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Abstract. We introduce a family of real random variables (3, 0) arising from the
supersymmetric nonlinear sigma model H?? and containing the family 8 intro-
duced by Sabot, Tarres, and Zeng (Sabot et al., 2017) in the context of the vertex-
reinforced jump process. Using this family we construct an exponential martingale
generalizing the ones considered in Sabot and Zeng (2018+) and Disertori et al.
(2017). Moreover, using the full supersymmetric nonlinear sigma model we also
construct a generalization of the exponential martingale involving Grassmann vari-
ables.

1. Introduction and main results

The nonlinear supersymmetric hyperbolic sigma (H 2‘2) model was introduced by
Zirnbauer (1991) as a toy model for quantum diffusion. The corresponding measure
can be better analyzed after passing to horospherical coordinates (u, s) as in Spencer
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and Zirnbauer (2004) (for the nonsupersymmetric version) and (u,s,,1) as in
Disertori et al. (2010) (cf. details below). In particular a phase transition in
dimension d > 3 was proved, see Disertori et al. (2010) and Disertori and Spencer
(2010).

The H?? model has an interpretation as a random Schrodinger operator (Dis-
ertori and Spencer, 2010) and unexpectedly also as mixing measure and two point
function for the vertex-reinforced jump process (Sabot and Tarres, 2015; Bauer-
schmidt et al.,; 2018). This process was conceived by Werner and first developed by
Davis and Volkov (2002, 2004).

More recently Sabot, Tarres, and Zeng developed further the random Schrodinger
operator interpretation (Sabot et al., 2017; Sabot and Zeng, 2018+). In particular
they derived the explicit law for the random potential, and constructed two families
of martingales in discrete time. One of them is the key ingredient to derive a
characterization of recurrence/transience behavior of the vertex-reinforced jump
process. Sabot and Zeng (2017) connected these families to certain continuous
time martingales. Interesting formulas related to the work of Sabot, Tarres, and
Zeng appear also in Letac and Wesolowski (2017).

The above two families of discrete time martingales are only the first instances
of an infinite hierarchy of martingales described in Disertori et al. (2017). All these
martingales involve only the u components of the H?/?> model. In this paper we ex-
tend these martingales to even larger families involving all the variables (u, s, 9, ).
How this article is organized. In Sections 1 and 2 we consider only the marginal
p" (du ds) of the full H?> model obtained by integrating out the Grassmann vari-
ables (3,1). It is introduced in Section 1.1. The random variables u encode the
asymptotics of local times for a time changed vertex reinforced jump process while
the random variables s describe the corresponding fluctuations. For details see
Merkl et al. (20184).

In Section 1.2 we introduce a scaling transformation .# for the variables (u, s).
The effect of this scaling on the measure p" is formulated in Theorem 1.1. We
provide two different proofs of it.

e The first proof, given in Section 2.1, is based on Lemma 2.2 which describes
the ratio between the original and .#-transformed probability density of
two supersymmetric sigma models with different parameters. Also for this
lemma two different proofs are given.

— The first proof, given in Section 2.2, is based on explicit computations
on the quadratic form associated to the matrix A" defined in equation
(1.2).

— An alternative proof, given in Appendix B.1, uses the description of
the density of the supersymmetric sigma model in terms of 2 x 2 de-
terminants connected to the linear algebra of Weyl spinors.

Both these proofs are self-contained.

e The second proof of Theorem 1.1 uses conditioning on the u variables and

a result from Disertori et al. (2017). It is given in Appendix B.2.

Theorem 1.1 is in turn the key ingredient to prove the martingale property,
which extends Theorem 2.6 and Corollary 2.7 from Disertori et al. (2017) to test
functions depending on (u, s) variables. Note that when the test function depends
only on the u variable, we recover the martingales derived in Disertori et al. (2017).
The martingale property on an infinite graph for the marginal p" is stated in
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Section 1.3, while Section 1.2 contains some preliminary results in finite volume.
All these results are proved in Section 2.

In Section 3 we extend the results of Sections 1 and 2 to the full H21? super-
measure studied in Disertori et al. (2010), where Grassmann variables are included.
In particular, this requires a generalization of the above mentioned scaling trans-
formation . to a version including both, Grassmann and real-valued variables.
The effect of this generalized scaling is given in Theorem 3.3, which is one of the
main results of the paper. As a consequence, we introduce a generalization of the
notion of martingale to a ’susy martingale’, not to be confused with the notion of
supermartingale in standard probability. Here the test functions may depend on
Grassmann variables too. In particular when the test function depends only on the
real variables u, s but not on the Grassmann variables, we recover the martingales
described in Theorem 1.3 and Corollary 1.4.

1.1. The nonlinear supersymmetric hyperbolic sigma model. Let G = (V E‘) be a
finite connected graph with vertex set V and set of undirected edges E. We assume
that G has no direct loops and no parallel edges. We write i ~ j if there is an edge
between i and j. Let § € V be a distinguished vertex and set V =V \ {§}. Every
edge (i ~ j) € E gets a weight W;; = Wj; > 0. For convenience of notation, we
set W;; =0 for all ¢,j € V with i 7 j. The euclidean scalar product is denoted by
{a,b) = > ;craibi, where I =V or [ = V, depending on the type of a and b. Let

Qy = {(u = (ui);eirs = (8i)iey) € RV xRY : us = 0,55 = 0} . (L.1)
We define the matrix AW (u) € RV*V by

w —Wijetit for i # j,
A () = { Zkev Wievitur  for i = j. (1.2)

Let AV (u) denote its restriction to V x V. We define p"V : Qy — [0,00) by
"V (u,s) =det A‘WV(U)67%<S’AW(“)S> —3(eg A" (weg")

:detAI‘//VV(u) H e—Wi]'[Cosh(uy;—uj)—l-‘r%(Si—sj)ZeUi+Uj] (13)
(i~j)EE

where e = (e7""),cy is a column vector. The last equality in (1.3) follows directly
from

<e‘T/“,AW > Z e “’AW e " = Z Z Wige" 4 — 2 Z Wi;

i,jEV ieV keV (i~nj)EE
=2 Y Wilcosh(u; —u;) — 1], (1.4)
(i~j)EE

where the first sum on the right-hand side of (1.4) comes from the diagonal terms
in AW (u) and the second sum from the off-diagonal terms. Using the reference
measure

C(duds;) = e du,ds; (1.5)



182 M. Disertori, F. Merkl and S. W. W. Rolles

on R?, the supersymmetric sigma model is described by the following probability
measure on 2y :

1
"V (duds) =p" (u, s) H — ((du,ds;), (1.6)
1L 27
i€V
where we drop the Dirac measure located at (us,ss) = (0,0) in the notation. We
denote the expectation with respect to u'V by E,w.
Notation. In the following, operations are frequently to be read componentwise, like
a? + b = (a7 +b3),cp, e “bla = (e "bi/a;); ey loga = (loga;);ci-

1.2. Results in finite volume. We set
Gy = {[a,b] € (0,00)" xRV : (as,b5) = (1,0)}. (1.7)

For the moment, one may read [a;, b;] to be just the pair (a;,b;). However, any
element of Gy can be identified with a family of matrices [a;, b;], together with a
group action described in Appendix A. For [a,b] € Gy and (u,s) € Qy X Qy, we
introduce the scaling transformation

b;

Sap) (U, 8) = (u2 +loga;, s; — e_“"') , (1.8)
i/ iev

Jﬂ[;})] (u,8) =(@,3) = (u; — logas,s; +e "b;);cp- (1.9)

We remark that in light cone coordinates x, = e", y = se this corresponds to a
scaling of 4 and a translation of y. The scaling transformation arises naturally as
a group action as is shown in Appendix A. We also need the following rescaling of
the weights W:
Wa = (Wiaj = aiajWij)i’jEV. (1.10)
The same rescaling of weights was also used in Sabot et al. (2017). Denote by xy
the restriction of a vector z € RV to RV. Let
ey = diag(e ™ ,ie V) (1.11)

denote the diagonal matrix in RY*" with entries e~%: on the diagonal. We consider
the variables 8V (u, 5) = (GZV’W(u, s))icy defined by

0V W (u, s) = e AV (u) sy (1.12)
Componentwise, we have for i € V
07" (u,5) = Wije" (s; — s;). (1.13)
jev

We need the random variables BV’W = (BZ-V’W)Z.E‘; and their restriction 8V'"" to V'
defined by

AW ) = 5 S wien T, 8 = BT = (BT e (1.14)
JEV
These variables were introduced in Sabot et al. (2017). We drop the dependence
on V, W, or both if there is no risk of confusion.
The following theorem describes the behavior of the supersymmetric sigma model
"V with respect to the scaling transformation Sa,p) and is a fundamental ingredient
in this paper. Its extension to Grassmann variables is given in Theorem 3.3.
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Theorem 1.1. Let [a,b] € Gy. The image of u"’" under the map Sa,p) 18 abso-
lutely continuous with respect to u"V with the following Radon-Nikodym derivative
on Qy:

d(F o) s —1,—{(a®+b*=1)v 8" (w))— (bv,0" (u,5))
W (u,8) =L" (a,b)" e (1.15)
d’LL b b
with the constant
1
LY (a,b) = [ e Wolemtbdim L TT = (1.16)
(i~j)EE jev Y

In other words, for any measurable function f : Qv — R{, one has
]EMW [f(u, s)e—((a2+b2_l)v7BW(u))_<bv,0W(u,s)>} :£W(a7 b)]EMW"' [f o ,jﬂ[mb]]. (1.17)

In particular, LY describes the joint Laplace transform of B and 6% :

£% (a,b) =E,w [e—<<a2+b2—1>vﬂw(“>>—<bv"‘)w(“78>> . (1.18)

The special case b = 0 was proven as Theorem 3.1 in Disertori et al. (2017). For
a=+/1+ X and b = 0 the Laplace transform £" (a,b) in (1.18) equals the Laplace
transform £% (\) given by formula (2.9) in Disertori et al. (2017).

