven SDEs were obtained
in Mikulevi¢ius and Zhang (2011, 2015).

Some estimates of transition densities for processes which are solutions of systems
of SDEs driven by Lévy processes with singular Lévy measures were obtained in
Picard (1997, 1995/97, 1996); Ishikawa (2001). However, the results from Picard
(1997), when applied to system (1.1), do not imply such sharp estimates which are
obtained in Theorem 1.1. In particular, they can be applied to system (1.1) only
when z — a;;(z) are C*°(R?) functions. What is more, even in this case, the upper
bound estimates are of the form sup, ,cpa pA(t,z,y) < ct=%*, while the lower
bound estimates of p* (¢, x, %) are also much less precise than ours. They are precise
only for z = y, in which case it follows from Picard (1997) that p(t, z, ) ~ t—%/*.
The results from Picard (1995/97, 1996); Ishikawa (2001) cannot be applied to
system (1.1).

The paper is organized as follows. In Section 2 we introduce the notation and
collect known facts needed in the sequel. In Section 3 we construct the function
pA(t,z,y) in terms of the perturbation series q(t,z,y) = > oo qn(t,,y) using
Picard’s iteration. In Theorem 3.2 we obtain the estimates of ¢(t, z,y) which are
absolutely crucial for the rest of the paper. In Section 4 we show that the semigroup
defined by P2 f(x f]Rd p?(t,x,y)f(y)dy is a Feller semigroup. Next, applying
the results from Bass and Chen (2006), we argue that p?(¢,z,y) is, in fact, the
transition density of the solution of system (1.1) and we prove most parts of the
main theorem. In Section 5 we show lower bound estimates of p“ (¢, x,%) by using
probabilistic arguments.

2. Preliminaries

All constants appearing in this paper are positive and finite. In the whole paper
wefixT >0,d>2,deN, ae(0,2),by,be,bs, 8, where by, by, b, 5 appear in (1.2)
and (1.3). We adopt the convention that constants denoted by ¢ (or ¢1, co,...) may
change their value from one use to the next. In the whole paper, unless is explicitly
stated otherwise, we understand that constants denoted by ¢ (or ¢, ¢a, . ..) depend
on T,d,c, by, bs,bs, 3. We also understand that they may depend on the choice of
the constant v € (0,8) (or v € (0, A 1)). We write f(z) =~ g(x) for z € A if
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f,g9 >0 on A and there is a constant ¢ > 1 such that ¢=! f(x) < g(z) < cf(z) for
x € A
Denote

oi(x) = aji(z).
Note that there exists ¢ such that for any x,y € R? we have
joi(x) = oi(y)] < e (lz —yl” A1) (2.1)
By simple change of variable we get

Z lim —/|.|> [f(z+eizi) + f(w—eizi) — 2f(z)] Ul(x)pj%

e—0t 2

Let us introduce some notation used in Chen and Zhang (2016). For a function
f:R? = R we denote

51(0,2) = fla+2) + f(o - 2) - 2f(a).
Similarly, for a function f: R, x R? — R we write
Op(t,x,z) = f(t,x+2)+ f(t,x — z) — 2f(t, x).
We also denote
pg(t,;v) =tz AV + |2))7Y, >0,z €R.
It is well known that
gi(x) = p2(t, 2), t>0,zeR. (2.2)

One of the most important tools used in our paper are convolution estimates
Chen and Zhang (2016, (2.3-2.4)). They are similar to Kolokoltsov (2000, Lemma
1.4) and Xie and Zhang (2014, Lemma 2.3). In Chen and Zhang (2016) they are
stated for t € (0,1]. It is easy to check that they hold also for ¢ € (0,7]. For
reader’s convenience we collected them in Lemma 2.1.

Lemma 2.1. (i) There is C = C(«) such that for any t > 0 and any
ﬁl € [0,(1/2],’71 S ]R;
/ Pt 2)dz < O (2.3)

(ii) For T > 0 there is C = C(a, T) such that for any 0 < s <t < T,z € R
and any B1, B2 € [0, /4], 71,72 € R we have

/ p,yl (t—s,x— z)p,%(s, z)dz

Y1t+B1+B2—a 2

<C [(t —s) e T s (t—s)as

Y2+B1+Ba—«a
=] bt

1+B81—a 72 B2 y2+B2—

+CO |t =) TR () + (0 ) TSI )] (24

(iii) For T > 0 there is C = C(«, T) such that for any 0 <t < T, z € R and
any B1, P2 € [0,a/4],v1,72 € R with v1 + 1 > 0 and 2 + B2 > 0 we have

/ /pﬂy1 (t—s x—z)pgj(s,z)dzds

71+ﬁ1 Yo + 2
« (07

B2
<CB < ) (p71+72+ﬁ1+52 + p’Y1+’72+62 + pV1+’72+,31) (t,x), (2.5)
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where B(u,w) is the Beta function.

Similarly as in Chen and Zhang (2016) we introduce, for y € R?, the freezing
operator LY by

dz;
LY f(x) /51‘ @, €i21) o (y )| e
and
dZi
LYf(t,x) = Z/(SftgcelzZ Uz(y)| e
Put
d 1 T;
-l ()
u(t,) = Eau(y)gt aii(y)

It is clear that py(t, x) is the heat kernel of the operator £Y. In particular, we have
3]
apy(t,x) = LYpy(t, x), t>0,z,ycR. (2.6)

In the sequel we will use the following standard estimate. For any v € (0,1]
there exists ¢ = ¢(-y) such that for any 8 > 1 we have

t
/0 (t—s)" 1" 1ds < %tﬁfl)ﬂg*l)ﬂ_ (2.7)
We use the notation INg = IN U {0}.

3. Upper bound estimates

The main aim of this section is to construct the function p“(t,z,y). This is
done by using Levi’s method. We recall that this method was applied by Kochubei
(1988) in the framework of pseudodifferential operators. In the recent years it was
used in several papers to study gradient and Schrodinger perturbations of fractional
Laplacians see e.g. Bogdan and Jakubowski (2007); Jakubowski and Szczypkowski
(2012, 2010); Chen and Hu (2015); Chen et al. (2012, 2015); Xie and Zhang (2014).
As we have already mentioned we use the approach from Chen and Zhang (2016).
It is worth adding that in there, in contrast to previous papers, a new way of
“freezing” coefficient was used.

Now, we briefly present the main steps used in this section. We define p“ (¢, z, %)
by (3.2). Heuristically, p*(t,z,y) is equal to the transition density p,(t, > — y) (of
the process with the “frozen” jump measure corresponding to the generator LY)
plus some correction f(f fIRd p.(t — s,2,2)q(s, z,y) dz ds, which is given in terms of
the perturbation series ¢(t,z,y) = >..° , qn(t,z,y). The most difficult result in
this section is Theorem 3.2 which gives upper bound estimates of ¢(¢, z,y). Due to
a different structure of the generator £ in comparison to the Lévy-type operator
L% from Chen and Zhang (2016) there are essential differences between our proof
and analogous proof in Chen and Zhang (2016), see in particular the definition
of the auxiliary function HF(t,z,y) and the induction proof of (3.6). The next
important step in this section is Theorem 3.9, where we derive Holder type estimates
of q(t, z,y). We also show crucial Lemma 3.14, which is the main step in obtaining
gradient estimates of pA (¢, z,y).
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For z,y € R4, t > 0, let
and for n € IN let

t
qn(tuxuy) :/ /dqo(t_saxaz)QH—l(SwZay) dzds. (31)
0 JR

For z,y € R4, t > 0 we define

q(t,z,y) an (t,z,y)
and
pA(t,2,y) = / [ o= sz deds. (32
R4
By Chen and Zhang (2016, (2.28)) and (2.2) one easily obtains

Lemma 3.1. For any t € (0,T] and z,y € R? we have

ds d
Z/ }5py (t,z, zpek | B |1]j_a <t 1Hp0 (t, ;).
=1

An immediate consequence of the above lemma and (2.6) is the following estimate

d

< ct?! Hpo (t,x;), (3.3)
i=1

9]
P

for t € (0,T], =,y € R™.

Theorem 3.2. The series Y. qn(t, ,y) is absolutely and locally uniformly con-
vergent on (0,T] x R? x R, For any x,y € R?, t € (0,T] we have

d
|q(t7$7y>| < Ctdil lH pg(ta Ty — yl)]

=1

d
N (lem —ymlP AT) | (34)
m=1

Moreover, q(t,x,y) is jointly continuous in (t,z,y) € (0,T] x R? x R.
Proof: By (2.1) and then Lemma 3.1 we get

d
.Aa dzk
wlt.z.)| < 7§Awapy<t,x—y,eka>\|ak<x>—ak<y>|W

d
< (Iﬂv—yl"Al / |0p, (.2 — y, exzr)| w%
d
< M [Z (|xm —ym|ﬁ/\1 ] lH (t,zr — Y ] , (3.5)
m=1 k=1

where M = M(T,d, «, by, ba, bs, ).
Put
I={L=(,....,0q): Yie{l,...,d} I; =0 or I; = 3}.
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For any L = (I1,...,lq) € I denote

1 d
|L|:E;li.