1.3. Results in infinite volume. Let Goo = (Vio, Exo) be an infinite graph with edge
weights W;;. We approximate G, by finite graphs with wired boundary conditions
Gn = (Vo Ep), where V,, = V,, U {6, }, Vi, T Voo, and

E,=E,U{(i~d,):i€V,and 3j € Voo \ V;, such that (i ~ j) € Ex}. (1.19)
We endow the edges of G,, with the weights

W =Wy ifi€V, and j € Vi, (1.20)
wil=w =3 wy forieV,, and W) =0. (1.21)
JEVo\Vn

Let 1/ denote the H?? measure defined in (1.6) for the graph G, with the weights
(n)
Wi
Lemma 1.2 (Kolmogorov consistency). For n € N, the joint Laplace transform
L (a,b) = E,w [e—<<a2+b2—1)vnﬁ"">—<bvn o) (1.22)

of BY» = (Bi)icv, and 0¥ = (0;)icv;, satisfies the consistency relation
LY (av,,bv,) = LY 1 (a,b), (1.23)

for all [a,b] € Gy, ,, with [a;,b;] = [1,0] for all i € Vyyir \ Vi. In particular, the
law of (BY,0V") with respect to uV agrees with the law of (BY»+1, 0V +1)|y. with
respect to uml.

Consistency of the law of 8 was first observed by Sabot and Zeng (2018+); see
also Lemma 2.4 in Disertori et al. (2017).

By Kolmogorov’s consistency theorem, there is a probability space (Qoo, Foo, 11
with random variables 8;,60; : Qs — R, i € V., such that for all n € N the law of

(ﬂ(") = (B))icv,, 0" = 0:)icv,.) (1.24)
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with respect to p!’ agrees with the law of (8Y»,0"") : Qy, — RY» x RV with
respect to u}V. Moreover, by Lemma 2.3 in Disertori et al. (2017), for any finite
graph G = (V, E) with V = V U{48}, there is a measurable function VRV - RY
such that

(wi)icy = ¥ (BY). (1.25)
Using the definition (1.12) of 8V, we have sy = AV, (u) e 0" (u,s). Hence,
(si)icv = 9v (BY,0") (1.26)

with the measurable function g{¥ : RV x RV — RY, (B8,6) — s = (8i);c¢ defined

by s; = 0 and sy = AVVVV(f“}V(ﬁ))*le{/‘EV/(B)H. This allows us to couple the u and
s-variables. We define

u® = (" )ieg, = 16", (1.27)
s = (5" )ier, = (B, 6), (1.28)
u™ =" =0 forieVe\V,. (1.29)

We consider the following set of parameters
(—00,0]V=) = {a € (—o0,0]"> : a; # 0 for only finitely many i € Voo }.  (1.30)

For a € (—00,0](V>) and n € N, we define o™ = (agn))ievn by

az(”) =q; forieV, and ag:) = Z Q. (1.31)
JEVeo\Vn

Theorem 1.3. For all a € (—o0,0](Y>) | the sequence (Mén))neN, defined by

M (u™ M) exp Z a§")6“§n)(1 +is™) |, (1.32)

J
JEVn

is a C-valued martingale with respect to the filtration (]-'n = U(,B("),G(")))neN,

Taking derivatives of the martingale (Mé"))neN at a = 0, we obtain the following
hierarchy of martingales.

Corollary 1.4. For all k € N and j1,...,5x € Voo,
koom
M;ﬁ?.‘,jk = (a+ isg-f”), n €N, (1.33)
=1

its real and imaginary part are martingales with respect to (Fn = J(ﬂ("),ﬂ(")))neN,

In Disertori et al. (2017), we showed that the processes (E,w [Mén) lo(u™)])en and

(E.w [Mj(ln)]k lo(u(™)])en are martingales. These facts are also immediate conse-

quences of Theorem 1.3 and Corollary 1.4. The first two elements of the hierarchy
also correspond to the martingales discovered in Sabot and Zeng (2018+).
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2. The marginal p" (duds)

2.1. Proof of Theorem 1.1. Using the measure ¢ introduced in formula (1.5

), we
consider the product
Cv i=¢" x 80,0 (2.1)

composed of factors ¢ indexed by V and one Dirac measure located at (0,0) € R?
indexed by the special vertex 9.

Lemma 2.1. For [a,b] € Gy, the image measure S p)Cv of the measure (v with
respect to efﬂ[a’b] s given by

AapCv = <H ai) Cv- (2.2)

ieV
Proof: This is an immediate consequence of e~ % dii; = a;e™" du; with @; = u; —
IOg a;. U
Lemma 2.2 (Ratio of densities). For [a,b] € Gy and (u,s) € Qv, one has

PV (S ()

2.3
o (1,5) (23)
= I emsteetand [T expl—(a? + 5 — 1BY (w) — bi6Y (u, 5)].
(i~j)€E iev

This lemma is proven in Section 2.2, below.

Proof of Theorem 1.1: We abbreviate ¢ = (27r) V], From (1.6), we know du" =
cpVV dCy. Substituting W by W, this gives du"’" = cpV" d¢y. We take now the
image measure with respect to .|, ). The following calculation uses the description
of SqpCv from Lemma 2.1 and in the last step the ratio of densities given in
Lemma 2.2 together with the definition (1.16) of the constant £" (a,b).

a a pW Ocsﬂ[_lb]
d(Fayp) = clp" o Sy d(HapiCv) = CT’PW I @idev

i€V
we —1
:7P Oﬁa’b] H a; duW = EW(a, b)_le—((az-i-bz—l)vvBW)—(bV,9W> d,LLW (24)
P eV
This implies the claim (1.15), which is written in (1.17) in a different notation.
Taking the test function f =1, (1.18) is a special case of (1.17). O
2.2. Proof of Lemma 2.2. We define the matrix Hg[(/u) eRVXV by
Note that for all 4,5 € V, one has
plw)’™ 2Bi(u) = X ey Wine™ ™" ifi=j

=e AN (u) = (e AV (u)e ™) (2.6)
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recall that the graph G has no direct loops and hence W;; = 0 by the definition
of the weights. Here and in the following, when calculating with matrices, we
abbreviate et = diag(e*"i i € f/) Thus, expressions like e™s can be read in
two equivalent Ways componentwise or as a matrix multiplication, both meaning

. . W . .
the same object (e™"is;), . We denote by H B(u) = <H5(U)>VV the restriction to

V x Ve (HY,)ij = 2Bi(u)di; — Wi for i,j € V, cf. (1.14).
Lemma 2.3. For (u,s) € Qy, we have the relations

2 3" Wileosh(u —uj)—1]:<e;U,AW(u)ey> <1 HZ‘(/)1> (2.7)

(i~j)EE

det AV, Hegul det Hﬁ(u) <S,Aw(u) )= <e s H;;(/ € 8> (2.8)
eV

Proof: The claims follow from equation (1.4) and the relation (2.6) between H Bl
and A" (u). O

Lemma 2.4. The matriz AW is invariant with respect to the .7 - opemtion in the
following sense: For [a,b] € Gy, (u,s) € Qy, and (4,5) = Y b](u s) = (u—
loga, s+ e~"b), the following holds

AV (@) = A" (), de. AV =AYV o7 (2.9)

Proof: For i,j € V with i # j, one has A}/}/a (@) = aja;Wijehitt = W, et =
A}/}/(u) Since rows of both matrices A" (@) and AW (u) sum up to 0, it follows
also AW () = AY (u). This proves the claim. O

Proof of Lemma 2.2: Substituting (2.9) into the definition (1.3) for p™", we obtain

P (Fdy ) = " (0,5) =det AV (w)e HEAT ) AT,
(2.10)

Inserting the definition of @ and § in the exponents above and using (2.6), the facts
bs = 0 = 55 and the definition (1.12) of 8", we obtain

(3, A" (u)8) = (s, A (u)s) + (b,e “A" (w)e b} + 2 (b,e “ A" (u)s)
= (5, A" (w)s) + (b, HY by +2(by, 0" (u,)),  (2.11)
<e‘;ﬁ,AW(u)e‘T/a> (a,e AV (u)e ™ a) = <a Hﬂ(u) > (2.12)
Using in the second equality (1.3) and (2.7), this implies
P ()
=det A{y (u)e” (<SA (u)s +<b Hﬁ(u)b>> by 0" (us)) <a HE 0

:pW(u (<a Hﬁ(u) >+<b HB( )b>7<1‘7 B(u) V>) bV’ (u,s)>. (2.13)
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Since a? + b2 — 1 = 0, the first exponent in the last expression takes the form

;(<a Hila) + (0 HE) = (1o B 1))

= Y Wiaia; +bib; —1) = (af + 7 = 1)} (u). (2.14)
(i~j)EE €V
This proves the claim. O
2.3. Martingales.
Proof of Kolmogorov consistency (Lemma 1.2): By Theorem 1.1, one has
(n) 1
LY (av,,b ~Wig g tbibi =TT — 2.15
(@vobe) = T ™ Il . (215)
(2~])€En JEVn
(n+1) 1
L = —Wi T (aiagtbibi—1) —. 2.16
n+1( b) = H~ € 4 H a ( )
(i~vj)EER+1 JEVn41

Since a; =1 for j € Vj,41 \ V,, one has
1
H —= 1] — (2.17)
a;
JEVR J€Vnt1
Consider (i ~ j) € Epy1.
Case i,j € Vy: Then (i ~ j) € E, and Wi(f) = Wi(fﬂ). Consequently, one has
Wi (a0, +biby —1) = W (aia; + bib; — 1).
Case i,j € Vi1 \ Viu: Then [a;,b;] = [1,0] = [a;,b;] and hence a;a; + b;b; —1 = 0.

Case i € Vy, and j € Vi1 \ Viu: Then [aj,b;] = [1,0]. For the given i € V,, we
calculate

Z Wi(gnﬂ)(az‘aj +bib; — 1) = | WS ¢ Z Wij | (ai —1)

0nt1
jEVn+1~\Vni JE€EVn+1\Vn
(i~j)EFEn 41
= Y Wiylai—1) =W (e~ 1) = Wi (aias, +bibs, = 1) (2.18)
JE€Ve\Vn

We conclude that the products over edge sets in (2.15) and (2.16) agree. The claim
(1.23) follows. This identity holds in particular for (a? 4+ b2 — 1,b) in a neighbor-
hood of the origin. As a consequence, by analytic continuation, the characteristic
function of (8Y», V") with respect to u}V agrees with the characteristic function of
(BYn+r §Vesr)|y, with respect to p), ;. The claim follows. O

Proof of Theorem 1.3 (Generating martingale): By the definitions (1.27) and (1.28)
of u(™ and s it follows that ML is F,-measurable. For la,b] € Gy, ,, with
[as,b;] = [1,0] for all i € V,,;1 \ V;,, we show

E.w [M(gm_l) H e_(a§+b§_1)ﬂj_bjoj} =E,w [MQ”) H e~ (a5 +b7=1)B;=b;0;
JEVL JEVn
(2.19)
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Note that for j € V,,, one has a; > 0 and b; € R. So in particular, we prove the
identity (2.19) for a? + b? — 1 and b; belonging to a neighborhood of the origin,

which implies the martingale property for Mé”).
We rewrite the claim in terms of expectations with respect to the supersymmetric
sigma model on finite graphs. Let

M Qu, =R, (u,s) el e (Atin)) (2.20)
Using the definition of the variables ﬂ and 0, the identity (2.19) is equivalent to
E w [ (n+1) H (a2 +b3-1)8 Mas )7bja;’”+1(u,s)}

Myt
JEVR
iy [ T e b ] 1)
JEVR
Since af +b7 —1 =0 =b; for j € Vit1 \ Vi, we rewrite the left-hand side of (2.21)

using Theorem 1.1 as follows:

Ihs(2.21) =E,w {Méﬂw H e—(a?+b§—l>ﬁf““<u>—b_7~ejV”“<u,s>}

n+1
JEVn41
—LW (0, D)E e [MED 0 F ] (2.22)

where the last expectation is taken with respect to the supersymmetric sigma model

)

on the graph Gn+1 with the rescaled weights aZaJW(nJrl We calculate

Mén+1) o ‘%Uﬁb] —exp (<O[(n+1)7 eu+loga(1 + Z(S _ efuflogab))>)
_elaa et (1is)) o~ (a1 ib) (2.23)

Note that <oz("“‘1)7 ib> does not depend on u or s. Consequently, inserting the last
expression into (2.22), we obtain

Ihs(2.21) =£%(a, )ef<a(n+1)’ib>]Euwa |:e<aa(n+1)’eu(1+is)>]' (2.24)

n+1

By Corollary 5.3 in Disertori et al. (2017),
E,wa [ (aal™Hh et (14is)) } elaa™1g) _ (e a) (2.25)

Honta

We conclude
Ihs(2.21) = £, | (a, b)el>" " e=). (2.26)

The right-hand side of (2.21) can be obtained from the last expression by replacing
n+ 1 by n. Thus, the claim (2.21) can be written as follows

LY (a,b)ele ™ am0) LW (qy, by, ele™ i), (2.27)

By Lemma 1.2, £V (av,,by,) = L%, (a,b). Furthermore, using [as, ., ,bs

[1,0], we obtain

<a("+1),a — z'b> = Z aj(a; —ibj) + a((;:i_ll) = Z aj(a; Z o

JEVn41 JEVLi1 FE€Voo \Vin+1

= Z aj(aj —ib;) + Z a; = <a("),a - ib>- (2.28)

JEVn FE€EVoc\Vn

n+17? n+1] =
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This shows that (2.27) holds and finishes the proof of the martingale property. O

Proof of Corollary 1./: By Theorem 1.3, (Mén))neN is a martingale for all o €
(—00,0](V>). The martingale property is equivalent to

E,w (M 14] = E,w [M{V14] (2.29)
for all n € Ny and all events A € F,,. Taking left-sided derivatives at a = 0, we get

al™ e“(n)(lJris(n))
n) __ ’ _ (n) n
oy, - Oay, MY =0, ...aajke< > =M M,
Day, - - Oy MV oo = M

e (2.30)
Since [Oay, - - - Oay, M| < \Mj(f)%\ for all a € (—00,0](>) we can interchange
expectation and differentiation at o = 0 in (2.29). This yields the martingale

property for Mj(ln)jk . g

The following are special cases of Corollary 1.4.

e Since M;") =" (1 + isg»n)), we know that

(sj e en (2.31)
is a martingale.
e One has M;T;) = e“g'n)Jr“En) (1 — sg»")sl(") +1 (sg-n) + sl(n))). Hence,

0 () n) (n u$pul™ () | (n)
(e it (1—55 )sl( )))nGN and (e it (S§ + 5 ))nEN (2.32)

are martingales. For j = [, this yields the martingales

20" ()2 (m) o 2uf™
(e i (1 — (s5") )>n€N and (25j e >n€N~ (2.33)
e One has
M —eug " uly (1 —ss = s — sVl
+i (s§”) + 5 4 s — s sl ))) : (2:34)
Hence, the following are martingales:
1™ (™ 4y () n) (n n n
(P (o)) o
1l 1y (M) g g () n n n (n) ((n) (n
e () e

(O (=) (0N,

3. Extension to Grassmann variables

We consider now the full supersymmetric H2/2 model, studied in Disertori et al.
(2010), including Grassmann variables. We start with some preliminaries in Sec-
tions 3.1 and 3.2. In the remaining part, we extend the scaling transformation,
the Laplace transform, and the martingales introduced in the previous sections to
include Grassmann variables.
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3.1. Grassmann algebras. Let V be a finite dimensional R-vector space. Let

dimV
NVi= P AV, Neaw:= P AV, Naa:= @ AV (31
n=0 0<n<dimV 0<n<dimV

n even n odd

be the Grassmann algebra generated by it, its even and its odd subspace, respec-
tively. In particular, R = A°Y C AV and V = A'V C AV. The Grassmann product
is bilinear and associative. Moreover, for all w,w’ € AVyqq it is anticommutative:
ww' = —w'w. In particular, w? = 0. Let body : AV — A%V = R be the projection
to the Oth component and soul : AV — @il;nlv A"V, soul(w) = w—body(w), denote
the projection to the nilpotent part. The subset of positive even elements is defined
by

AV, = {a € ANVeyen : body(a) > 0}. (3.2)
As a generalization of (A.1), for a € AVE ;b € ANVeyen, W, w € NVoqq, we set
a b w w
_ 01 0 0
[a, b, W, w] := 00 1 0 (3.3)
0 0 0 1

The set of matrices, cf. (A.2),

G(V) == {[a,b,w,w] : a € NV}, b € NVWeven, W, w € NVoaa} (3.4)
endowed with matrix multiplication forms a group, non-Abelian except in trivial
cases, with the neutral element [1,0,0,0]. In other words,

[a,b,w,w] - [a,b,w,w'] = [ad’, b+ ab ;W + aw’, w + aw'],

[a,b, W, w]™t = [a7!, =ba™!, —wa !, —wa™1); (3.6)

cf. (A.3) and (A.4). Note that a~! is well-defined because body(a) > 0.