For k € Ng and L = (I1,...,lq) € I put

d

d
H:(t,,y) = ¢4 Hko/e lH POt z; — yi)] [T (25 =il A1)
j=1

=1

We will show that there is C = C(T,d, o, by, ba, b3, §) such that for any n € Ny,
r,y € R t € (0,7],

MC™
wnlbr ) € o S i) (3.6)
(n+1)1) keNg, Lel
k+|L|=n+1

where M is the constant from (3.5). Let

t
D(t,:z:,y,m,k,L):M// HOLm(t—s,x,z)HkL(s,z,y)dzds,
0 JR4

where L,, € I is such that l,, = § and |L,,|] = 1. Observe that (3.5) can be
rewritten as

d
lao(t,z,y)| < MY Hy™(t,a,y). (3.7)

m=1

We will prove (3.6) by induction. The main step consists of proving that for any
n €N,

d
>y D(t,x,y,m,k,L)gm > HEtay). (3.8)

m=1 k€N, Lel keNo, Lel
k+|L|=n+1 k+|L|=n+2

For n = 0 the estimate (3.6) holds by (3.7).
Assume that (3.6) holds for some n € INg. By (3.1), (3.7) and our induction
hypothesis we obtain

d
MC™
|qn+1(taxay)| S S \\Bla Z Z D(tvxvyama kvL) (39)
((n+ 1)!)[3/ m=1 keNo, L€l
k+|L|=n+1

Then, if (3.8) is true, then (3.6) holds for n + 1. Hence in order to complete the
proof it is enough to show (3.8).
To this end we consider 3 cases.

Case 1. L=(0,...,0), k=n+1.
We have

+ d
D(t,x,y,m,k, L) = M/ P H/pg(t—s,xi—zi)pg(s,zi—yi)dzi
0 i1 IR
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X / pg(t — 8, T — zm)p%(s, Zm — Ym) zm ds.
R
By (2.4), we obtain

/ po(t — s, @ — 2)po (s, 2 — yi) dzi < cpoy(t, x; — ;)
R

and
Pg(t — 5 Tm — Zm)p%(sa Zm — ym) dzm
R
< c[(t= )0t = ym) + 52t T — i)
+S(ﬁ* )/apo (t Ty — ym)} )
Hence
d
D(taxayumu kvL) S Ctdil [H pg(t,xl _yi)‘|
i=1

t t
" [/ (t_S)wfa)/asmﬂw/adw/ (n+2)8-0) /o g
0 0

¢
+/ ((nFtDB=/ s (|2, — ym|5/\1)].
0

By (2.7) this implies that

D(t,z,y,m,k, L) < m [Hpotxz yz‘|

" [t(n+2)ﬂ/a L (P LY\ 1)} . (3.10)

Case 2. L =(l1,...,1q) #(0,...,0), I, = 0.
Put Z(L) ={i € {1,...,d}: I, = B} and i(L) = inf Z(L). Clearly m ¢ Z(L).
We have

t
D(tuxuyamakuL) = M/ / Pg(t — 5 Tm — Zm)pg(suzm - ym) dzm
0 JR

X / pot — s, @1y — Zi(L))pg(Sa Zi() — Yi(r)) dzi(L)
R

< | T | o0 = s, — 2)p8(s, 2 — yi) dzi
R

Lii(L) ]

x H /pa 8, T '_Zi)Pg(szi—yi)dzi sFBle gs.
z%Z(L)

By (2.4) this is bounded from above by

t
C/ |:(t - S)(ﬁia)/aspg(ta Tm — ym) + tﬁ/apg(t, Tm — ym) + Pg (t, LTm — ym)
0
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X {tﬁ/apg(twi(m — i)+t 0, 3y — vice)) + o6 Tir) — yi(L))}

X H [t(aw)/apg(fa i — i)+ tp) (s — yi)}
i€z (L)
ii(L)

X H tpd(t, i — ;) | s*P/ ds.
i¢2(L)
L i#m

Note that #Z(L) = |L|. We have

H [t(aw)/apg(tafﬂi — i) + tog (t,zi — yi)} < ettt H po(t, i — yi)

ieZ(L) ieZ(L)
i#i(L) ii(L)
% Z Z t(\L\—r—l)B/aH (|$kl _ yki|'8 A 1) , (3.11)
TS\LH\\I—l {k1,..kr }CZ(L)\{i(L) } i=1
relNg

where for 7 = 0 we understand that [T}, (|zx, — yx,|® A1) = 1. It follows that

d
D(ta Z,y,m, ka L) S Ctd_2 [H pg(ta T; — y»]

=1

% Z Z L(Ll=r=1)B/a [ﬁ (|$k1 _ yki|5 A 1)‘|

rEILI~1 {k1yenk, }CZD\ (L)} =1
relNg

t t
" {tmw)/a / (t— 5)F—)/aghbla g 4 ¢ / (t — 5)(B-)/ag(5+8)[a g
0 0

¢
+t/ (t— s)(ﬁf"‘)/o‘skﬁ/o‘ ds (|;Ci(L) — yi(L)|5 A 1)
0

t t
4 $28/a / sBla g 4 lotB)/a / S(B-atkB)/a g
0 0

t
+ tﬁ/o‘/o Skﬁ/a ds (|CE1(L) - yl(L)|5 N 1)

t t t
X {tﬁ/o‘/ skﬁ/o‘ds—l—t/ s('B_O""kB)/ads—i-/ skB/a qg (|xi(L)—yi(L)|ﬂ/\1)
0 0 0

X (|xm - ym|ﬁ A 1)} .
Using this and (2.7) we get

d
D(tu x,Yy,m, k? L) S Ctd_2 lH pg(tu Tiy — yl)]
i=1
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% Z Z H(L|=r=1)B/a [ﬁ (|$kl _ yki|'6 A 1)‘|

r<I =1 {k1ekr} CZ(D\{i(L)} =1
relNg
1
= |{latkBE28)/a 4 y(atkB+B)/a ) BA1l
“ k¥ 1)pla [ + (lziz) = wiwy” A1)

lotkB+p)/a (Ixm —ym|? A 1) + tlatkp)/a (|Ii(L) _ yi(L)|5 A 1) (Ixm — yml® A 1)} )
Note that k + |L| = n + 1. Tt follows that

td 1

T

X Z Z H(n+2-r)B/a H (|ok, — Ui, [P A 1). (3.12)

r<|L|+1 {k1,....k. }CZ(L)U{m} i=1
r€lNg

Case 3. L= (l1,...,0q), lm, = 5.
We have

¢
D(t,x,y,m,k,L) = M/ / pg(t — 8, Ty — zm)pg(s, Zm — Ym) dZm
0 JR

< | 11 /Pa — 8,2 — 21)pa(s: zi — yi) dzi
i€Z(L
L z;ém

% H /pa s, — 2)po (s, 2 — yi) dzi | $¥/* ds.
Li¢Z(L)

By (2.4), this is bounded from above by

t
c/ [(t_s)m /e )0t — ym) + 82O oy
0

(= )tz ) + 5 G 12— )|

% H {t(aﬂﬂ)/apg(t, i — i)+ tp) (t, w5 — yi)}
i€z(L)
L i#m

X H tpd(t, x; — ;) | s°4/ ds.
Li¢Z(L)

Using similar reasoning as in (3.11) this is bounded from above by

d
et lH po(t, zi — yi)]
i=1
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T

. Z Z (ILl=r=1)8/a H (lzk — yre [P A1)

P<IL =1 {k1,oky }CZ(L)\{m} =1
r€Ng
t t

[ / (t— 5)(2B-a)/aghb/a g 4 / ((26—atkB)/a g
0 0

t
+/ (t — )P/ oghBle s (|2, — ym|? A1)
0

t
/ S(ﬁ*aJrkﬁ)/Oé ds (|$m _ ym|ﬁ A 1):|
0

By (2.7) it follows that

d
D(taxayvmvkaL> S Ctd71 lH P(OJ(tain - 2%)1

1=1
X Z Z t(|L|—7‘—1):3/0t H (|xkl _ ykz|6 A 1)
TS\I]AI\\Ifl {k1,....kr-}CZ(L)\{m} i=1
r€NNg

1

G [tacmw)/a + kBB (g gy 18 A 1)}

Hence

(k+1)B/

x ) > t(n+2-)p 1:[1 (lzk, — v [P A1) (3.13)

r<|L|{k1,....kr }CZ(L)
r€lNg

td 1 d
D(t7$7y7m7k7L) S < alg(taxl _yz)]
=1

Recall that n+1 =k+|L|, |L| < d,so k > n+1—d. Hence (k+11)5/o¢ < (n+20)5/a7

where ¢ = ¢(d). Consequently, (3.9), (3.10), (3.12), (3.13) gives that (3.8) holds,
which finishes the induction proof.
From (3.6) we immediately obtain that for any n € INg

d
m=1

(3.14)
It follows that Zi’f:o qn(t,z,y) is absolutely and locally uniformly convergent on
(0,T] x R? x R% and (3.4) holds.