We take again a finite graph G = (V, E) with V = V U {0} as in Subsection 1.1.
We define the cartesian power of the group G(V) with one component pinned to
the neutral element:

GV = (3.7)

{la.0,@,w] = ([a:, b1, Wi, wil) g € GO ¢ [ag,bs, W, ws] = [1,0,0,0]} .

3.2. Superfunctions and superexpectation. Let
A(V) = .Av(V) = COO(Q\/,/\V) = COO(Q\/,R> ® NV (38)

be the Grassmann algebra over V with coefficients being smooth real-valued func-
tions f € C°(Qv,R), (u,s) = f(u,s). Elements of A(V) are called superfunctions.
Assume that the vector space V has a basis (¢;,%;);cv. Moreover, we set

s =5 = 0. (3.9)

Then, ¥;,%; € V C NVoaa, i € V, implies ¢, = —;9i, ity = —¢;, and
Vb = =9, for all 4,5 € V. To describe a superfunction in .A(V), the following
abbreviations are useful:

Ty ={(i1,...,in) €V":n € Ng,iy <...<in} (3.10)
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with respect to some fixed linear order < of the vertex set V. For I = (i1,...,i,) €
Ty, we set

vr =Y Y, (3.11)

and similarly for ¢/;. By convention, 1y = ¢y = 1. Thus, a superfunction f € A(V)
can be uniquely written as

Fluss, o) = > frolu, )Py (3.12)

I,JeTy

with coefficients fr; € C®°(Qy,R). Here fpp is the body of f and f — fyg its
nilpotent part. An element f € A(V) is even if fr; = 0 whenever |I| + |J| is odd;
fis odd if fr; = 0 whenever |I| 4+ |J| is even. Let A(V)even = C°(Qv, AVeyen)
and A(V)oaa = C°(Qy, AVoaa) denote the set of even and odd elements of A(V),
respectively, and let AV)%o, = {f € A(V)even : body(f) > 0}. Smooth functions
(like exp) of elements in A(V)even are understood as power series in the nilpotent
part.

In analogy to the parameter dependent W* in formula (1.10) we will consider a
further generalization of the supersymmetric sigma model H?I? from Disertori et al.
(2010) involving parameters that depend on Grassmann variables. Our parameters
belong to another Grassmann algebra AV’ with another finite-dimensional R-vector
space V'. Both vector spaces V and V' are viewed as subspaces of their direct
sum V' =V @ V. The corresponding Grassmann algebras are related by AV’ =
AV ®, AV, where the subscript “a” means that the Grassmann product is extended
to be anticommuting on odd elements. In particular, AV = AV ® R C AV” and
ANV =R AV C AV,

We will consider superfunctions f € A(V"). Each such function can be repre-
sented as in (3.12) with coefficients f;; € A(V'). In the following, we consider
coupling constants W;; € AV'L . for all (i ~ j) € E and W;; = 0 whenever
(i ~ j) & E. We define the superdensity p"V € AV, by

pW(u7 S7J7w) :efé<S,AW(u)s>67<E,AW(u)w>e—%<e‘;u,AW(u)e‘f]“>
e (9. AV (w)y)

= oAy 0 (3.13)
with the matrix AW (u) € RV*V defined in (1.2) and the density p" defined in (1.3).
Note that since body(W;;) > 0 one has body(det A} (u)) > 0. As Lemma 3.1
below shows, p" is the marginal of p"'. Therefore we use the same symbol writing
the supersymmetric variant with the corresponding bold symbol. This convention
will also be used below for other quantities like ¢, x"V', and £". In the following,

we use the Grassmann “derivative” 0, with respect to any Grassmann variable 7.
It is defined by

On(no1 + ¢2) = P1 (3.14)

for any superfunctions ¢; and ¢o that do not contain 7. In particular, it fulfills
Opn = 1 and the anticommuting product rule 0, (¢1¢2) = (0y¢h1)d2 + (—1)7 10,02,



192 M. Disertori, F. Merkl and S. W. W. Rolles

where o = 0 if ¢ is even and o = 1 if ¢ is odd. Grassmann derivatives anticom-
mute with each other. Let

e Wi

— 1
d¢y = d¢ylu,s,9, 0] = [ 5 C(duids;) 05 0y, = 11 du;ds; 05 Dy, (3.15)

i€V eV

™

be the supersymmetric reference measure, where we suppress again the Dirac mea-
sure d(g,0)(dus dss) in the notation. With these notions the supersymmetric sigma
model is given by

pM (duds 050y) =dCy lu, 5,9, 9] 0 p" (u, 5,0, ), (3.16)

where the symbol o means that the partial derivatives % and dy act not only on

the superdensity p"V (u, s,%,%), but also on the test function as follows:

/ du' f = /Q dcy (p" f) (317)

for any f € A(V") for which the integral is defined. In particular, it is also well-
defined for the constant function f = 1 because of the fast decay of the functions
body[exp(—3 (s, A" (u)s))] and body[exp(—W;; cosh(u; —u;)], cf. (2.7). Note that
the superintegral [du'’ f with integrable arguments f € A(V") takes values in
AV'.

Lemma 3.1. The probability measure u" defined in (1.6) is the marginal of the
supermeasure "V defined in (3.16) in the following sense. In the special case when
the weights Wi, are real-valued and the superfunction f is an ordinary function
f = f(u,s), i.e. does not depend on any Grassmann variables, we have the real-
valued integral

/dqu = /d,qu. (3.18)

Proof: Since f is an ordinary function, the Grassmann part in | dp”V f is reduced
to

1 05 0p.e~ (54" 99) = det AV, (u). (3.19)
i€V
Therefore, the definition (3.13) of p" yields
11 05.00.0" (u,5.9.0) = p" (u,5). (3.20)
iev

The result follows. O

3.3. Super scaling transformation. We generalize now the definition (A.11) of the
scaling transformation 7,y : 2y — Qv to the present setup involving Grassmann
parameters. Take a superparameter [a, b, Y, X] € G(V')y; recall that [as, bs, X5, Xs)
=[1,0,0,0] by (3.7). In order to find an analogue to equation (1.17), we consider
a generalization of the pull-back

Fapf =FfoHapy, [:Qv =R (3.21)
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to a supertransformation S s AV") = A(V") defined as follows. Take a

general element

[a,b,%,x] -

Fluys, ) = > fro(u,s)g s € AV") (3.22)

I,J€Ty

with coefficients fr; € A(V’). In the following, for any even u’,s’, we interpret
frr(u', s") again as power series in the nilpotent part of «’ and s’. We set

(Fhrpxng D s, 00) = 3 fralu, W] € AV"), (3.23)

I,Jely

where the expressions for v’ = u'(u),s’ = s'(u, s),@/ = @l(u,@),w’ = ¢'(u, 1)) are
given by the following formula, to be read componentwise

e, s 0 ) = e, 5, 0,0 - [a, b, %X (3.24)
This means that the explicit expressions for v/, s, @/, and ¢/ are given by
uh = u; +loga;, s =s —e “iba;t, (3.25)

!

— — s —  —1 s 1
Y, =1, —e ixa; Yi=1;—e “ixia;

for all i € V. Note that [e~"s, 53,@3,1&3] =[1,0,0,0], and that u; and s} are even
superfunctions in A(V").
Note that & is a group operation, i.e. for all v,v" € G(V)y

FLhoon =i, Ly =FF 0, Lo = (L) (3.26)

v

We will need the following transformation formula for the supermeasure d¢,
with respect to 7.

Lemma 3.2. For v = [a,b,X,x] € GOV )v and for any compactly supported (or
sufficiently fast decaying) test superfunction f € A(V"), one has

Ay f =l a | dyt (3.27)
/ /

jeEV

Proof: Using (&) 1(e~%) = e~ (%i71989i) and using the supertransformation for-
mula described in Lemma C.1 in Appendix C, we calculate

/d(vy f=(2m) ‘Vl/H du;ds; 05 Oy, ((5’ ), 8,9,9) He‘“‘)

i€V eV
=(2m) \V|/H du;ds; 0~ ad, 0 <f(u 5,1,1) He (ui— log‘“)>
i€V i€V
—Ivi / H du;ds; 05 Oy, f(u,s,1,1) H e~ (wimlogal) (3 9g)
eV eV

The claim follows. ]
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3.4. Grassmann-Laplace transform. In analogy to the definition (1.12) of §V'W

define odd superfunctions @V’W(U,E) and ¢"*W (u,) by

5" (w,P) = et AWy (W), VY (u, ) = e AW, (u) by (3.29)

Here, the restriction ¢y = (¢;);cv should not be confused with the product ¥y,
I € Ty, defined in (3.11). Componentwise, we have for i € V
—V\W o wuj (o7 A f uj
G () =Y Wije" (=), ¢ (u, ) = Y Wije (v —1by), (3.30)
JjEV Jjev
cf. (1.13). As for 8 and 6, we will drop the dependence on V', W, or both if there
is no risk of confusion.
Our goal is to derive a generalization of Theorem 1.1 including Grassmann vari-
ables. In the following, we abbreviate for [a,b,X, x] € G(V')v
=V == = (8V,07,8" 6",
Thbxad =@ + 62 +2X¢— 1,0, %, X)v, (3.31)
which fulfill @V, 7, = € (AW )even X AV even X AV )oaa X AV )oaa)" -
We use the following generalization of the Euclidean scalar product:

<7r[‘¢/l,b%x]’ wv>
:<(a2 + b2 + QXX - 1)V7BW> + <bVa 0W> + <YV7 ¢W> + <$Wa XV> (332)

Note the reversed order of factors in the last product, which causes a sign change
due to anticommutativity.

we

Theorem 3.3. For [a,b,X,x] € G(V')v, the joint Grassmann-Laplace transform
of BV, oW, ¢, and aw is well-defined and given by

/ dp" e (Ml =) = £V (a,b, %, x) (3.33)

with the constant

L:W(a,b, X, X) = H e~ Wij(aiaj+bibj+Xx;+X;xi—1) | H 1 c AV

Py even* (334)
. ~ ; J
(i~j)EE JEV

Moreover, for every compactly supported (or not too fast increasing' in u and s)
test superfunction f € A(V") it holds

/ dp¥ fe= (™) Z£W (b % %) / A Sl (3.35)

where W = (W = a;a;Wi;), ;cp with W € AV L.

Note that equation (3.35) is the analogue of (1.17). We remark that in the special
case b =0, ¥ = 0 = x, which was already treated in Theorem 2.1 in Disertori et al.
(2017), a? + b + 2xx — 1 just reduces to a® — 1, which was called X in the citation.
If we want the Laplace parameters a + b 4+ 2xx — 1 and b to be real-valued, this
enforces the parameters a not to be real-valued but to take values in the even part
of a Grassmann algebra. This is why we have to allow Grassmann algebra-valued
weights W € AV, rather than only real-valued weights.

ven

LA sufficient condition is given in (3.52), below.
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Proof of Theorem 3.3: We abbreviate again v = [a, b, Y, x]. Using Lemma 3.2, we
obtain

/ " Frf = / dcy (o' 75f) = / dCy (Z5(F2 0™ ) 1)
[l [ dev (i) ). (3.36)

JjeVv

The condition given in (3.52) below ensures sufficiently fast decay for the body of
the measure duW & f to make the integral well-defined. In particular, this holds
for the constant function f = 1. Note that

(Foa ), s,9,0) = f(u—loga,s+e “bih +e "X, ¥+ e "X). (3.37)

By Lemma 2.4, one has AW (u —loga) = AW (u) for a = (a;),cy € (RY)Y with
as = 1. Since the entries of the matrix A" (u) are smooth functions of W;;e%i T4,
this identity remains true if we replace a;, ¢ € V, by even elements of the Grassmann
algebra AV’ with body(a;) > 0. Consequently (cf. (2.9)),

S AV = AW, (3.38)
The definition (3.13) allows us to rewrite p"¥* as follows:
we (u, 5,5, 1) :e—%(s,Awa(u)s>e—<E,Awa(u)¢>67%<eau’AW“ (weg") (3.39)

Using (3.38) and the expression (2.6) for HZI(/ )r We calculate

(DAY @) = @ + 7%, AV W) (W + e 0)
= (@, AV @)+ (8" (w D) xv ) + (xvs 6" (w,1)) + (% HY, x) - (3:40)
Asin (2.11) and (2.12), we obtain

S <5,AWQ (u)s> = (s, A" (u)s) + <b, Hg‘(/u)b> +2(by,0" (u,s)), (3.41)
s (e AV e ) = (o, HY ja) (3.42)

Combining the above identities and relation (2.7), we find
yzflpwa(uvs E dj)
W (u, s, 9, 9)e” 3 (o5 a) + (05 0)+2 (T ) (1o 1o )
€—<bv,0 u 5) <¢ (“ﬂ/’) XV> Xv s ¢ (u, 7/’)> (343)

Using a2 + b + 2Xs5xs — 1 = 0, we rewrite the first exponent in the last expression
as follows

1 W W - W W
5 (Ca o) + (oY) +2 (X HY x) = (L9 HY ) 1p))  (3:44)
= Y Wilaia; +bib; +Xx; +X;x — 1) = (a7 + b7 + 2x,x: — 1)8)Y
(i~j)eE eV
Substituting this in (3.43) and the result in (3.36), claim (3.35) follows. Formula
(3.33) is the special case of (3.35) for f being the constant 1. O
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3.5. Ward identities. To use symmetries of the supersymmetric sigma model, we
consider cartesian coordinates x = (24);c¢, ¥ = Wi)icvs 2 = (Zi)icir & = (§i)icis
and 1 = (1), defined by

1 _ _
€T; = sinh U; — (2812 + ’ll)z'l,/}l> eui, Y; = Sieui’ fl = eUi'l;/}ia n;, = euﬂ/)iv (345)

1 _
In particular, zs = ys =& =ns = 0 and z5 = 1. Let
Seart(@,y,6m) == > Wij(=1—ixj — yiys + ziz; — &my +mi&y)  (3.47)
(i~§)EE
and define
duWV . f .= dzidy; 9:.0 1 Sant@yen 4
I‘l’cartf T H 27‘(‘ & Uni H 2 € f(mvyvg,n) (3 8)
ieV iev 7t

for any compactly supported or sufficiently fast decaying test function f.
Let Voart denote the R-vector space with basis (&,7:)icv. Let Squsy(Qv,€,m)
denote the space of superfunctions of the form

fcart : QV — A(Vcart)
(:Ev y) — fcart(xy y7§7 77) = ZLJGIV fIJ(xu y)é-]nJv
where the coefficients fr; are Schwartz functions and

g=1[& n=]]n (3.50)

i€l jeJ

(3.49)

After doing the change of coordinates given in (3.45), we obtain the test function
in horospherical coordinates fhor : Qv — A(V),

(u7 5) Hfhor(ua 5, @v w)
:fcart (x(u, 5, J’ 1/})’ y(ua S, aa ¢)7 5(”7 S7a7 ¢)7 77(% 5, aa ¢)) . (351)

These notions can be directly extended to superfunctions involving parameters that
depend on Grassmann variables by considering feart, Scart : Qv — A(Veart) ®a AV'.
Lemma 5.1 of Disertori et al. (2017), which is based on Disertori et al. (2010),
implies that for any superfunction feart(z,y,&,n) with the property

esca” fcart S Ssusy(QV, f, 77) Ra /\V/, (352)
one has
/dl‘l’g‘a/rthart = /dIJ‘thora (353)

where we recall that all components of W are now even elements in the Grassmann
algebra with positive body.

Lemma 3.4 (Ward identities). Let f : C — C be a holomorphic function and T =
(Ti)iEV € (sz/)dd)v' Iff(<aa T+ z+ Zy) + <T,§ + i77>)escart € Ssusy(QV; €a 77) ®a/\vl7
then the following identity holds

/ A f((@z + 2+ iy) + (7, + i) = ({0, 1)). (3.54)
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Proof: Let ¢ € R. We define £¥ = (§7),cp, ¥ = (n) ;e by

7\ [ cosp sing)\ (&
<77];p) B (— sinp cos gp) <77§) : (3.55)

Note that Seart(z,v,&,m) = Scart(z,y, %, n¥). Furthermore, the supertransforma-
tion (z,y,&,m) — (x,y,£%,1n¥) has super Jacobian 1 and hence leaves the ref-
erence supermeasure dx dy0:0, invariant. The assumption f({o,z+ z+iy) +
(1,6 +in))eSert € Squsy (Qv, €,m) ®a NV’ assures that all expectations in the fol-
lowing calculations exist and are finite and justifies that we can exchange the order
of integration in (3.57), below. It follows

Ihs(3.54) = / A f(lay e+ 2+ iy) + (1, €9 + i)

- / Al f((@a+ 5 +iy) + e (1€ +im).  (3.50)

Consequently,
1 [ ,
ths(350) =5 [ [ dulbf (oot i)+ (rg i) de
0

1 27 ) _ )
= [l [ ot zrin v me i) o (357
0

Note that
1 271'

g(r): flla,z+ 2z +iy) + e r)dp — f({o, z + 2 + iy)) (3.58)