By the properties of py(t,z) it is easy to justify that qo(¢,x,y) is jointly con-
tinuous in (¢,z,y) € (0,7] x R x R%. By (3.1) and induction method the same
property holds for ¢, (t,z,y) for each n € N. Since >~ gn(t,z,y) is absolutely
and locally uniformly convergent we finally obtain that ¢(¢, z,y) is jointly continu-
ous in (t,7,y) € (0,T] x R% x R4 O

cC™
lan(t, 2, y)| < m alO t, @ — yi) ]

By elementary calculations, for any ¢ > 0, u,w € R satisfying |u — w| < t%/, we
have

At ) ~ Yt w). (3.15)
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Lemma 3.3. There exists ¢ = c¢(a,d) such that for any m € {1,...,d}, t > 0,
z, 2’ € R we have

Hgt (zi) — Hgt (z3)] < ¢

m . /
il A 1/\

(3.16)

If additionally |z — 2’| < t'/*, then

Hgt (i) = [T 9+ (=)

=1

< ct™ <Hp8(t,:vi)> LAY Yoy —af]| . (3.17)

i=1 j=1

Proof: Let g§3> (-) be the radial profile of the transition density of the standard
3-dimensional a-stable isotropic process. Then it is well known (see e.g. Bogdan
and Jakubowski, 2007, (11)) that

dg(z)
dz
By the standard estimates of transition density of the a-stable isotropic process we
have

= —47mrgt (|3:|) z € R.

3) gi()
g:” (jal) < o222,
(lo] +t1/)
which yields
d
‘ 9:(2) <c 7] 59¢ () < cigt(xz , xT€R.
dx (|$|_|_t1/a) |I|—|—t /o

Next, for any u,w € R, from the above gradient estimate of g; and the fact that
g+(u) is decreasing in |ul,

lg¢ (u) — g¢ (w)| < ¢

Hence, by monotonicity of g¢(u) and (3.18),

Hgt (zi) — Hgt (172)
<Y o) =g @)l T g (il Alh)

i=1 J#£i,1<5<m

m
|xl
<c (Hgt(|xi| A ] ) Z W

i=1

|u — wl

T Aol + 7 9 (Al (3.18)

Combining this with the obvious inequality

Hgt () —Hgt(

we finish the proof of (3.16).
To get the second inequality we apply (3.15). ([

m

H (EARNEAD

As a direct conclusion of Lemma 3.3 we get
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Corollary 3.4. For anyk € {1,...,d},t >0, 2,2’y € R satisfying |z—a'| < t1/*

we have
[Tovtm (55) - T (525)

z;ék Z?ﬁk
d d
< et?! Hpg (t,x;) Z t_l/o‘|xj—x;-|/\1).
i=1 j=1
izk

Corollary 3.5. For anyt >0 and x,y,w € R? we have

[P (t,w) — py(t, w)] < epu(t,w)(lz —yl|” A1)
Proof: We have

|pw (tv w) - py(tv w)l =

(a“@)) - ﬁ%l@gf (w@))‘

i=1

IN

+
IE&

K2

H (T) o (745))

Next, by (1.3) and (1.2),

|‘T - y|6 A 1)7

and by Lemma 3.3 together with (1.3) and (1.2)

x
c 1/\2 |wl||a” a“( )| Hg Wi
11/ —I— |w | 1 ! aii(x)

<
d w,
< c<|x—y|ﬁA1>Hgt<a“(;)).
i=1 "
The proof is completed. O

Corollary 3.6. For any x € R?, t > 0 we have

fo

where g = ('rlvaa' .- 7yd)'

d

1 d i
oo (Gmr) - oo Cogy)

2 =2

dys .. .dyq < c(|z1 —y1|ﬁ/\1),

(3.19)
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Proof: By the same arguments as in the proof Corollary 3.5 we have

d d
1 T — yz> 1 (:17 > 5
gt - — gt <c gi(z (ly=g["AL).
g aii(y) < a;i(y) g aii(9) aii (9§ H
Observing that |y — g| = |x1 — y1| we obtain the conclusion by integration. O

Lemma 3.7. For anyt € (0,T], z,2',y € R? satisfying |z — 2'| < t'/* we have

d
dzk
8, (t,x, zper) — 0p, (£, 2, zrer)| ——r
Z/]R‘ ;Dy( k k) Py( k k)‘ |Z;g|1+o‘
d d
< i1 (H P >> Sy — A1), (3.20)
i=1 j=1

Proof: Fix k€ {1,...,d} For t > 0, z € R put

hy(t,z) = akk(y)ge (L) .

ak(y)
‘We have

dzk
/]R ‘6;Dy (t, Z, Zkek) — 5Py (t7 $/7 Zkﬁk)‘ W

L
- s (25 |, (0,
/]R 11;[1 aii(y)
ik
d /
:EZ- dzk
- Hau(y)gt (a(y)) 6hy(t7xkazk) | |1+a
Zi
d T d x; dzk
< H a”(y)gt a(y) — H au(y)gt a(y) R |5hy (t, Tk, Zk)‘ W
Zh Zh
+ ﬁa--(y)gt< x; ) / |5h (t, K, z1) — Op, (t CE;C Zk)‘ ﬂ
B () ) | 1 ooz = 0 (ks 20| s

By Chen and Zhang (2016, (2.28)) we have

dzy,
/ }5}1 (t, zk, 2k ’ Za]iFo _Cpo(t Tk),

while, by Chen and Zhang (2016, (2.29)),

de _
/}R\éhy(t,xk,Zk) — O, (t, 7, 2x) | e < epd(t, ap) (tY ¥y — x| A ).

Applying the above inequalities and Corollary 3.4 we obtain the desired bound
(3.20). O
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Lemma 3.8. For any x,z',y € R, t € (0,T] and v € (0, 3) we have

lao(t: 2,y) — qo(t, ', y)| < ¢ (o — 2’1" A1)

X
(]~
—~
~
=
oo
—~
S+
8
S
|
<
=
~
~—
N
)
20O
—~
o+
8
S
|
<
=
~—
+
e
QI =
sy
—~
o+
8
S
|
<
=
~
N—

d
+ Z H(tpg(t,l'g — i) (pg(tv ‘T;c —yk) + pffﬁ(tv ‘T;c - yk))

Proof: Case 1. |z — /| > t/°.
By (3.5) we get, for z = x or 2/,

d d
olt, )| < e (ja = 2’177 A1) f“(H pgu,zi—y))(Z (fem = m A 1)%%)'

i=1 m=1

Case 2. |z — 2/| < t'/.
We have

|q0(t, xz, y) - qO(t,.I/,y”

d
.A. dzk
— t _ @ _ aQ _ PR

) k§_1/]R§py( , T — Y, zker) (agy () akk(y))|2k|1+a

dzk

d
=3 [ 000 =y mren)aie) - a0
k=1 R k

d
dzk
< Z/]R |5py (t7$ -y, Zkek) - 5py (t7$/ - Y, Zkek)| |agk(x) - a’gk(y” |Zk|1+a
k=1

d
dZ}C
+Z/}R |0p, (82" — y, 2zen) | |afy () — afy (2")] P
k=1

d
dzk
<ec (|:v _ y|6 A 1) Z/}R }5% (t,x —y, 2reE) — (5py(t,;p’ _ yuzkek)} _|Zk|1+a
k=1

d
+e(jz—2'|P A1) Z/ |65, (t, 2" — y, zrer)| %
i1 /R B
=I+1I
By Lemma 3.7 we get
d
I<c(lz—y/’ A1) (t_l/o‘|:1c — 2| A 1) -1 Hpg(t, Ti — Yi)- (3.21)
i=1

Note that t~1/%|z —2'| < 1s0 t~V/ |z —2'| < t%kv — 2P Let m € {1,...,d}
a4y [z: — yi|. Tt follows that (3.21) is bounded

.....

from above by
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d
=8 _ _
ct’s |z —a/|PTd ! (Hpg (t,z; — v ) (|Zm — ym|® A 1)
i=1