:%O

is an analytic superfunction of r € AV, ., which vanishes for all » € R by the
mean value theorem for holomorphic functions. Consequently, using that g(r) for
r € NV, ., is defined as a Taylor series in the nilpotent part of R, we obtain g(r) = 0

even
for all r € AV This yields

even'*

lhs(3.54) :/dugrtf(<a,x+z+z‘y>). (3.59)

The claim (3.54) follows from Lemma 5.2 of Disertori et al. (2017), which is again
based on Disertori et al. (2010). (]

Corollary 3.5 (Ward identity for exp). For all a € (—oo,O]V and T = (7;)icv €
(N 0)Y s one has

/duW@(a,eu(l—}-is))-l—«r’e“(E+iw)> — e(oz,l)7 (360)
using the abbreviation e (1 +is) = (€7 (1 +1is;));cy -
Proof: We apply Lemma 3.4 to the function f = exp. Note that since body(z; +
z;j) = body(e*) > 0 and a; < 0 the assumption elaatztiy) H(T.+in) oSeare ¢
Ssusy (v, &, 1) ®a NV is satisfied. Using (3.45) and (3.46), we find z; + z; + iy, =
" (1+is;) and & + in; = €* (¢; +ip;) for j € V. This proves the claim. O
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3.6. Susy martingales. Consider an infinite graph Goo = (Voo, Foo). As described
in Section 1.3, we approximate this infinite graph by finite graphs with wired bound-
ary conditions G,, = (Vn =V, U{0,}, En) with V,, T V. Let Vo be a vector space
with a basis denoted by (1;,%;)iev... Let V,, C Vs be the subspace generated by
(Ui, i)iev, . We set s = 15, = 0. Let m, : Qy,,, — Qy, be the projection
((us, Si)iEVn-H’ (u5n+1 ) 55n+1) (0,0)) = ((us, si)iev,,, (us,,, ss,) = (0,0)). Identi-
fying f € Ay, (Vn) (cf. (3.8)) with fom, € Ay, ,,(Vns1), we view Ay, (V,) as a
subset of Ay, (Vn41)-

In order to have Grassmann parameters available, we consider another vector
space V. together with a filtration of finite-dimensional subspaces V; C V), C V} C

S U VL =V Fori,j € Vi, we take weights W;; = Wj; € (AV.)even such

that Wi; € (N, whenever i ~ j is an edge in G, for some n and W;; = 0
whenever ¢ and j are not connected by an edge in the infinite graph G,. The edges
of G, are given the weights W( defined as in (1.20) and (1.21). Let pu!¥ denote
the supersymmetric sigma model with Grassmann variables defined in (3.16) for
the graph G,, with weights W(n).

Let n € N. Recall the deﬁmtion (3.31) of w"» and ﬂabxx] for [a,b,%x,x] €
G(V!)v,. We consider the joint Grassmann-Laplace transform

Vi Vn
L, (a,b,%,x) = /duflve%”[a’bfw@ ). (3.61)

Test functions. Following the discussion above eq. (3.53) we will consider the space
T, of test functions f € Ay, (V) ®a AV, such that eSeort foory € Squsy (v, €, 1) ®a
AV

PFunctions of 3,0, 6, ¢. Let U, be a vector space with basis (¢;, #i)icv, . In analogy
to the definition (3.8) of A(V), we denote by By, (U,) = C*(RY" x RV" AlU,) the
Grassmann algebra over U,, where the coefficients are given by smooth real-valued
functions fr; € C®°(RY» x RY» R), (3,0) = f15(3,0). If we insert the functions
B = B (u), 0 = 0¥ (u,5), = 6" (u, §), and ¢ = " (u, ), cf. formulas (1.14),
(1.12), and (3.29), in the representation

F8,0,0,8) = > f15(8,0)8,6s € By, (Un), (3.62)

I,J€Tv,

the superfunction in horospherical coordinates can be written as

Fror(y 5,0,9) = F(@ " (u,s,0,9) = > frou, )1y, (3.63)

1,J€Ty,

Again, these definitions extend directly to functions involving Grassmann-depen-
dent parameters By, (Uy,) @4 AV,.

One may wish to define a susy analogue of infinite volume measures for functions
of the real and Grassmann variables 3,6, ¢, ¢. The next lemma gives an analogue
of Kolmogorov consistency. In the same spirit as in formula (1.24) in Mitter and
Scoppola (2008) it would allow to define an infinite-volume expectation functional
for test superfunctions depending only on finitely many supervariables.

Lemma 3.6 (Consistency).
For n € N and [a,b,X,x] € G(V)11)v,., with [a;, bi,X;, xi] = [1,0,0,0] for all
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i€ Vn+1 \ V.., one has

EZV(aVnaan7YVn7XVn) = Eml(aabvyv X) (364)

Consequently, for any superfunction f € By, (Up) ®a NV), such that fror € Tn one
has

/ Y f(w¥) = / Al (=Y, ). (3.65)

Informally, this means that the (super-)law of w"» = (BV",GV",avn, V) with re-

N 7Vn
spect to u'V agrees with the (super-)law of w"n+1|y, = (BVr+1,0Vet1 ¢ "1 pVei1)|y,
with respect to uml.

Proof: Using the expression (3.34) for the Grassmann-Laplace transform, the proof
of (3.64) is in complete analogy with the proof of Lemma 1.2, using Theorem 3.3 as
the analogue of Theorem 1.1 and replacing expressions of the form a;a; + b;b; — 1
originating from formula (1.16) by expressions a;a;+b;b;+X; X +X,;Xxi—1, appearing
in formula (3.34).
Vn Vn

To prove (3.65), we consider first the special case f(w"") = ei<ﬂ[“’b~7=><]’w >
We claim fhor € Tp. Indeed note that replacing v in S(u) with u = u(x,y,&,n) we
can write (cf. Lemma 2.3)

Scart(x; y»fﬂ?) = _% <1\7na Hﬁlffn> - % <y7HBy> - <£a Hﬁ77> ) (366>
(Tl @) = —Seart + Cur(a,5,%, %) (3.67)
— 5 {ata) — 5 {0 Byl +5)) — (€430, Hyn+ )
where
Ow(a,b,X.x) = > Wi [1—aia; —bibj — Xixj — X;xi] (3.68)
(i~j)€En

is a constant in (V),)even- Letting ¢ := min{body(a3) : j € V,} > 0 we have
escart fcart (fE, Y, 57 77) = 608%” (z,y+b,§+¥,7}+x)eF(x,y,{,n)eCW (@,b,%:x) (369)

where bodyF(z,y,£,n7) < 0, and all derivatives of F' of any order in z,y,£,n are
algebraic functions of these variables without singularities. Hence gSeart feart €
Ssusy (QVn7 f? 77) ®a /\Vrll

Vi Vin
For the special case f(w"") = e_<”[a,b&,x17w ) claim (3.65) reads
/dﬂ,‘;ve* T @) :/dlv’vnW+1€*<“[‘:fbxx]’wv"“|Vw>. (3.70)

This formula is just another way of writing equation (3.64). For the remainder of
this proof, we consider ¢ := a® + b2 + 2¥x — 1, b, X, x rather than a, b, X, x as
our list of independent variables, viewing a = \/ c— b2 —2yx + 1 as a function of
(¢;b,X,x). This makes sense as long as body(c — b?) > —1. We take all iterated
Grassmann derivatives of the form [}, 0y, [z, 62% with iy, i € V,, in equation
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(3.70). Afterwards, we set x =0 and Y = 0. For I, J € Ty, , we obtain

[ aul Gy ot e e ) o)
/ a3y Y e (v BT v ) = (v 07 v ) (3.71)

for any Grassmann monomial g. Note that the identity (3.71) holds in particular
for all real b, ¢ in a neighborhood of the origin.

For a general function assume first the weights W;; take only real values. Then,
£ and 6 take only real values because the integration variables u and s take real
values. Hence, using the uniqueness theorem for Laplace transforms and the repre-

sentation (3.62) of the superfunction f, the claim (3.65) follows under our additional
assumption W;; € R; note that the hypothesis f € By, (Uy,) ®@a AV), with fuor € Ty,
provides the necessary integrability. Because both sides of the claim (3.65) are
analytic superfunctions in the weights W;;, the claim follows also in the general
case. (]

We remark that in the above proof, it is essential to allow the scaling parameters
a to take values in the even part of a Grassmann algebra rather than taking only
real values, because we have written a = \/ ¢ —b%? — 2xx + 1 with real ¢ and b and
Grassmann variables y and x.

For o € (—00,0](V>) we use again the definition of a(™ given in formula (1.31).
On the contrary, given 7 = (7;);ev,, such that 7; € (AV/)oqq for all n € N and
i € V,,, we denote by 7(™) the restriction of 7 to V,,. Note that AV, C AV,

The following theorem is an extension of the martingale property stated in The-
orem 1.3.