<c(jz—2P77 A1) Htpo (t, i — i) pffﬁ(t,:vm—ym).
1;£m
We have |z — 2'| < %/ s0 1 < |z — 2/| "¢/, It follows that (jz —2/[* A1) <
(Jz — 2'[f~7 A1) t7/<. Using this and Lemma 3.1 we get

d
I < cjo—a" A1)t T At 25— w)
i=1
d d
< cfjz—2Pr ALt 12 Hp8 Jh = i) | Pt — k).
=
([l
Theorem 3.9. For any z,2',y € R%, t € (0,T] and v € (0, 8) we have
la(t,z,y) — (¢, 2, y)| < ¢ (jo - 2|77 A1)
d | d
X Z H (too(t, xi — i) (Pg(t,wk ~ Yk) +0575(f7$k - yk))
= |
d | 4
+ 5 TTees .« p7 (t,zh — yu) + gt 2 — yk)> .(3.22)
= [
Proof: By the definition of g, (3.14) and Lemma 3.8 we get for n € N
lan(t, 2, y) — qu(t, 2, )]
/ /d lgo(t — s,2,2) — qo(t — s,2", 2)||gn_1(s, z,y)| dz ds
R
< cem ! (Jlz = 2'|P77Y A1) (Alt,2,y) + At 2, y)) (3.23)
— (n!)B/a b 7y ) 7y ) *
where C' is the constant from (3.14) and
Alt,z,y)
/ / Z 1 . (A0t = 80— 20) + 2yt — 5.0~ )
Rd

i= 1
7

d
xS0 T %02 =) | (9905 2m = m) + 005, 2 — ym) ) o1 .. dzads.
m=1 | j=
j#m
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We have

d d
A(t,(E,y) = Z Htpg(tuxz_yl) Bk(taxay)

tpy(t,zi — i)

m=1 i=1
m#k LiFk, i#m
X[ka(t,.f,y) E

d

eom (62, y) + Frem (6, 2, y) + Giom (8, 7, 4(3,24)

where
By(t,z,y) // p,yt—sa:k—zk)—l—pg [3( sxk—zk))

X (Pﬂ(s, 2 — yn) + g (5, 2 — yk)) dzy, ds,

Dy (t,2,y) / /PV — 8, &k — 2k) po(S, 2k — Yk) dz

X / P2t — 8, T — zm)p%(s, Zm — Ym ) dzm ds,
R

t
Eim(tie,y) = / / Pt — 5,2 — 2ol (575 — ) dk
0 R

X / pg(t — 8 Tm — Zm)pg(svzm - ym) dzy, ds,
R

t
Funttaow) = [ [ oyt sm - a)pls.m - m)da
0 R

X / POt — 8, T — zm)p%(s, Zm — Ym) dzm ds,
R

t
kam(tv €, y) = / / pg_ﬁ(t — 5Tk — Zk)pg(sv Zk — yk) de
0 JR

X / POt — 8, T — 2m) Pl (S, Zm — Ym) Az ds.
R
By (2.5) we get
By(t,z,y) <c (pg(t, Tk — Yk) + pffﬁ(t, Tp — yk)) ) (3.25)

Using (2.4) we obtain
Dk,m(tu z, y)

SC/ot((t_s) ) S+(t_s)%)(si +(t—s)s %)dspg(t,xk—yk)pg(t,xm—ym)

Y4B
S Ct1+;+(’<p8(t,$k - yk)pg(tu Tm — ym)
< Ctp?y(ta TE — yk)pg(tv Tm — ym), (326)
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Eim(t,z,y)
< c/t ((t—s) g s—l—(t—s)%) ((t—s)ﬁ/o‘—l—(t—s)s%) ds
0
X po(t, ok = y)po(t, Tm — Ym)
vo [ (1= 90+ 0= 9) dssblt e~ ) s~ )
< et" A Rt — )Pt T — ) + et E O, Tk — yi) P (s T — Ym)
< ctpd(t, ox — yr)pY (t, Tm — Ym), (3.27)
Fim(t,z,y)
< c/ot ((t—s) = s+(t—s)t_ﬁs§) (sé —l—(t—s)s%) ds
% po(t: 2k = Yk)Po (t Tm — Ym)
+c/0t ((t - s)¥ (sé + (t—s)s = )) dspl (t, 2k — yr) S (t, T — Ym)
< et RS Pt — g )P (T — ) + et E P (2 — )Pt T — )
< ctpl (t, wx — yr)po (ts Tm — Ym), (3.28)
Grm(t, x,y)
< c/t ((t—s) a s—|—(t—s)%sg) ((t—s)g —l—(t—s)s%) ds
0
%o (L @k = Yr) POt T — Yim)

+c/0t ((t= )" s+ (¢ = )57 ) dspB(t, 2 — )0 (£ 2 — )
+c/0t ((t—s)% ((t—s)% + (t—s)s%)) dspl (t, x — yi) o (b T — Yum)

t
—|—c/ (t—s)"= dspO (t, % — yp)po (t, T — Ym)
0

< et TETR Ot wk — Y)Yt T — Ym) + ' Otk — )Pl (T — i)

et o8 (1 i — i)Yt T — Ym) + TR P (8 — ) (8, T — Yim)

< ctpS(t o — Yk)pY(t T — Ym) + ctpl (8 — Yk) o)t T — ). (3.29)
By (3.24-3.29) we obtain

A(t, z,y) CZ Htﬂo t, @i — yi) (Pg(tﬁvk — k) +9575(t7$k - yk)) :
1;£k
Using this and (3.23) we obtain that for any n € N, x,2’,y € R, t € (0,T] and
7€ (0,8)

cCn— 1
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d

d
< IS TT b @ = i) | (A5t wx = i) + 2yt o =)

k=1 |i=1

d
+ 30 [TLb i = ) | (S0t k=) + s (1,2 — )

This, Lemma 3.8 and the definition of ¢ imply the assertion of the theorem. O
Lemma 3.10. For all v € (0,1], z,2',y € R%, t > 0, we have

d
|py(t7 ‘T) - py(tv ZC/)| < C|$ - xll’yti’ﬂa ([H gt(xi) +
i=1

d
H gt(fci)l ) .
i=1
Proof: By Lemma 3.3 we get

d
Ipy(t,x) — py(t,2")] < c (|:v — 2tV 1) <[H9t($i) +
i=1

d
H gt(:c;)] ) :
i=1
Since (Jz — 2/[t71/* A1) < |z—2'|"¢~7/* we obtain the assertion of the lemma. [
By Lemma 3.3 and the formula for p, (¢, z) we obtain
Lemma 3.11. For any =,y € R? and t > 0 we have
d
1
Vpy(t,) (@ = y)| < ct™ = T] o2t 2i — i),
i=1
Lemma 3.12. For any x € R? and t € (0,7T] we have

—1

/ m(t,-)(x—y)dy\SctT.
R4
Proof: Let Dipy(t,-)(x —y) = limpo(py(t,z — y + her) — py(t,z — y))/h. It is

enough to prove the estimate for I = f]Rd Dipy(t,-)(x — y)dy. Let v € (0,8) and
put g = (z1,¥2,...,yqd). We have

[ |t () [T ()]

“mat () llj T <_<;§>H "

Il

< Lo e Coad) - et (o) ]
- Lli aiz'l(ﬂ) o ("Zl“_@y)l)] W
N foamw (o)

:2 az‘il(l?) ” (CZZ_(;;” "

X Lli aiil(y) gt (Z:(;jt) B
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= II+1III
By Chen and Zhang (2016, (2.31)) we get
1, (z1—w 1T, (zi—n
W) < a1 (y) > A ( a11(9) )‘
< clzr — P A0 (8 a1 — y1) + pd s (B 1 — 1))

%. Note also that

Using this and (2.3) we obtain II < ct

1, <$1 —y1>‘ 0
g < epa1(t,x1 —y1).
a ()7 \ a1 (y) ot

Using this, Corollary 3.6 and (2.3) we get 11T < = O

Similarly as in Chen and Zhang (2016) we denote

¢y(t,$, S) = / pz(t —s,x—2)q(s,2,y)dz
Rd
and t
oy (t,x) = /0 by (t,z,5) ds.

Clearly we have
pA(t,x,y) = py(t,x —y) + @, (t, x). (3.30)
By well known estimates of Vp,(t—s,-)(z — z) and Theorem 3.2 we easily obtain
the following result.

Lemma 3.13. For any z,y € R%, ¢t > 0 and s € (0,t) we have

Voo, ta,) = [ Vpa(t = s.)la = als ) d

The next result is the most important step in proving gradient estimates of

pAt,z,y).
Lemma 3.14. For any a € (1,2), z,y € R? and t € (0,T] we have
¢
Vaepy(t,x) = / Vp.(t — s, )(x — 2)q(s, z,y) dz ds. (3.31)
0 JRrd
and
o
[Vapy(t,z)| < ct™= Hpg(t,xi — i) (3.32)
i=1

Proof: Let x,y € R4, t € (0,T] and s € (0,t). The main tool used in this case is
Theorem 3.2. Using this theorem, Lemmas 3.11, 3.13 and (2.4) we obtain

Yoty < [ 190t =)o = 2) s, 2]

< c/ (t—s) V. (t — 5,2 — 2)
R4

d d
< 3 T Ao(ss 2 = wi) | [06 (5, 2m — Ym) + P3(5, 2m — ym)] dz
m=1 | =1
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/ Po1(t = 8,2m — 2m)
R

A
o
-
=

o
~
&8
|
<
N~—

X [Pg(sa Zm — ym) + p%(sa Zm — ym)] dz
d [ d | 51
S & Z H p(Ol(t7x1 - yl) |:(t - S)Tpg(t7xm - ym)
m=1 | i=1
Li£m _

a—1 B-a

H(t—5) T s Pt T — ym) + (= 5) 7 o (T — Ym)
+(t— s)_ésgpg(t, Tom, — ym)} )
It follows that

Vi [/Ot oy(t,x,s) ds} = /Ot Vi (t, z, s)ds,

which implies (3.31). We also obtain

t
‘/ Vaoy(t, z,s)ds
0

d d t
-1
<o [T tto-w| [ [6-9 dton - )
m=1 | i=1 0

a—1 B-a 41

+(t_S)TS « pg(tvxm_ym)+(t_5) "Pg(t,fm—ym)
_1 B

+(t—s) asapg(t,xm—ym)} ds.

m=1 | i=1
which implies (3.32).
O
Proposition 3.15. For any a € (1,2), t € (0,7] and 2,y € R we have
d
1
IVap(t,y)| < et [ ge(wi — i)
i=1
Proof: The assertion follows from formula (3.30) and Lemmas 3.11, 3.14. O

4. Feller semigroup

For any bounded Borel f: RY — R, t € (0,00) and x € R? we define
P f(x) = /Rd Pt y)f(y) dy.