Theorem 3.7. Forn € N, a € (—00,0]V>), and 7 = (7;)scv.. as above, let

MM — Mo(znqz(uasvwvw) _ e<a(n)’eu(1+is)>+<7'vn,e“(a+i1p)>. (372)

o, T

For any test superfunction g € By, (Up) ®a AV), with ghor € Tr, one has
[ty gty = [ du wilg(") (3.73)

Note that in (3.72) we need a definition for as, because e*on (1 +iss,) = 1. In
contrast to this, e"n (15 +itbs,) = 0, hence no definition of 75, is needed.

Proof of Theorem 5.7: The proof is in complete analogy to the proof of Theo-
rem 1.3, with an extended set of variables.

Vn, Vn
We consider first the special case g(w"") = ef<7r[“vb%><]’w > with [a,b, %, x] €
G(V,)v,- Note that with this choice gnor € Tn. Now, set [a;, bi, X;, xi] = [1,0,0,0]
fori e Vn+1\V The fact < LA R
(3.35) from Theorem 3.3 yield

/du M e ~(mi g @ ) /du M e (=)

\%
oVnt |Vn> = < [a”l)*; o wV"+1> and equatlon

:£7V1V+1(G'7 b?Ya X) / d”’n+1y a b, X, X M(n+1)‘ (374)
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The following calculation is analogous to formula (2.23):
g MUY =exp ({0, ev1one(1 4 i(s — emvmomap)) ) ). (3.75)
exp (<T(n+1)7eu+loga(¥ — U logaX + Z(¢ u—logax))>)
:6<ao¢("+1),e“(1+is)>+<a7(“’+1) ,e“(@—‘—id})) e—<a(”+1) ,ib>—<‘r<n+1),i+ix> )

Inserting this in (3.74) and using the Ward identity from Corollary 3.5, we obtain
the following analog of the calculation from formula (2.24) to (2.26):

/. Va1 Vi
/dﬂr‘ﬁ-lMyfjl)e <7r[avbv?vxl’w +1> :Eml(a,b,YaX)'
Ao O [ gl lon ™ ) 2 )
n

L (b, 5, e 0 )~ (D i) fan 1)

ZEK_l(a, b,y, X)e<a(n+1)’a*ib>*<T(W'+1)vY+iX> ) (376)
In the same way, replacing n + 1 by n yields

/ dpll (e Cioma ™) = £ (0,7, )y, el =R (3.77)

The consistency result from Lemma 3.6 can be written in the form EZVH (a,b,X,x) =
LY ((a,b,%,X)v, ). Identity (2.28) states (o™ q —ib) = (o™ a —ib). Finally,
using X; = x; =0 forall j € Vn+1 \ V,,, we obtain
— . n+1) — .
(F Xk = 32 AU, i)

JE€EVnt1

=Y 7 i) = <T("),Y+ ix>. (3.78)
JEVn
It follows that

/ e M (T = ) / el Mme il =) (3.79)

Using the same argument as in the proof of Lemma 3.6, replacing the supermeasure
du)’, k€ {n,n+ 1}, by du; Mé ) the claim (3.73) follows for any superfunction
g € By, (Uy,) ®a ANV), with ghor € T O

Corollary 3.8. Forn,k,m € N and j1,..., 55,01, lm € Viuy1, let
2™ LR )
M;:?--,jmlh ol H e (1+ ng':)) H e (wlq + Z¢§:))' (3-80)
=1
For any superfunction g € By, (Z/{n) with g(ww") € Ps(n), one has

/ dpy MY g(@ ) = / dun M ,jk,ll,__.,lmg<an>. (3.81)

The same holds for the real and imaginary part of M

coJks by lm

Proof: In analogy to Corollary 1.4 the proof follows dlrectly from the Taylor ex-
pansion of formula (3.73) with respect to « and 7. O
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Appendix A. Group structure of scaling

Recall the definition of the set Gy in (1.7). To describe its group structure it is
now convenient to encode any pair (a,b) € RT x R with

la,b] = ( - ) (A1)

The set of matrices
G :={la,b] : a>0,beR} (A.2)

endowed with matrix multiplication forms a non-Abelian group. Its group operation
can be written in the following form:

[a”,b"] = [a,b] - [a’,b] = [aa’, b+ ab]. (A.3)
The group G has the neutral element [1,0]; the inverse is given by
[a,b]"' = [1/a, —b/a). (A.4)

We endow G with the Lebesgue measure in the (a, b)-coordinates A(da db) = da db.
We introduce coordinates (u,s) € R? of G by

—u

a=e and b=s. (A.5)

In these coordinates the Lebesgue measure da db takes the form of the measure ¢
from formula (1.5):

dadb = ¢(duds). (A.6)

Right operation on G. Note that this measure A is not a Haar measure on G. We
define the right operations

Ry :G—=Guvmv"=v-0v forv e€g. (A7)
Under R, using the notation v” = [a”,b"] = [e=*", s"], the measure \ scales as
follows:
1 1
Riw ) N(da” db") == da” " = — C(du"" ds"). (A.8)

Cartesian power of G. With the above identification of [a,b] in terms of 2 x 2-
matrices, the definition (1.7) of Gy reads as follows:

Gy == {[a,b] := ([ai,bi]);cp € G" : [as, bs] = [1,0]}. (A.9)

In particular, the group operation - : Gy X Gy — Gy is understood componentwise.
The set Gy can be identified with the set 2y, defined in (1.1), via the componentwise
coordinate change to (u, s)-coordinates

t:Gy = Qv, [a,b] — (—loga,b). (A.10)
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. -operation as right operation. Using the identification ¢, the .#-operation (1.8)
can be written as right operation with inverse elements [a, b] € Gy:

Sap) Qv = Qv Aap) =0 Rgp-1 0 =10 Ri1/a,~b/a) © L (A.11)

Note that [as,bs] = [1,0] implies A4 4)(u, s) € Qy. The map & : Gy x Qy — Qy,
Z([a,b], (u, 8)) = Hap)(u, s), is a group action. Indeed, for vy, vz, v € Gy it holds

T (Lo (V) = (v v37) o) = v (U1 02) ) = Sy (1(v). (A12)

Moreover, for the neutral element [1,0] € Gy the map .#}; o) is the identity. Conse-
quently, /], is invertible for [a,b] € Gy with the inverse 5”[;})] = Sap-1-

Appendix B. Alternative proofs

B.1. Second proof of Lemma 2.2. We can represent the density p"' of the super-
symmetric sigma model as follows. Recall the bijection ¢ introduced in (A.10).

Lemma B.1. For (u,s) = t(v) € Qv with v = [a,b] € Gy, the density p"V defined
in (1.3) can be written as follows:

W .yt vt
p"V (u, s) = det AV, (u) exp Z 7” det (1);”1 - Zl]) (B.1)
(i~g)eB ' !

Proof: Let (u,s) = 1(v) € Qy. It suffices to prove for all (i ~ j) € E

1 1 b vl
- [cosh(ui —uy) =1+ 5(si - sj)%uﬁ%} = 5 det <";" - ;;) . (B2)
For i € V, v; = [e™%,s;] = [as, b;], we calculate

t —u; —u; —u; 2 u; Ui
Viv; [ e s e 0\ [ e " 4siet s;e™
a; € < 0 1 ) ( s; 1 > - ( seYi et ) ’ (B-3)

Consequently, the claim (B.2) follows from
ot vt
det <U1UZ - “) =(e™" — e 4 sZeMi — s?e“j)(e“i — ") — (s;e" — sje")?
a; Qa;j
=2 — 2cosh(u; — u;) — (s; — 55)%e" T, (B.4)
O

To deal with determinants of differences of 2 x 2-matrices, we need the following
elementary lemma, which is motivated by the linear algebra of spinors. Let

s_<(1) _01). (B.5)

Lemma B.2. For all v; = [a;,b;],v; = [a;,b;] € G, one has

b vl tev; |2
det (Uﬂ}l Y ]) —9_ ||’U7,E/U.]|| 7 (B.6)

a; aj a;aj

where || - || means the euclidean norm of 2 x 2-matrices.
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Proof: The bilinear form trace(As Bc) on 2 x 2-matrices 4, B € R?*? is symmetric.
Indeed, using et = —¢,

trace(BeA'e) = trace((BeA'e)") = trace(¢ A B") = trace(AeB'e). (B.7)
The corresponding quadratic form is given by
trace(AcA'e) = —2det A. (B.8)
It follows
det(A — B) = det A + det B + trace(AcB'e). (B.9)

Taking now A = a; 'v;vf and B = aj_lvjvj- = B!, which fulfill det A = a; *(det v;)?
=1 = det B, we obtain

t .yt
vivi VY ¢
det | —t — —2 ) =det(A — B) = det A + det B + trace(AeB'e)
a; a;
=2 + trace(AeBe) = 2+ trace(vivjev;vje). (B.10)
i@
Using ¢ = —¢ again, we rewrite the last trace as follows:
trace(vivjev;vlie) = trace(vfsvjvﬁ-evi) = — trace(viev; (viev;)) = —|lvlev;||?.