The main aim of this section is to show that { P2} is a Feller semigroup.
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For any € > 0 and = € R? we put

d
le'

cf@ =52 [ oo

dZi
LYf(x Z/ (@, %) 0i(Y) — e
{z:: |z¢|>a} |Zl|

Using Chen and Zhang (2016, (3.13)) and the same arguments as in the proof of
Lemma 3.12 we obtain

Lemma 4.1. For any e >0, z,y € R? and t € (0,T] we have

[ e - o] < '

B

Lemma 4.2. For any x,y € R? andt >0 LZpy(t, x) is well defined and we have

LPpy(t,x) = /0 /]Rd L, (t — s, )(x — 2)q(s, z,y) dz ds. (4.1)

Fiz v € (0,8). There exists ¢ such that for any e >0, t € (0,T] and z,y € R% we
have

[Cep™(t, -, y) ()] < et Hpa (t, i — yi)- (4.2)

Moreover, t — L%y (t,x) is continuous on (O,T) for any x,y € R,

Proof: Let € > 0. We have

t
Logy(t,z) = / / Lopa(t — 5,) (@ — 2)q(s, 2,y) dzds.
0 R4

By Lemma 3.1 and Theorem 3.2 one easily gets

lim LIp,(t —s,)(x — 2)q(s,z,y)dz = / L%, (t — s, )(x — 2)q(s, 2,y) dz.

e—=0t JRd R4
(4.3)
The most difficult part of the proof is to justify
t
lim / / LIp,(t —s,)(x— 2)q(s, z,y) dzds
e—0t 0 R4
t
= / lim / LEp.(t— s, )(x—2)q(s,2z,y)dzds. (4.4)
0 €0t JRd
We have
t/2
oot = [ Lml— s - s, 50) dzds
0 R

t
+ / / Lop(t - 5,°) (& — =) duq(s, 2, y) ds
t/2 JRa

+ / / LEp.(t — s, )(x—2)(q(s, z,y) — q(s,x,y)) dz ds
t/2 JRa
= D(t,xz,y)+ E(t,x,y) + F(t,z,y).



1358 T. Kulczycki and M. Ryznar

For s € (0,t/2) by Theorem 3.2, Lemma 3.1 and (2.4) we obtain
[ 1ept = 5.0 = 2)als,2.0)] dz
R

d d
<e Y | Pt —wi)

m=1 | i=1

X

/ Pt — 5, 2m — 2m) [P (52 2 — Ym) + PO 2 — )] dz
R

d d
<ed | TI Aot i —wi)
m=1 | i=1
B-a B-a _
X |t = )" 3t — ) + "5 PRt T = ) + (= 8) 7 e — )|

It follows that

t/2
lim / LEp.(t— s, )(x—2)q(s,2z,y)dzds
0o Jre

e—07t
t/2
= / lim LIp.(t —s,-)(x — 2)q(s, z,y) dzds. (4.5)
0 e—=0t JRd
and

d
D(t,I,y) < Ctill_[pgz(tvxi _yl) (46)

i=1

For s € (t/2,t) by Theorem 3.2 and Lemma 4.1 we obtain

d
/ L;pz@—s,-)(x—z)dzq<s,x,y>} < ot =) = [0t — ).
Rd

=1

It follows that

t
lim / / LEp,(t —s,-)(x — 2) dzq(s, z,y) ds
t/2 JR?

e—0t
¢
= / lim / LIp,(t — s, )(x — 2)dzq(s, z,y) ds. (4.7)
t/2 e—0t JRd
and
d
E(t,z,y) <ct™? Hpg(t, i — Yi)- (4.8)
i=1

Now, we need to obtain some estimates which will be crucial in studying the
most difficult term F(t,z,y). By Lemma 3.1 and Theorem 3.9 there exists ¢ (not
depending on ¢) such that for any ¢ € (0,7] and z,y € R? we have

d
/ ZU =) ol (s 2.) a9
R i=1 w;|>€
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d d
<c(t— S)_l/Rd(VU — 2" A1) lH po(t — s,z — Zi)] dz Y T Po(simi — i)
i=1

X [pffg(su Tm — ym) + pg(saxm - ym)]

d d
+e(t—s)7t /Rd(lx—ZIﬂ_”A 1) lnpg(t—&xi _Zi)] ST Aoz —wi)

X [pgfg(su Zm — ym) + pg(su Zm — ym)] dz
- Bl(sutaxay) + B2(S7t7$7y)'

Clearly (Jz — 2?7 A1) < 20 |k — 2]?~7 A 1). Tt follows that

d
(t—s)"t /Rd(|x—z|ﬁ'y/\ 1) alg(t—s,xi —zz)] dz

i=1
d
< CZ/ pgf’y(t —8,x — 2k) dzg
k=1"R
< et — s)ﬁigia
Hence
5 d d
e
Bl(s,t,x,y) < C(f—S) « Z H pgz(S"ri _yl)
m=1 | =1
X [pgfﬁ(s, Tm — ym) + pg(su Tm — ym)] (49)

We also have

d d
By(s,t,w,y) < ¢y / 11 2%t = s, = 20)p0 (5,2 — )
m=1"R* | =1
i#Em
Po (t_svxm_zm)[pgfﬁ(suzm _ym)+p2(sazm_ym)] dz

d d
10 30 3 I B | IR I

X pg(t—s,xm —Zm)[p,"i,,ﬁ(sazm_ym)+p'0y(sazm_ym)]

X py Tt — s, ak — )P0 (s, 2k — yk) dz
= B3(Sat7x7y) +B4(S,t,$,y)-

By (2.4), we have

B3(Svta xz, y)

d d
2B—y—«a -8B B—a
9}){ pSY(t,xi—yi)M(t—s) 32 ot T — o) + 575 P T — Y
1

m=1[i=
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B=y—a =8

(=) 8T gt T — Ym) + 57T 00 (T — Ym)

+(t—8) 5 A Pt — ym)}- (4.10)
By (2.4), we also have
By(s,t,z,y)
d d
<ed Y H Ptz — yi)
m=1}=1 | =1,

|u

=8 y—o

) ([ = 9% 4 (= 9)E5™ 457 | Yt — ) + 575 006 — )
B—y—a «a B—~ _
Ht—s o sa s oa }pg(tafck—yk)Jrﬂg ”(t,xk—yk)} (4.11)

By (4.9-4.11) and (2.3), we get

e—0t ¢

lim / / LEp,(t — s, )(x—2)(q(s, z,y) — q(s,x,y)) dz ds
/2 JRa

= / lim / LEp,(t — s, )(x—2)(q(s, z,y) — q(s,z,y)) dz ds. (4.12)
/ R

t/2 e—0+t

and

d
F(t,z,y) < ot Hpg(t,xi — ;). (4.13)

i=1
1.7), (4.12) we get (4.4). We also get continuity ¢ — L%y, (¢, z). By
) we obtain (4.1). Using (4.6), (4.8), (4.13), Lemma 3.1 and formula
(4.2 O

y (4.5), (
(13)and( 4
(3.30) we get

The next result is an analogue of Chen and Zhang (2016, Theorem 4.1). Tts
proof is almost the same as the proof of Chen and Zhang (2016, Theorem 4.1) and
is omitted.

Proposition 4.3. Let u(t,z) € Cy([0,T] x RY) with

lim sup |u(t,z) —u(0,z)| = 0. (4.14)
t—0t L cRd
Assume that
t — Lu(t,x) is continuous on (0,T) for each x € RY (4.15)

and for any € € (0,1) and some v € (o —1) VvV 0,1)

sup |u(t,z) —u(t,2')| < K|z — 2|7, x,2’ € RY (4.16)
te(e,T)
If u satisfies
0
gu(t,x) = Lu(t,x), te(0,T], z<€RY, (4.17)
then
sup sup u(t,x) < sup u(0,z). (4.18)

te(0,T) z€R4 z€R?
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Lemma 4.4. Let z,y € RY. Then the mapping t — wy(t,x) is absolutely continu-
ous on (0,T]. For anyt € (0,T) we have

o t
ﬂ(t, z) =q(t,z,y) + / / L2p,(t —s,)(x — 2)q(s, z,y) dz ds. (4.19)
3t 0 R4

Proof: Let h > 0 be such that t + h < T. We have

py(t+h x) —py(t, @)

t+h
= / / py(t+h—s,x—2)q(s,z,y)dzds
RA

——// pa(t — 8,2 — 2)q(s, 2, y) dzds
h 0 Rd

t+h
—/ / p.(t+h—sx—2)q(s,z,y)dzds
R4

——//pzt+h—sx—z) (s,2,y)dzds

RA

—// p(t+h—s,x—2)q(s,z,y)dzds
R4

__/ /}dez (t — 5,2 — 2)q(s, 2, y) d=ds

t+h
/ / py(t+h—s,x—2)q(s,z,y)dzds
RA

(t+h—s2—2)—p.(t—s2—
+// pe(t + 52 2) (t=s 2 Z)q(s,z,y)dzds
Rd

h
=I1+1L

After change of variables t + h — s = u we have

h
I = l/ / pe(u,x — 2)q(t + h — u,z,y) dzdu
h 0 R4
1 h
= —/ / (p2(u,z = 2) = pa(u, @ — 2))q(t + h — u, z,y) dzdu
h 0 R4

1 h
+ —/ / Po(u,x — 2)qt + h —u, z,y)dzdu
h 0 R4
= I) + 1.
By Theorem 3.2 ,sup, <, ,era ¢(t + h —u,2,y) < M < oo. Moreover, from
Corollary 3.5,
Ipz(u, z — 2) — pe(u,x — 2)| < epa(u, x — 2)(Jz — 2| A1).
Hence,
1 h
limsup [I;| < ¢M lim sup —/ / pe(u,z — 2)(|z — 2P A1) dzdu=0. (4.20)
h—0t+ h—0+ h R4

Next, by Theorem 3.2, the function ¢(s, z,y) is continuous and bounded on [t, T] x
R4, as a function of s and 2. Since the measures p,(dz) = p.(u,z — z)dz converge
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weakly to 6, as u — 0", we obtain
h1l>HOl+ I2 = Q(taxay) (421)
We have

t/2 t+h—sz—2)—p.(t—s,x—
I = / / pa(t + sz —2)—p(t—s2 Z)q(s,z,y)dzds
i I

t
(t+h—sx—z)—p.(t—sa—
+ // /dp( i Z}z P:(t = s.@ Z)q(s,z,y)dzds
2 JR

= III+1V.
By estimates of %pz(t z) following from (3.3) and Theorem 3.2 we get
t/2
hlir& III = / /]Rd 8tpz —s,x — 2)q(s, z,y) dz ds. (4.22)

We have

p(t+h—s,x—2z)—p.(t—s,ax—z
Vo= //2 /]Rd ]?L ( )(q(S,Z,y)—q(s,x,y)) dz ds

n / / p(t+h—s,2—2)—p.(t—s,x—2) dzq(s, 2, y) ds
/2 R4 h

= V+ VL

Note that for h > 0, s € (t/2,t), v € (0,8), ,9,2 € R%, by Theorem 3.9 and
the estimates of %pz (t — s,z — z), we obtain

pz(t—l—h—s,a:—z)—pz(t—s,x—z)

|(Q(5, 2, y) - Q(vavy)”

h
B— (9
< B(lz—z|"77" A1) Epz(t—l—ﬁh—s,:v—z)
d
< B(|x—z|'8_VAl)(t—s)_lnpg(t—s,:vi—zi),

i=1
where B = B(t,a,d, by, b2, b3,8,7) € (0,00) and 6 = 0(s,t, h,a,d, by, b, bs, 5,
v,2,z) € (0,1). We also have

/<|x—z|6u1 1Hpa 5,2y — ;) dz
R4

d
< CZ/ Pt — 5,25 — 2) dz;
i=1 /R
< c(t— S)Bigia
It follows that
hli)r101+ V= 2 Ju 5iP= ,x —2)(q(s, z,y) — q(s,x,y)) dz ds. (4.23)

Note that for h > 0, s € (t/2,t), z,z € R? we have

l(/ pz(t—i-h—s,:v—z)dz—/ pz(t—s,x—z)dz>
h Rd Rd
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= % dez(t—|—9h—s,x—z)dz

= /Rd%pz(t—FGh—s x —z)dz,
where 6 = 0(s,t, h, a,d, by, ba, b3, 8,7, x) € (0,1).
Using this, (2.6) and the definition of go(t, x,y) we get
/ pz(t—Fh—S,I—Z)—pz(t—S,I—Z)dz
ha h

/ LZp,(t+60h—s,-)(x—2)dz
RA

= —/ qo(t+9h—s,:17,z)dz+/ LEp,(t+60h —s,-)(x — 2)dz.
R4 R4

By (3.5) and (2.3), we have

/ qo(t+60h —s,z,2)dz| < c(t — s)%
R4
By Lemma 4.1 we get
/ LEp,(t+0h —s,)(x—2)dz| < c(t — S)B;aa
Rd
It follows that
! 0
hlgéh VI= /t/2 /]Rd Epz(t —s,x — z)dzq(s,z,y) ds. (4.24)
By (4.20-4.24) we obtain
t+h t
i 22D —eta) g / / Lop(t—s,-)(@—2)a(s, 2, y) dz ds.
h—0+t h R4

The proof of the analogous result for lim;,_,q- is very similar and it is omitted. [

Proposition 4.5. For all t € (0,00) and x,y € R% we have

At m,y) = Lp(t, -, y)(x).

ot

Proof: By the definition of ¢(¢,z,y) we obtain

t
q(t,z,y) = qo(t, z,y) +/ /d Q(t — s,2,2)q(s, z,y) dz ds. (4.25)
0 JR
Using (3.30), (2.6), Lemma 4.4 and the definition of go(¢,z,y) we obtain

op* Opy Oy

ey = iy — ey

5 Lay) = 5o (be—y) + —5(t )

= LYpy(t,x —y) +q(t,z,y) + / /d Lop,(t —s,°)(x — 2)q(s, z,y) dzds
R

=Ly (t,x —y) —qo(t, z,y) + q(t, z,y) //szzt—s )z — 2)q(s, z,y) dzds.
R4

By (4.25) this is equal to

Lpy (2, //Rd (ot —s,x,2) + L7p.(t — s, )(x — 2)) q(s, z,y) dz ds
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=L% // LEp,(t —s,-)(x — 2)q(s, z,y) dzds.
RA
By (4.1) and (3.30) this is equal to £L*pA(t, -, y)(x), which completes the proof. [
Lemma 4.6. For any bounded Borel f : R — R, t € (0,00) and z € R? we have
0
L(PA)(w) = 2 P ().
Proof: We have
S(PA) = Tim Lo(PA ) = tim [ Lop(t ) (@) () dy.
By Lemma 4.2 this is equal to
/R lim_ £opA(t, - y)(2) () dy = /R Lt ) ()T () . (4.26)

d e—0t

By Proposition 4.5 this is equal to

[ ot =2 [ o eanit)i

O
Proposition 4.7. Fort € (0,T] and z,y € R? we have
d
pA(tv'Ivy) < CHgt(I -
i=1
Proof: By Theorem 3.2, estimates of p, and (2.5) we obtain
loy (t, z)| = pz s,x — 2)q(s, z,y)dzds
0
<c Pa(t — 5,2 — i)
/ L}l
d d
< S TT 22652 — 6) | 166052 2m = m) + PS5 2 — )] d2 s
m=1 | i=1
d d t
sc Z H pa(t, i — yi) / / Pa(t = 8, @m — 2m)
m=1 | i=1 0 JR
Li#Am J
X100 (8, 2m — Ym) + P35, 2m — Ym)] dz ds
d d
sc Z H po(t, i — yi) [ngrg(t,ﬂ?m — Ym) + pg(t, Tm = Ym)]
m=1 | i=1
Li#m J
d d
<c alg(t,xi—yi)] thle Z (|xm—ym|ﬁ/\1)] . (4.27)
i=1 m=1

Now the conlusion follows from (3.2) and estimates of p,,. O
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The following result shows that {P} is a Feller semigroup.

Theorem 4.8. We have:

(i) PA : Co(R?) — Co(R?) for any t € (0, 00),

(ii) limy o+ [|[PAf = flloc = 0 for any f € Co(RY).