(B.11)
Substituting this into (B.10), the claim (B.6) follows. O

Second proof of Lemma 2.2: We take v = [a,b], v/ = [d/,V], and v = [a”,b"] in
Gy with v = ¢/ - v and set (u,s) = ¢(v'), (@,8) = ¢(v"). By (1.9), we have
‘Sﬂ[;i] (u,s) = t(v"). Since AW" (@1) = AW (u) as stated in Lemma 2.4, it follows

det AV () = det AV, (u). (B.12)
Using Lemma B.1 and this fact, we obtain

P (A 9) oV (u([a”, 1)

p— fr— B.].
o (1, 5) o ([, D) (B.13)
W, AT} AT
exp| Y ] 2” laiaj det ( i ! a’/J —det |~ — Jaf]
(i~))EE ' ! ’ !

We apply Lemma B.2 to v = [d,b] and v" = [a”,b"] as follows, using a] = a;a}

forie€V:
a

" 12 ! !
i a; i a;

ton |12
a/iaj 1INt 012 ||(’U;) E_:Uj”
—2aia; — LY a2 — 2 4+ 1 EUIT
v a;'a;f ‘ J a;a;
1
=2(aja; — 1) + (Ip)rev = [1(v]) ev]|1?) - (B.14)

>
a;a;



Martingales and the susy hyperbolic sigma model

205
Note that
—a
(vg)tav; = ( (?,_ b _azb( ) and (B.15)
g YT Y
0 —al 0 —a;a;
"\t " (3 —_ (et
('Ui) Ev; = < a;/ b// b// ) - ( aja;‘ b; 7(); +a9bj - aébz > . (Blﬁ)
We calculate the last parenthesis in (B.14), writing (-,-) for the euclidean scalar
product of matrices:
1(w)) evj1* = ll(vi) evf I = ((vi)'ev + (vf) 'evf, (v)'evj — (v])'evy) (B.
_ 0 —a(1+a;) 0 —a 1—az
TN\ (L +ay) =28 = b)) = (ajb; — ajby) ) T \a (1~ a )
; a’ b; b; b; b;
—a;a) a—;(az2 1)+ ;Z(a — 1) +2(b; — b)) (aj - aé) + a;a) <a; — a—z
This yields
! /
Lh.s. in (B.14) =2(a;a; + bib; — 1) — (a( +07 — 1)+ a{ (a5 + 07 — 1))
J 7
b; b;
—,(b’ — b)) — a—{_(b;. —b). (B.18)
] i

symmetry W;; = Wj;, we obtain

y it vl (v)t HCAEETACAL
Z V[;U laiajdet (vz (1/)/1) o J<HJ) > — det (Uz(rliz) o J( J) )]
_ a; a;
(i~d)EE

/
a; aj

Multiplying this with W;;/2, summing the result over (i ~ j) € E, and using the

1 b;
> Wilaia;+bibj— 1= > Wy [QZf(a + b7 — 1) + —(b; — b))
(i~j)EE v !

(B.19)

Next, we rewrite the definitions (1.14) of BV and (1.13) of 8}V, i € V, in the
following form, using [a’,b'] = [e™", s]:

1 1 /
=52 Wye =23 Wit

4, (B.20)
jev jev J
= Z Wije ’(Si — Sj) = Z Wwa’f,(b; — b;) (B21)
JjEV Jjev J

Since a2 + b2 — 1 =0, bs = 0, we obtain

Lhs.in (B.19) = > Wijlasa; +bibj —1] = [(a? + 7 = 1B +b:0)"],
(i~j)€EE eV

(B.22)
Substituting this into (B.13), the claim (2.3) follows. O
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B.2. Proof of Theorem 1.1 by conditioning. Our second proof of Theorem 1.1 uses
the known transformation behavior of u"" (du ds) with respect to Ha,0) from Dis-
ertori et al. (2017) and the fact that conditionally on u, the s-variables are jointly
Gaussian. The following lemma describes the conditional distribution of 8" given

gv.
Lemma B.3. Conditioned on B, the random vector 8 € RV is normally dis-
tributed with mean 0 and covariance matrizc

HY(, = eyy AVy (u)eyy. (B.23)

Proof: By definition, conditioned on u, the vector sy is centered Gaussian with
covariance matrix A~!, where A := AW (u). Since u is a function of gV by
Lemma 2.3 of Disertori et al. (2017), we have conditioned on B" that 6V =
ey Asy is also centered Gaussian with covariance matrix (e, A) A~ (ep 1 A)F =
ey v Aey . The representation (13.23) follows from (2.6). O

Proof of Theorem 1.1 by conditioning: To prove (1.17), by the monotone class the-
orem, it suffices to consider test functions of the form f(u,s) = g(u)h(s) with

measurable functions g, h : RV - R(J{ . We calculate
By [0 Han] =Buwe [g(u+loga)h(s — e~ (Hosp)] (B.24)

The behavior of the supersymmetric sigma model p"* with rescaled weights with
respect to the shift u — u + loga in the u variables was studied in Disertori et al.
(2017). Using Theorem 3.1 of that paper with A\ = a® — 1 yields

E, wa [g(u +loga)h(s — e~ (utloe a)b)}
=L (a,0) ' E,w [g(u)h(s - efub)e*«“tl)v’ﬁW(U)}}
=LY (a,0)'E,w [Q(U)Euw [h(s — e*ub)|u]e—<(a2—1)v,ﬁw(u)>} (B.25)

with the constant £ (a,0) given in (1.16); recall that 8" is a function of u. By
the definition of the supersymmetric sigma model, cf. (1.6) and (1.3), conditioned
on u the vector sy is centered Gaussian with covariance matrix A, (u)~! and

ss = 0. Consequently, abbreviating ¢ = (27)~IVI/2, /det AW, (u) and o(ds) =

bo(dss) [1;ey dsi, the conditional expectation in (B.25) is u"V-a.s. given by

E, wlh(s —e "b)|u] = C/RV h(s — e*“b)efé<s,AW(u)S> o(ds)

:C/ h(s)efé<s+e—ub,AW(u)(s+e—ub)> cr(ds)
RV
:C/ h(8)67%<S’AW (u)s>7%<6_"b7AW (u)e_“b>7<e_“’b,AW (u)s> U(ds). (B26)
RV
Using bs = 0 and (2.6), we obtain

(e=b, AW (u)e~"b) = <bV,Hg‘(’u)bv> =2(b%, 6% (W) — > Wisbib,. (B.27)
,jEV
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Similarly, using the definition (1.12) of 8", we obtain
{e7"b, AV (u)s) = (by, eyt AVy (uw)sy ) = (by, 0" (u, s)). (B.28)
Inserting (B.27) and (B.28) into (B.26) yields
By [h(s — e~ b)]u]

= II exWibibi =W BY W) [ p(g)emt{sA" @)= {ov0" (w) (gs)

i,jeVv RV
=LY (0,01 (a,0)"1 - e~ VAV ()R [h(s)e*<bv»9w<w>> \ u} . (B.29)

Inserting the above in (1B.25) yields the claim (1.17). Equality (1.18) follows from
(1.17) applied to the function f(u,s) = 1. O

Appendix C. Coordinate transformations for superfunctions
We abbreviate = (u, s,1,v) = (u;, 5i,0;, ¥;i)iev and dx = [Licy du;ds; &_ Oy, -

Lemma C.1. For v € G(V')y and any compactly supported (or sufficiently fast
decaying) superfunction f, one has

/dm (& )z /d:nf (C.1)
Proof: Consider a supermatrix
A X
- (4%) o3

where A, B have even entries, ¥, I" have odd entries, and A and B are invertible.
Its superdeterminant is defined by

det(A — BT
det B '

It plays an analogous role in Berezin’s supertransformation formula as the ordi-
nary determinant plays in the classical transformation formula; cf. Theorem 2.1 in
Berezin (1987).

For v = [a, b,, X], the change of coordinates generating .7, is given by

' (z) = (v, s’,@l,z//) = (u+loga,s —e “ba b —e “xa "t —e Uxat).

sdet M = (C.3)

This transformation has the super Jacobi matrix given by

u'  du  du  9u
ou Os 61[) oY

as’  as’ ds’
or' u 9s aw % (A O C
or | 2¢ 9 vl oy’ “\r 1 (C.5)
ou Os oY o

oY’ oy’ o’ oy’
ou Os oY oY

(1 0 (10 _ (e~vxa~t 0
A(e‘“ba_1 1>’ 1(0 1)’ F<e_“xa_1 O)' (C.6)

with
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Here e “ba~! is the diagonal matrix with the entries e‘“ibiafl. This super Jacobi
matrix has the superdeterminant sdet %—”;/ = 1. Consequently, the inverse super-
transformation has the superdeterminant sdet 3 o

= = 1, as well. We obtain
/dm (& )z /d:cf /da: f(x :/dac’ f(xh. (C.7)
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