(iii) p(t,z,y) > 0 for any (t,z,y) € (0,00) x R? x R?,

(iv) f]Rd pA(t,x,y)dy =1 for any (t,7) € (0,00) x R,

(v) [pa (b2, 2)p(s,2,y)dz = pA(s + t,2,y) for any (s,t,z,y) € (0,00) x
(0,00) x R? x R

Proof: (i) follows by the fact that  — p?(¢,z,y) is continuous and by Proposi-
tion 4.7.
It is shown in the proof of Proposition 4.7 that

d
|90U t JJ S Z pg(t,xi - yi) [pg—i-ﬁ(tu Tm — ym) + pg(taxm - ym)]
m=1 il;m
Let f € Co(R?). It follows that lim; ,+ SUp,cpa U}Rd oyt x) f( )dy‘ = 0 for any
f € Co(RY). It is clear that lim; ,o+ SUp,cpa U}Rd py(t,x —y)fly)dy — f(z ‘ =0

for any f € Cp(R?). Hence we obtain (ii).

For any (t,z) € (0,T] x R? put u(t,z) = PAf(z), uw(0,z) = f(z). Note that
u(t, z) satisfies the assumptions of Proposition 4.3. Indeed, (ii) gives (4.14). By
Lemma 4.2 we get (4.15). By Theorem 1.1 (iv) and Proposition 3.15 we obtain
(4.16). Lemma 4.6 gives (4.17). Applying Proposition 4.3 to f € C®, f < 0
we obtain (iii). Note that @(t,z) = —1 4+ PA1(z), u(0,2) = 0 also satisfies the
assumptions of Proposition 4.3. Using this proposition we get that P21 = 1 which
implies (iv). Fix s € (0,T), f € C°, f > 0 and denote u,(t,z) = P4, f(z),
us(t,r) = PAPAf(x), u1(0,2) = uz(0,7) = PAf(x), u(t,r) = uy(t, ) — ua(t,z).
By Proposition 4.3 applied to u(t,x) we get u1 = ug which implies (v). O

Using similar ideas as in the proof of (4.1) one can easily obtain the following
result.

Lemma 4.9. For any t € (0,00), z € R? and any bounded, Hélder continuous
function f we have

| [ o -d} — [ cPA () s 4,
[ raroas] @ = [ ertrwas (1.29
Proposition 4.10. For any t € (0,00), x € R? and f € CZ(R?) we have
R = 5+ [ RS (129)
Proof: Put u(t,z) = f(z) + fo PALf(x)ds. By (4.28) we get
Lu(t,z) :Lf(x)+/ L (PALE) (z)ds
0

By Lemma 4.6 this is equal to

Lf(x) —I—/O % (PSALf) (x)ds = PtALf(x) = %u(t,x).
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It is easy to check that u(t,z) satisfies (4.14-4.16). Put a(t,x) = PAf(z), @4(0,z) =
f(z) and v(t,z) = u(t,x) — a(t,z). By the arguments from the proof of Theorem
4.8 we obtain that (t, x) satisfies (4.14-4.17). Using Proposition 4.3 for v(t, z) we
get v = 0 which implies the assertion of the lemma. (|

The next theorem gives that £ is a generator of the semigroup {PtA}.

Theorem 4.11. For any f € C2(RY) we have

PAf(x) —
lim DS =@ oy p e R
t—0+ t
and the convergence is uniform.
Proof: By Proposition 4.10 we have
PA _ 1 t
i CA@ = @) —/ PALf(x) ds.
t—0+ t t—0+ ¢ Jo
By Theorem 4.8 (ii) this is equal to £ f(z) and the convergence is uniform. O

Remark 4.12. The heat equation in Proposition 4.5 should be understood in the
pointwise sense. We do not claim that the function pA(t, -,y) with fixed ¢t > 0 and
y € R? is in the domain of the generator of the constructed semigroup. In fact we
do not know what is the domain of the generator. This is an interesting question
on its own, but we do not address it since our point is to construct the semigroup
and to prove its sharp estimates.

We are now in a position to provide the proofs of most of the parts of Theo-
rem 1.1.

Proof of Theorem 1.1 (i), (ii) and the upper bound estimate in (ii1):  From The-
orem 4.8 and Theorem 4.11 we conclude that there is a Feller process X, with the
transition kernel p* (¢, z,y) and the generator £. Let P*, E” be the distribution and
expectation for the process starting from x € R?. First, note that for any function
[ € CZ(R%), the process

ME = (X)) - F(Ro) - /0 LF(X)ds

is a (P*, F;) martingale, where JF; is a natural filtration. That is P* solves the mar-
tingale problem for (£, CZ(R%)). On the other hand, according to Bass and Chen
(2006, Theorem 6.3), the unique weak solution X to the stochastic equation (1.1)
has the law which is the unique solution to the martingale problem for (£, CZ(R?)).
It follows that that X and X have the same law and pA(t,z,y) is the transition
kernel of X.

The continuity of p?(¢,z,y) with respect to all variables follows from Theo-
rem 3.2. Positivity is a consequence of the lower bound in (1.5) which will be
proved in the next section. Finally, (ii) follows from Proposition 4.5. The upper
bound estimate in (iii) follows from Proposition 4.7. O

Proof of Theorem 1.1 (iv): The main tool used in this proof is Theorem 3.2. By
Lemma 3.10 and Theorem 3.2 we get

oy (£, ) — oy (L, 2")]
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IN

t
// Palt — 5,2 — 2) — palt — 5,2 — 2)|Ja(s 2 )| dz ds
0 R4
c(At,z,y) + A(t, 2, y)) (4.30)

IN

where

t d
Alt,z,y) = |3:—a:’|7/0 /]Rd(t—s)v/a [Hgts(xi_zi)‘|

d d
-1 [Hpg(s,zi—yi)] sPlo 4 Z (|zm—ym|5/\1)] dzds.
i=1 m=1

We have
At ,y) < clz — a7 Z H gi(w
m=1 | i=
z;ém

t
X / / pgf,y(t — 8, Ty — zm)pg(s, Zm — Ym) d2zm ds
0 JR
d t
+clx — 2|7 [H gi(z; — yl)] / / pgﬁ,y(t —8,x1 — zl)p%(s, z1 —y1)dz ds.
i=2 0 /R

t
/ / p(Olf'y(t_ S, Tm —Zm)Pg(szm _ym) dzm ds
0o JR
S pg—'y-‘,-ﬂ (t7 Tm — ym) + pg—ry(tu Tm — ym)7
and
t
/ / png'y(t -85 T1 = Zl)p%(sv 21— yl) dz ds < png'erﬁ(tvxl - yl)
0o JR
It follows that
d
A(t,l’,y) < Cl(E - x/|Vt—7/a [H gt(xl - yl)‘| .
i=1
Using this, (4.30), Lemma 3.10 and (3.30) we get the assertion of Theorem 1.1
(iv). O
5. Lower bound estimates

5.1. Lévy system. Let P* E* be the distribution and expectation for the process
X, starting from z € R?. By F; we denote a natural filtration. For z € R¢ and
Borel A C R? we define the jumping measure

dyi
;CA .A Z/@k;ﬁz T dyk) u( )| __$|1+O¢’

where ¢, is a Dirac measure on R concentrated at xy.
The purpose of this subsection is to provide arguments for the Lévy system for-
mula. Namely, we will show that for any z € R? and any non-negative measurable
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function f on Ry x R? x R? vanishing on {(s,2,7) € Ry x R x R%;z = y} and
JF: stopping time T, we have

E® (s, Xo_, Xs) s, Xs,y)J (X, dy)ds. 5.1
> e [ s X (1)

Since we exactly follow the approach of Chen and Zhang (2016) we only briefly
sketch the arguments.
It is well known that for f € CZ(RY),

dwi

Aoy i i€ —ay(x)wie;) — 2f(2)] ——
=53 [ U+ astehuies) + 1o = autepvied) 21 )]

For y € R? we denote |y|o = max;{|y;|} the sup-norm in R¢. For z € R? and
r > 0 we denote B(z,7) = {y € R, |y — 2o < r}. Then for f € CZ(R?), we can
rewrite the formula of the generator as

Lf(z) = lim (f(y) = f(@))J (z, dy).

™0 Be(z,r)

As it has been already observed in the last section, for any function f € CZ(R?),
the process

MY = F(X0) — f(Xo) - /0 CF(X.)ds

is a (P¥,F;) martingale. Suppose that A and B are two bounded closed subsets
of R? having a positive distance from each other. Let f € CZ(R?) be such that

f(x) =0,z € Aand f(z) =1,z € B. We consider a martingale transform of Mtf7
t .
N/ = / 14(X,_)dM!.
0
By the Ito formula, if X;_ € A, we have
dM] = [(Xs) = [(Xso) = £f(Xs)ds = [(Xs) = £f(Xs)ds.
This implies that

N = Y 1a(X, (X - / 14(X.)L (X, )ds

s<t

S La(X.)F(XL) - / X.) [ £0)I(X..dy)a

s<t

Approximating 15 by a decreasing sequence of smooth functions we show that
t

D 1a(X)1p(X,) - / 1A<Xs>/ J(X,, dy)ds

o 0 B

is a martingale, hence

EwZu(Xs_)lB(Xs):EI/OtlA(XS)/BJ(XS,dy)ds.

s<t
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Using this and a routine measure theoretic argument, we get

E") (X, Xo) :Em/o /]Rdf(Xs,y)J(Xs,dy)ds

s<t

for any = € R? and any non-negative measurable function f on R? x R? vanishing
on the diagonal.

Finally, following the same arguments as in Chen and Kumagai (2008, Appendix
A), we obtain (5.1).

5.2. Lower bound of p**. We essentially follow the approach from Chen and Zhang
(2016), where an argument relied on certain exit and hitting times estimates was
applied, but the singularity of the jumping measure forces us to use an induction
argument. It is worth mentioning that such precise estimates we obtain seem possi-
ble, despite the singularity, because the projections of the jumping measure to the
main axes are very regular and absolutely continuous with respect to one dimen-
sional Lebesgue measure. Even in the case of one-dimensional Lévy processes with
singular Lévy measure lower bounds for transition density may not be possible. We
start with the near diagonal estimate of the transition kernel.

Lemma 5.1. For any a > 0 there is ¢ = c(a,d, a, by,be,b3,08) and 0 < ty < 1,
to = to(a,d, o, by, ba, bs, B) such that for t <ty and z,y € R with |y —z|s < at/®,

Pt y) = et (5.2)
Proof: By (4.27), if |y — 2|e < at'/®, we have
d d
oyt )| < e [T %t s —ua) |7+ D (lom — yml® A1) | < cxt=¥ePle,
=1 m=1

Hence, we can find g < 1 such that for ¢ < ¢y and |y — x| < at'/® we have

pA(t,.I,y) :py(t’x_y)+¢y(tax)
> py(t,x —y) — lpy(t,z)| > eot U — o p—d/ Bl
> ot~

Let for a Borel D C R¢,
7p = inf{t > 0; X; ¢ D} and Tp = inf{t > 0; X, € D}
be the first exit and hitting time of D, respectively.

Lemma 5.2. There is ¢ such that, fort <1,R >0, z € R?,
t
P* <t)<c—.
(TB(z,R) <t) < CRO‘
Proof: Applying the strong Markow property, we obtain
P*(TB(z,r) < 1)
<P(7Ba,r) <t [X () — 2lee < R/8) +P*(|X(t) — 2[ec > R/8)

<P(7B@,r) <t |X(t) — X(7B(2,R))|cc > 1R/8)
+P*(|X(t) — 2] > R/8)



1370 T. Kulczycki and M. Ryznar

=E"(1p(s,r) < t; PXB@m) (X (t — 7502 r)) — X (TB(2,R)) |00 > R/8))
+ PP (| X (t) — 2] > R/8)

< 2supsupP*(| X (s) — z|oc > R/8)
z s<t

<c—.
S Cha
The last step follows from the upper estimate (1.5) of the heat kernel pA (¢, z,y). O

Lemma 5.3. Let r > 0 and z,y € RY. Assume that |1 — y1| > 6r and
maxoe<i<d |€i — yi| < r. Then fort >0,
Tt

P*(X(t) € B(y,4r)) > c——
(X(1) € Bly4r) > et

PI(TB(LT) > t) inf P? (TB(z,Qr) > t)

Proof: Let o0 = Tpg(y,2,) be the first hitting time. By the strong Markow property
P*(X(t) € B(y,4r)) > P*(c<t; sup |X(s)—X(0)|eo < 2r)

o<s<o+t
= E* <a < t; PX(@ (sup | X (s) = X(0)]oo < 27"))
s<t
> P?(o < t)inf P*(sup | X (s) — z|eo < 27)
z s<t

> inf PZ(TB(ZQT) > PP (X (EA TB(z,r)) € B(y,2r)).

By the Lévy system formula (5.1), we have

t/\TB(z',T‘)
P*((X(t A TB@r) € Bly,2r)) = Ef/ / J(Xs, du)ds.
0 B(y,2r)

We may assume x; < y1. Since |1 — y1| > 6r and maxe<i<q|z; — yi| < 7, for
z € B(x,r), we have

P L 110 .Ul B
T fun =[5 = Ty =
B(y,2r) y1—2r W1 — 21 n 1

,
—_r
lyp — [+
rt
"
lyp — [+

Hence,

Y%

Pm((X(t/\TB(LT)) € B(y,2r)) Em[t/\TB(myr)]

Pm(TB(LT) > t).
O

Lemma 5.4. There is tg > 0, to = to(d, o, by, ba, b3, 8), such that for 0 < t < tg,
x,y € RY satisfying maxoci<q | — yi| < 261 we have

d

Pt a,y) > e[ ] gl — wa).
i=1
Proof: We pick tg > 0 corresponding to ¢ = 12 in Lemma 5.1. Due to the
near diagonal estimate (5.2), it is enough to conmsider |z; — yi| > 12t/ and
maxo<i<q |z; — yi| < 2t1/*. Applying Lemma 5.3 with = 2t/ we obtain

PAta,y) > / A (s 2, 2)pA (b2, 2, y)dz
B(y,4r)
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> inf  pA(ta, z,y)P"((X(t1) € B(y,4r))

z€B(y,4r)
> ¢ inf  p(ty,z y)LPI(T >t)
el zEB(y,47‘) 25 % |y1 _$1|1+O¢ B(w,'l‘) = U1
X iIzlf P (TB(z,2r) > ty), (5.3)

where t; > 0 with t; + to = .
Now, due to Lemma 5.2, we can pick 0 < A < 1, independently of ¢, such that

ianz(TB(zﬁr) > At) >1/2.

Moreover, we can select A so small that 8 < 12(1 —\)'/®. Then for |z —y|o < 4r =
8t/ < 12((1 — \)t)Y/*, by Lemma 5.1, we have
P = Nt z,y) > et~
Taking t; = At, ta = (1 — A)t and applying (5.3) we arrive at
' d
A —(d-1)/« ; )
t,x,y) > ct — >c T — Yi).
p ( y) |y1—$1|1+a ggt( y)

O

Proof of the lower bound estimates in Theorem 1.1 (iii): For a natural k < d — 1
we define
Vi(t) = {(z,y) € R*; 1I§nz'i£k |z — ys| > tY/* and kﬁlgg(gd |z — ya| <tV
We set
_ 2d, X . 1/«
= — <
Vo(t) = {(z,y) € R* max |o; -y <77}

and
= 24 min |a; — yi| > ¢/},
Va(t) = {(z,y) € R ,@lgdlxl yil >t}

By a renumeration argument it is enough to prove the corresponding lower bound
on Vi(t),k = 0,...,d. At first, we assume that ¢t < ¢y, where to was found in
Lemma 5.4. We have already proved the lower bound on Vy(¢) and V;(t). We show
how to extend it to Va(t).

Thus, we consider the case |21 —y1| > tY/%, |xg — yo| > t7/* and maxz<i<q |z; —
il <t/

Let 2/ = (y1,%2,...,2q4). If 2 € B(a',tY/%/4) then |x; — 2| > (3/4)tY/,
maxa<i<d |£L'l — Zl| S 2t1/a and |y2 — Zgl Z (3/4)t1/a, max;£2 |yz — Zi| S 2t1/a.
Hence, by Lemma 5.4,

t t
A —(d-1)/a —(d-1)/a
t,x,z) > ct >ct )
p(tz,z) >c |21 — zq |11 ¢ ly1 — @1 |1+
t t
A —(d—1)/« —(d—1)/«
po(t,z,y) > ct —— >ct _
( ) |22 — 2|t ly2 — wo|L T

Finally,

P22,y > / At 2)pA (1, 2 y)d
B(a' t1/ /4)
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Y

ct—(d—l)/a;t—w—l)/a;/ &
ly1 — z1[1+e ly2 — 22" J (w4170 /0

t t
> ¢ =(@=2)/a
Ty [PT yg — e

d
2 Cngt(ﬂﬁi - Yi)-
i=1

This concludes the proof of the lower bound on V3(¢). In a similar fashion, by
induction argument, we show that, if (z,y) € Vi (¢t) and t < to, then

t t
A i = 3=(d=k)/a
P (t,x,y) ° C|3/1 —$1|1+0‘ . . |yk —$k|1+o‘t

d
> CHgt(!Ei — i) > cpo(t,z —y),
1=1

which ends the proof for the case t < tg. If t > to then we can write ¢t = nty + s,
with s < tp and n € IN. Then by already proved lower bound

PA(faany):/ / P (to, 2, 21) - 0 (tos 20y 2001)D (8, 2ng1, ) d21 - dZpgn
R4 R¢

> / . / po(to,z — z1) ... po(to, 2n — 2n+1)Po(S, Znt1 — y)dz1 . . . dzpta
R4 R4

= c"+1p0(t, x—y).

The proof is completed.
O

Proof of Theorem 1.1 (v): The assertion follows from Proposition 3.15 and the
lower bound estimate in Theorem 1.1 (iii). (]

Acknowledgements. We thank the referee for useful comments and sugges-
tions which improved the presentation of the paper.
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